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Abstract. Modules in which every proper submodule (resp. proper nonzero submod-
ule) is prime (called fully prime (almost fully prime)) and with some other related
notions are fully investigated. It is shown that over a commutative ring R, an R-
module M is fully prime (fully semiprime) if and only if M is a homogeneous semisim-
ple (co-semisimple) module. This in particular shows that a f.g. R-module M is
co-semisimple if and only if ﬁm is a regular (von-Neumann) ring. Modules in
which nonzero direct summands are prime are also characterized. When R is a one-
dimensional Noetherian domain we determine all modules in which the zero submodule
is the only prime (semiprime) submodule. Finally, we observe that R is a Max-ring if
and only if every R-module contains a prime (semiprime) submodule.

Introduction

All rings in this article are commutative with identity and modules are unital.
Let R be a ring. Then an R-module M = 0 is called a prime module if its zero
submodule is prime, i.e., the relation rz = 0 for x € M,r € R implies that
x=0orrM = (0) (i.e.,r € Ann (M)). We call a proper submodule N of an
R-module M a prime submodule of M if M/N is a prime module, i.e., whenever
rm € N, then either m € N or rM C N for any r € R, m € M. Thus N
is a prime submodule of M if and only if P = Ann(M/N) is a prime ideal of

R
R and M/N is a torsion free F—module. This notion of prime submodule was
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first introduced and systematically studied in [10, 6] and recently has received a
good deal of attention from several authors; see for example [1, 17-23, 25, 27,
28], and many others. Clearly, the set of prime submodules of a ring R and its
set of prime ideals coincide. Therefore, naturally when dealing with this notion
one tries to extend the theory of prime ideals to these objects. Unfortunately,
unlike the rings with unity, not every R-module contains a prime submodule;
for example Zp~ does not contain a prime submodule; see [18] or [22]. More
generally, we know that if R is a domain and not a field, then no divisible R-
module M (i.e., rM = M for all 0 # r € R) has a maximal submodule and we
also note that each prime submodule of M is divisible. This simple observation
shows that no non-torsion free divisible R-module (R is still a domain) whose
proper non-zero submodules have maximal submodules (such as Zpe) can have
prime submodules. We also note that if R is a domain and M is a divisible
torsion free R-module, then a submodule N of M is a prime submodule if and
only if it is a direct summand of M. This simple observation generalizes the fact
that (which is Theorem 1 in [18]), if R is a domain and K # R is its field of
fractions, then K has no maximal R-submodule and the zero submodule of K
is the only prime submodule; see also [1].

One can easily see that for any R-module M, if Hom(M, R/rad(R)) # 0,
where rad(R) denote the nil radical of R, then M contains a prime submod-
ule; see also [22, Corollaryl.3]. It is also easy to show that whenever M is an
R-module and P is a maximal ideal of R with M # PM, then each proper
submodule of M containing PM is a prime submodule. Thus, we can naturally
provide nontrivial rings over which every module has a prime submodule, simply
by taking a maximal ideal P in any ring R, then the rings %, n=1273,..
give us some natural examples.

We note that if each principal ideal is prime, then R is a field and also R is
a regular ring (von-Neumann) if and only if each principal ideal is a semiprime
ideal. Motivated by all these simple observations and the fact that the develop-
ment of the theory of prime submodules is still at its early stage, it becomes of
interest to ask: what are the R-modules M such that each proper submodule
is prime (semiprime)? And also, what are the modules M such that the zero
submodule is the only prime (semiprime) submodule? What can we say about
the modules in which nonzero proper direct summands are prime? Finally, what
are the rings R such that each R-module has a prime submodule? Our main
purpose of this article is to settle all these and some other related questions.

