Vietnam Journal of MATHEMATICS © VAST 2004

Existence of Solution for Multi-Valued Integral Equations

Nguyen Dinh Huy¹ and Nguyen Khoa Son²

¹University of Technology, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam

²Hanoi Institute of Mathematics,

18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Received October 13, 2003

Abstract. In this paper we shall prove a theorem on existence of global solutions for multi-valued intergral equations in Banach spaces. We shall consider also integral equations containing parameters and prove a continuity result for the set of global solutions.

1. Introduction

The purpose of this paper is to prove an existence theorem for global solutions of multi-valued intergral equations in Banach spaces. Note that the results for local solutions have been established in [7]. Moreover, for the case of integral equations containing parameters we shall establish a continuity property of the set of global solutions with respect to parameters.

Throughout this paper (Ω, \mathcal{A}) is an arbitrary measurable space, $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ are separable Banach spaces and X', Y' stand for their strong duals: the spaces of all linear continuous functionals of X and Y, respectively. The following notation will be used:

L(Y, X): the space of all linear continuous mappings from Y to X;

 X_{σ} : the space X endowed with the weak topology;

 $\mathcal{B}(X)$: the Borel σ -field in X;

 \mathcal{L} : the σ -field of all Lebesgue measurable set in the real line \mathbb{R} ;

 $\mathcal{L}_{Y}^{1}(I)$ (resp., $L_{Y}^{1}(I)$): the space of all ds-integrable (resp.,all equivalence classes of ds-integrable) functions from the interval I, endowed with the Lebesgue measure ds, into Y; $\mathcal{L}^{1}(I) = \mathcal{L}_{\mathbb{R}}^{1}(I)$ and $L^{1}(I) = L_{\mathbb{R}}^{1}(I)$;

 $L_{Y'}^{\infty}(I)$: the space of all classes of essentially bounded ds-measurable functions from I into Y'_{σ} (the space Y' endowed with the weak topology $\sigma(Y',Y)$);

 $C_X(I)$ (resp., $C_{X_{\sigma}}(I)$): the space of all continuous functions from I into X (resp., X_{σ}).

Finally, for a set-valued mapping Γ from a measurable space (Σ, \mathcal{B}) into a separable metric space E, Graph Γ denotes its graph, i.e., the set $\{(s, a) \in \Sigma \times E : a \in \Gamma(s)\}$; $\Gamma^-(A) = \{s \in \Sigma : \Gamma(s) \cap A \neq \emptyset\}$, where $A \subset E$. S_Γ will denote the set of all \mathcal{B} -measurable selections of Γ and when \mathcal{B} is equipped with a measure $\mu \geq 0$, the factor of S_Γ by the equivalence relation "equality μ -almost everywhere" is denoted by S_Γ .

2. Main Results

Consider the multi-valued intergral equation

$$x(t) \in a(t) + \int_{T_0}^t G(s, t)F(s, x(s))ds, \tag{1}$$

where a, G, F are the following mappings

$$a: I = [T_0, T) \to X$$

$$G: \{(s,t) \in I \times I: t \ge s\} \to L(Y, X)$$

$$F: I \times X \to 2^Y.$$

A global solution of (1) is, by definition, a solution of (1) defined on the whole interval I, i.e., a function $x:I\to X$ of the form

$$x(t) = a(t) + \int_{T_0}^{t} G(s, t) f(s) ds$$

where $f: I \to Y$ is any measurable function satisfying

$$f(s) \in F(s, x(s))$$
, a.e. on I

Theorem 2.1. Suppose $a(\cdot) \in C_X(I)$ with $\sup\{\|a(t)\| : t \in I\} < +\infty$ and the following conditions hold

- (G.1) For each $t \in I$ and $y \in Y, G(.,t)y$ is $(\mathcal{L}, \mathcal{B}(X))$ measurable and $\sup_{t \in I} \operatorname{ess} \sup_{s \in [T_0,t]} \|G(s,t)\|_{L(Y,X)} < +\infty;$
- (G.2) For each $t \in I$

$$\int_{T_0}^{\min(t,t')} \|G(s,t') - G(s,t)\|_{L(Y,X)} ds \to 0, \quad \text{as} \quad |t - t'| \to 0.$$

Moreover, assume

(F.1) There exist a function $\alpha(\cdot) \geq 0$ locally integrable on I and a relatively weakly compact set $K \subset Y$ such that for almost all s in I and for all x in X, F(s,x) is closed, convex and contained in $\alpha(s)(1+||x||)K$:

$$F(s,x) \subset \alpha(s)(1+||x||)K$$
, a.e. $s \in I$. $\forall x \in X$.

- (F.2) For almost $s \in I$, $F(