We call an R-module M fully prime if every proper submodule is a prime
submodule and call it almost fully prime if every proper nonzero submodule is
a prime submodule. We give several equivalent conditions for an R-module M
to be fully prime (almost fully prime). Modules in which each nonzero proper
direct summand is prime are determined. We show that over a one-dimensional
Noetherian domain R, the simple R-modules and the field of fractions of R are
the only modules in which the zero submodule is the only prime submodule. It
is also shown that every R-module contains a prime submodule if and only if
R is a Max-ring (i.e., every R-module contains a maximal submodule). Finally,
we try to extend some of our results to semiprime modules. By a semiprime
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submodule N of M we mean a proper submodule N # M such that r?m € N
implies rm € N for all r € R, m € M and M # 0 is called semiprime R-module
if its zero submodule is a semiprime submodule. We show that each proper
submodule of M is a semiprime submodule if and only if M is co-semisimple
(see [2, 26]) and give some other equivalent conditions.

This article consists of three sections. In Sec. 1, we study fully (almost fully)
prime modules. Sec. 2, is devoted to fully (almost fully) semiprime modules.
In Sec. 3, modules with the zero submodule as the only prime submodule are
studied. We also give a new characterization of Max-rings. For undefined terms
and terminology, the reader is referred to [2, 26].

1. Fully Prime Modules

Clearly, homogeneous semisimple modules are fully prime and each nonzero
cyclic submodule of an R-module M is a simple R-module if and only if M
is a homogeneous semisimple module. Let us also call an R-module M to be
almost prime if each nonzero proper direct summand of M is a prime submodule
of M.

We begin with the following useful and evident results.

Lemma 1.1. Let M be an R-module and M = M1 ® M. Then each M;, i =1,2
is a prime submodule of M if and only if each M;, i = 1,2 is a prime module by
itself.

Proposition 1.2. Let M be an R-module. Then the following statements are

equivalent.

1. M is a prime module.

2. Each proper direct summand of M is a prime submodule (i.e., each nonzero
summand becomes a prime module by itself).

3. All nonzero cyclic R-submodules of M are isomorphic.

4. For all0 #m e M, Ann(m) = Ann(M).

Proposition 1.3. An R-module M is homogeneous semisimple if and only if
M is a prime R-module with soc(M) # 0.

Corollary 1.4. Let each nonzero prime ideal in a ring R be mazimal. Then an
R-module M is prime if and only if M is either a torsion free R-module or a
homogeneous semisimple module.

Next, we learn that an almost prime R-module which is not prime cannot
have many summands.

Theorem 1.5. M is an almost prime R-module if and only if one of the fol-
lowing statements hold.

1. M is a prime module.

2. M is an indecomposable module.
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3. M = My & My, where My # 0 # My are unique and each M;, i = 1,2 is an
indecomposable prime module.

Proof. Let M be an almost prime R-module which is neither a prime module
nor an indecomposable module, i.e., M = M; & My, where My # 0 # Mos.
First, we note that M;, ¢ = 1,2 are prime submodules of M if and only if they
are prime module by themselves, see Lemma 1.1. Hence Ann(z) = Ann(M)
and Ann (y) = Ann (Ms) for all 0 # « € My, 0 # y € Ms. Now if Ann (M) =
Ann (My), then Ann (m) = Ann (M) for all 0 # m € M and M becomes a prime
module which is absurd. Therefore Ann (M;) # Ann (Ms), and we claim that
both M; and M are indecomposable. To see this, let us assume that one of them,
say M, is decomposable and M; = P& Q, P #0# Q. Then M = P& Q & Mo,
ie, Q ® M is a prime module which means that Ann (Q) = Ann (Mz). But
Ann (Q) = Ann (M), i.e., Ann (M7) = Ann (Ms), which is impossible. Thus we
have already shown that both M7 and Ms are indecomposable.

Finally, in order to prove the uniqueness of M7 and Ms, let M = M| & M,
and we show that {M;, My} = {M7, M}}. Now by the first part we note that
M/, i = 1,2 are indecomposable and Ann(z;) = Ann(M/), i = 1,2 for all
0 # x; € M/. We also note that Ann (M7) # Ann(Mj). Therefore without
losing generality we may assume that Ann (M;) € Ann (Msz) and Ann (M7) €
Ann (MJ). Thus there exist r,s € R with rM; = 0, rMs # 0 and sM| = 0,
sMJ} # 0. Now it is clear that either M{NM; = 0 or M N My = 0, for otherwise
M{ N M; # 0 # M{ N M,y implies that Ann (M;) = Ann (M{) = Ann (M),
which is absurd. We also claim that M] N M; = 0 = M; N Ms does not occur.
To this end, for each 0 # x € M/ we have © = y + z, where 0 # y € My,
0 # z € Mo, ie., ro = rz, for ry = 0. Hence rez = rz € M{ N My = 0 and
since Ann (z) = Ann (M) we have rMs = 0, which is absurd. Thus we may
assume that M N M; = (0) # M{ N My, ie., Ann(M3) = Ann(M{). This
implies My N M} = (0), for otherwise we have Ann (M) = Ann (M}), which is
impossible. Now for each € M) we have x = y + 2z, y € My, z € M3 and
rez =rz for rM; = 0. But ro = rz € M2 N M, = (0), i.e., rz = 0 which implies
that z = 0, for otherwise we must have rMs = (0), which is impossible. This
means that M4 C M;. Similarly, for each 0 # m € My, we have m = m} + mj,
mj € M{,0+# mb € Mj. Now rm = 0 implies that rm} = rmf, € M{NM}; = (0),
i.e.,, rm} = 0 must imply that m} = 0, for otherwise rM; = (0), i.e., rMa = (0),
which is not possible. Thus m/{ = 0 and m = m}, € M, i.e., M1 = M}. Applying
this method and replacing r by s, we see that My = M. The converse is evident.

|

Remark 1. The previous theorem reveals that the only decomposable non-prime
Z-modules(i.e., of the form A® B, A # 0 # B) which are almost prime Z-module

are: Z, @ Zq, where p # ¢ are arbitrary prime numbers, Z, = % and Z, ® A
where A is a torsion free indecomposable Z-module.

The following is now immediate.

Corollary 1.6. Let M be an R-module with the nonzero socle. Then M is
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almost prime if and only if it is of one of the following forms.

1. M is a homogeneous semisimple module.

2. M is an indecomposable module.

3. M = My & M, where My # 0 # My are unique and one of them is simple
and the other is an indecomposable prime module.

The following evident lemma is needed.

Lemma 1.7. An R-module M has only two nonzero proper submodules if and
only if it has a unique composition series of length three or is of the form
M = My & My, where My and My are the only simple submodules of M (or,
equivalently My and Ms are non-isomorphic simple submodules).

Corollary 1.8. If M = M; & Ms, where My and Ms are simple R-modules,
then M is either prime or almost prime.

Proof. If M1 = Ms, then M becomes homogeneous semisimple, i.e., it is prime.
Otherwise, by the above lemma, M;, M, are the only nonzero proper submodules
of M and since they are prime and indecomposable, we are through by Theorem
1.5. [ |

The following gives more information about fully prime modules.

Corollary 1.9. If M is an R-module, then the following are equivalent.
1. M is a fully prime module.
Each cyclic submodule of M is a prime submodule.
M is prime and each cyclic submodule of M is semiprime.
M is a homogeneous semisimple module.
M is prime and each submodule of M is an intersection of maximal sub-
modules of M .
M is prime and semisimple.
7. M is prime and M has dcc on its f.g. submodules.
8. For any two ideals A, B in R and each m € M, Am, Bm are comparable
and A?m = Am.
9. M is a prime module and soc(M) # 0.
10. M is prime and regular (i.e., each cyclic submodule of M is a summand,
see [15]).

ANl

&

Proof. Evident. [ ]

Next, we aim to characterize almost fully prime modules (i.e., each proper
nonzero submodule is prime). We have seen that not even a semisimple mod-
ule can be fully prime unless it is homogeneous semisimple (i.e., homogeneous
semisimple). Can a semisimple module be almost fully prime? The following is
the answer.

Lemma 1.10. A semisimple R-module M which is not homogeneous semisimple
is almost fully prime if and only if it is a direct sum of two non-isomorphic simple
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modules.

Proof. Let M = ), ; ®M;, where each M; is simple, be almost fully prime
but not homogeneous semisimple. We claim that | I |= 2, for if not, then
| I |> 3 and consider M = M; ® P, where P = Z#jel ®M;, ie., P is fully
prime by Lemma 1.1 and therefore P is homogeneous semisimple, i.e., Ann (P) =
Ann (M;) = Ann (My,), for any k,j # i. Now we can consider M = M; & Q,
where Q = Z#ig @M, and similarly @ becomes fully prime, i.e., Ann (Q) =
Ann (M;) = Ann (M}). This means that Ann (M;) = Ann (M;) for all i # j, i.e.,
M is homogeneous semisimple which is absurd. Thus | I |= 2, and M = M1® Mo,
My 2 Ms. The converse is evident. ]

The next lemma, although very easy, plays a crucial part in our investigation.

Lemma 1.11. Let M be an R-module. Then the following statements are

equivalent.

1. M is a almost fully prime module.

2. For each proper nonzero submodule N, M/N is a homogeneous semisimple
module.

3. For each 0 #m € M, M/Rm is a homogeneous semisimple module.

Now we are in a position to characterize almost fully prime modules.

Theorem 1.12. An R-module M is almost fully prime if and only if it is of

one of the following forms.

1. M is a homogeneous semisimple module.

2. M s a direct sum of two non-isomorphic simple modules.

3. Each nonzero cyclic submodule of M contains at most one nonzero proper
submodule which is the unique simple submodule of M.

Proof. Let M be almost fully prime R-module. If M is semisimple, then we
are through by Lemmas 1.10, 1.11. Therefore we may assume that for some
0 # m € M, Rm is not semisimple. Now we claim that Rm contains only one
nonzero proper submodule. For let (0) # K be a proper submodule of Rm, i.e.,
by Lemma 1.11, Rm/K is homogeneous semisimple and since it is cyclic it must
be simple. This shows that each nonzero proper submodule of Rm is maximal
and therefore is minimal in Rm. But Rm with this latter property is either a
direct sum of two simple modules, which is not possible or it contains only one
nonzero proper submodule, say Ng. We claim that Ny is contained in any cyclic
submodule (0) # Rx of M. To see this, it suffices to prove that Rx N Rm = (0)
leads us to a contradiction. Now we note that in Rx & Rm the submodules Rz
and Rm are prime submodules, i.e., they are prime by themselves by Lemma
1.1, i.e., Rm becomes fully prime and therefore is homogeneous semisimple by
Proposition 1.9, which is the desired contradiction. Conversely, it suffices to
show that condition (3) implies the almost fully primeness of M. In fact, let
Ny be the intersection of all nonzero submodules of M. Now let 0 # m € M,
i.e., either Rm = Ny or Rm/Ny is simple which means that each nonzero cyclic



Modules Whose Certain Submodules Are Prime 309

submodule of M /Ny is simple and M /Ny becomes homogeneous semisimple. But
for each nonzero proper submodule N of M we have Ny C N, i.e., N/Ny is a
prime submodule in M /Ny which implies that N is a prime submodule of M
and we are through. n

2. Fully Semiprime Modules

Let us recall that a proper submodule N of an R-module M is called semiprime
if whenever r?m € N, then rm € N, where » € R, m € M and M is called
semiprime if its zero submodule is a semiprime submodule. Clearly, each inter-
section of prime submodules is a semiprime submodule, but not conversely; see
[19], where Noetherian rings over which the converse holds are characterized.
We also call an R-module M to be fully semiprime if each proper submodule
of M is semiprime and we call it almost fully semiprime if each nonzero proper
submodule is semiprime. Finally, we recall that if U, M are R-modules, then,
following Azumaya, U is called M-injective if for any submodule N of M, each
homomorphism N — U can be extended to M — U; see [26], where it is
shown that if U is P-injective for each cyclic submodule P of M, then U is M-
injective. In this section we characterize both fully and almost fully semiprime
modules.

Let us begin in this section with the following lemmas which are similar to
their counterpart in prime submodules.

Lemma 2.1. If M = M1 ® M, then each M;, i = 1,2 is a semiprime submodule
of M if and only if each M;, i = 1,2 is a semiprime module by itself.

Lemma 2.2. Let M be an R-module. Then the following are equivalent.
1. M is a semiprime module.

2. Each direct summand of M is a semiprime submodule.

3. For each 0 #m € M, Ann(m) is a semiprime ideal.

The next result shows that over regular rings all modules are fully semiprime.

Theorem 2.3. Let M be an R-module. Then the following statements are
equivalent.
1. M is a fully semiprime module.
2. Fach cyclic submodule of M is a semiprime submodule.
3. For each ideal I of R and m € M we have I?m = Im.
4. For any two ideals I, J of R and m € M we have IJm = (INJ)m = ImNJm.
5. For each 0 £ m € M, _E is a regular (von Neumann) ring.
Ann(m)
6. Each cyclic (f.g) submodule of M is a regular module.
7. Each proper submodule of M is an intersection of mazimal submodules (i.e.,
M is co-semisimple module).
Each cyclic (f.g) submodule of M is co-semisimple.
9. Each proper submodule of M is an intersection of prime submodules.

*
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Proof (1) = (2) = (3) is evident.

(3) = (4). Clearly, IJm C (INJ)*>m C IJm. Finally, let am = bm € ImnN Jm,
a € I,be J Then a>m = abm € IJm, ie., am € IJm. Thus IJm =
(INnJ)ym=1ImnJm.

R
(4) = (5). In asmuch as Rm ~ ———— we infer by our hypothesis that each
Ann (m)
ideal in R is idempotent, i.e R is regular
Ann (m) P P77 Ann (m) guat.

(5) = (6) is evident.

(6) = (7). Since each nonzero factor module of M has the property in (6),
i.e., it suffices to show that the zero submodule is an intersection of maximal
submodules of M. In fact, we show that each 0 # m € M is excluded by some
maximal submodule. But the cyclic submodule Rm certainly contains a maximal
submodule, therefore there exists an epimorphism f : Rm — S, where S is a
simple R-module. We claim that S is M-injective. For, it suffices to show that
S is N-injective for each cyclic submodule N of M; (see [26, 16.3(b)]). Thus
if N = Rz and K is a submodule of N with a homomorphism g : K — S,
then we have to show that there exists h : N — S with h|x = g. We note
that Ann (z) € Ann (K) C Ann(S5), i.e., K, S, and N can be considered as an
———-module. But ——— is a regular ring and it is well-known that each
Ann (x) Ann (x)

simple module over a regular ring is injective, i.e., there exists a homomorphism

h: N — S over the ring ———
Ann (z)

i.e., the map f: Rm — S can be extended to f' : M — S, i.e., m & ker f’

and we are through (see [2, Ex 18.23] and [26, 23.1]).

(7) & (8). Follows by the easy fact that direct sums and factor modules (and

submodules) of co-semisimple modules are again co-semisimple.

(8) = (9) = (1) is evident. |

such that h|x = g. Thus S is M-injective,

Remark 2. Modules with the property in (7) of the above theorem were first
called co-semisimple by Fuller in [11]. It was shown in [11] that the class of
co-semisimple modules is closed under taking submodules, homomorphic images
and direct sums (see also [2, Ex. 18.23] and [26, 23.4]). We observe that these
results over commutative rings are evident by condition (3) of our Theorem 2.3,
i.e., each R-module contains largest fully semiprime submodule (it might be (0)),
see also [11].

In [26, 37.11], it is proved that if M is a finitely generated, self-projective

R-module, then M is co-semisimple if and only if is a regular ring. In

R
Ann (M)
view of part (5) of the previous theorem we have the following.

Corollary 2.4. Let M be a finitely generated R-module. Then M is co-

semisimple if and only if R = is a regular ring.

Ann (M)
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Corollary 2.5. M is a f.g. co-semisimple R-module and N is an R-module
with Ann (M) C Ann (N), then N is also co-semisimple.

Let A be an intersection of essential submodules of an R-module M and A be
a nonempty collection of nonzero proper submodules of M such that whenever
B € A, then B D A and also if C O B with C a proper submodule of M, then
C € A. Now F is called an A-filter on M if F = AUT where I' consists of all
proper essential submodules of M containing ().A. Clearly, F can be merely the
set of proper essential submodules of M containing A. We also note that there
is the largest A-filter containing every A-filter on an R-module M.

In the next two results we may assume that M is not a semisimple R-module.

Proposition 2.6. Let M be an R-module and F be an A-filter on it. Then the
following are equivalent.

1. Each member of F is an intersection of prime submodules of M.

2. For each N € F, M/N is a co-semisimple module.

3. Each member of F is an intersection of maximal submodules of M.

M

4. F is a co-semisimple module.

Proof. (1) = (2) = (3) is evident by Theorem 2.3.

(3) = (4). It suffices to show that the Jacobson radical of each factor module of

M = F is zero. Let M /N, where N O () F is a factor module of M. We show

that each nonzero element £ = x + N of M/N is excluded by some maximal
submodule of M/N. Clearly, ZR has maximal submodules, i.e., there exists a
nonzero homomorphism f : TR — S, where S is a simple R-module. We know
that ZR is a direct summand of an essential submodule, say E = E/N of M/N.
Clearly, f can be extended to f : E — S. If E = M/N, then we are through,
for ¢ ker f. Thus we may assume that E # M/N. We note that E is essential
in M and ker f = P/N = P is a maximal submodule of E. We claim that P is
essential in F, for if not, then F = P & @, where @ is a simple submodule of
E ie,QCACNFC N C P, which is absurd. This shows that P is essential
in M and P € F. Hence by our hypothesis P = ﬂ_iel U;, where each U; is a
maximal submodule of M. Clearly, t+ N =z & ker f = P/N, i.e., x ¢ P. Thus
there exists some U; such that = € U;, i.e., T € U;/N and the proof is complete.

(4) = (1) is evident. ]

The following interesting result (which is in [7] except its part (1)) is now
immediate.

Corollary 2.7. Let M be an R-module. Then the following statements are

equivalent.

1. Fach proper essential submodule of M is an intersection of prime submodules
of M.

2. For each proper essential submodule N of M, M/N is a co-semisimple mod-
ule.
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3. Each proper essential submodule of M is an intersection of mazimal submod-
ules of M.
M

18 a co-semisimple module.
soc(M) P

Clearly, not every co-semisimple R-module is semisimple, e.g. take R to be
a non-Artinian regular ring; see also ([2, page 123]). But we have the following.

Proposition 2.8. A co-semisimple R-module M has a simple prime submodule
if and only if it is a direct sum of a simple module and a homogeneous semisimple
module.

Proof. Let N be a simple submodule of M which is also a prime submodule, i.e.,

M/N is co-semisimple which is a prime module. Then M/N is homogeneous

N
semisimple by Theorem 2.3. Now for any x € M \ N, R:cTJr is a simple

N
module and either Rx;% Rz or N C Rx. Therefore if Rz is not simple,

then NV is a maximal submodule of Rz and since Rz is also co-semisimple module,
it must contain another maximal submodule, say K. Thus Rxr = N + K and
NNK = (0), which implies that K is also a simple module, i.e., Rz is semisimple.
But M = N + ZMZN Rz is semisimple and clearly M = N & L, where L is
homogeneous semisimple module. The converse is evident. n

The following is now immediate.

Corollary 2.9. If M is a co-semisimple module with at least two simple prime
submodules, then it is either homogeneous semisimple or a direct sum of two
non-isomorphic simple modules.

Next we aim to characterize almost fully semiprime modules. First, we need
the following lemma.

Lemma 2.10. If M is an almost fully semiprime module, then M is either
fully semiprime or the intersection of all nonzero submodules of M is equal to
J(M) # (0), where J(M) denote the Jacobson radical of M.

Proof. Clearly, each nonzero submodule N of M is an intersection of maximal

submodules of M. Now if M is not fully semiprime (i.e., not co-semisimple),
then J(M) # (0), i.e., J(M) C N and we are through. ]

Theorem 2.11. M is an almost fully semiprime module which is not fully

semiprime if and only if one of the following statements hold.

1. M = >, Rm;, where (0) # Rm; has at most one nonzero submodule N
and N is contained in all nonzero submodules of M.

2. There exists a nonzero submodule N contained in each nonzero submodule and
M/N s a fully semiprime module which has not finite uniform dimension.
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Proof. Let M be almost fully semiprime and not fully semiprime. Then by the
above lemma, J(M) = N is contained in every nonzero submodule of M. Now
we consider two cases. First, let M/N have finite uniform dimension. Then
since M/N is a fully semiprime module, it must be semisimple, for each of its
nonzero cyclic submodules is a regular module with finite uniform dimension,
Rmi

N
i is simple, i.e., M = Zf:ll Rm;, where Rmy41 = N. Finally,

i.e., is semisimple, see [15, Corollary 1]. Now we have M/N = Zle @

where each

if M/N has no finite uniform dimension, then the second statement holds with
N = J(M). The converse is evident. ]

3. P - Rings

As we have observed earlier some modules M have no prime submodules (for
example Z, ) and we call them primeless. One can easily see, that in fact any
torsion divisible module over a domain is primeless. Conversely, in [21, Propo-
sition 1.4], it is shown that if R is a one-dimensional Noetherian domain, then
primeless modules are torsion divisible R-modules. In this section we observe in
that we can abandon the Noetherianness and also replace the divisibility by a
weaker condition, namely, having no maximal submodule. We prove that if R is
a one-dimensional Noetherian domain, then simple R-modules and the field of
fractions of R are the only R-modules in which the zero submodule is the only
prime (semiprime) submodule. Finally, we characterize the rings with the title
of this section (i.e., rings over which every nonzero module has a prime submod-
ule). It is shown that P-rings coincide with Maa-rings (i.e., rings over which
every module has a maximal submodule). M ax-rings were first characterized
in [12] as rings R such that R/J is regular and J is T-nilpotent, where J is
the Jacobson radical of R. Max- rings which are also called B-rings, were later
studied by various authors, see [5, 8, 9, 13, 14, 16].

Let us begin with the following observation which extends Proposition 1.4,
in [21].

Proposition 3.1. Let R be a one-dimensional domain. Then an R-module M
is primeless if and only if M is a torsion module with no maximal submodule.

Proof. We note that if the torsion submodule T'(M) of M is proper, then T'(M) is
a prime submodule, i.e., if M is primeless then we are through. Conversely, let NV
be a prime submodule of M and we seek a contradiction. We have M = T'(M),
i.e., we may take m € T(M)\ N, with rm = 0 for some 0 # r € R. Thus
rM C N, ie., (0) # P = Ann (M/N) is a prime ideal. This shows that M/N
is a vector space as an R/P-module and therefore as an R-module it contains
maximal submodules, which is not possible. [ ]

Now the above result and Proposition 1.4 in [21] immediately yield the fol-
lowing interesting known results.
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Corollary 3.2. Let R be a one-dimensional Noetherian domain and M be an
R-module, and suppose that for some nonzero ideal I of R, IM # M. Then IM
is contained in a mazximal submodule of M.

Corollary 3.3. If R is a one-dimensional Noetherian domain, then an R-module
M s divisible if and only if it has no mazimal submodule.

The following observation is useful.

Lemma 3.4. Let the zero submodule of an R-module M # (0) be the only
semiprime submodule of M. Then it is the only prime submodule of M .

Proof. Tt suffices to show that M is a prime module. To see this, let rm = 0,
0#me M,r € RandrM # (0). Set (0) #N ={meM : rm =0} # M, and
we claim that N is semiprime. Let a®?m € N, a € R, m € M, i.e., ra*m = 0.
Then (ra)?m = 0 and since M is semiprime, ram = 0, i.e., am € N, which
means that IV is a semiprime submodule, a contradiction. n

We have already mentioned in the introduction of this article that if K is the
field of fractions of a domain R # K, then the zero submodule of K is the only
prime R-submodule of K; see also [18, Theorem 1]. More generally, we have the
following.

Proposition 3.5. Let R be a domain and K # R be its field of fractions. Then
the zero submodule of K is the only semiprime submodule.

Proof. Let (0) # N C K be a semiprime R-submodule of K and we seek a
contradiction. Now take any 0 # r/s € N, r,s # 0, i.e., r € N and rK = K.
Let x/y € K \ N, then there exists 2/t € K with x/y = rz/t, i.e., rtz/t> € N.
But t2r(z/t?) =rz € N and tr(z/t?) € N, i.e., N is not a semiprime submodule,
which is absurd. [ ]

Remark 3. If R is a domain and K is the field of fractions of R, then every
prime R-submodule of M = 3, ®K;, K; = K for all i € I, is of the form
> icscr DK (up to isomorphism). In particular if M = K, then the zero
submodule is the only prime (semiprime) submodule.

Next, over one-dimensional Noetherian domains we determine all modules
with the zero submodule as their only prime submodule.

Theorem 3.6. Let R be a one-dimensional Noetherian domain and M be an

R-module. Then the following statements are equivalent.

1. The zero submodule of M is the only semiprime submodule.

2. The zero submodule of M is the only prime submodule.

3. M 1is either a simple R-module, or M = K, where K is the field of fractions
of R.

Proof. (1) = (2) is evident by Lemma 3.4.
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(2) = (3). If the torsion submodule T'(M) is a proper submodule, then it is
clearly a prime submodule. Thus we must have either T'(M) = (0) or T (M) =
M. First, let us assume that T(M) = (0), i.e., M is a torsion free R-module.
Now we claim that M is divisible. To see this, let 0 # rM # M for some
r € R and we obtain a contradiction. By our hypothesis, M/rM is primeless,
therefore in view of Proposition 3.1 and Corollary 3.2, we infer that M/rM is a

M M
torsion and divisible R-module. But Y r—— implies that M = rM, which

r r
is absurd. Therefore we may assume that M is a torsion free divisible R-module.

1
Then M becomes a vector space over K by defining M =72 where 0 #b € R

and m = bz for some x € M and %m:axforallO;ébeR,aeR. Hence
M =3, ®K;, K; = K foralli € I. But it is clear that if | I |> 2, then M has
nonzero prime submodules, which is absurd, (see Remark 3), therefore M = K
in this case. Finally, if T(M) = M, then by Proposition 3.1 and Corollary 3.2,
M is not divisible. This means that rM # M for some 0 # r € R. Now we claim

M
that M is simple, for otherwise there exists 0 # m € M, Rm # M, i.e., B is
m

primeless. Therefore in view of Proposition 3.1 and its corollary we infer that

M M
—— is divisible, i.e., we have —— = r—— which means that M = rM + Rm,
m Rm Rm

M M
ie, rM # (0). Now —— is primeless, i.e., — is divisible by Corollary 3.2.
rM rM

M M
Thus Y TW implies that M = rM, which is absurd. This means that M

r r
must be a simple R-module in this case.
(3) = (1) is clear. ]

We need the following lemma.

Lemma 3.7. Let R be a ring with a non-maximal prime ideal P. Then there
exists an R-module which is primeless (even, semiprimeless).

Proof. Set R = R/P and let K be the field of fractions of R’. Now by Remark
3, the only prime (semiprime) R’-submodule of K is its zero submodule. This
implies that for each (0) # N C K, the R’-module K/N is primeless (semiprime-
less). Thus K/N as an R-module is also primeless (semiprimeless). n

We conclude this section with the following characterization of M az-rings
and its interesting corollary.

Theorem 3.8. The following statements are equivalent.
1. R s a P-ring.

2. Every R-module has a semiprime submodule.

3. R is a Max-ring.

Proof. (1) = (2) is evident.
(2) = (3). By Lemma 3.7 each prime ideal is maximal. Now let M be an R-
module and N C M be a semiprime submodule of M, i.e., I = Ann (M/N) is
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a semiprime ideal. We note that R/I is a semiprime ring whose prime ideals
are maximal, therefore by Kaplansky’s result (see the proof of Corollary 2.4)
R/I becomes a regular ring. Thus M/N is a fully semiprime R/I-module by
Theorem 2.3, i.e., M/N and therefore M, has maximal submodules and the
proof is complete.

(3) = (1) is evident. ]

The proof of the previous theorem and Lemma 3.8 immediately yield the
following which shows that in Maz-rings each element is either a zero divisor or
a unit; see [12, Lemma 2] and see also [9].

Corollary 3.9. If R is a Max-ring, then each prime ideal is mazimal (i.e., is
a minimal prime).
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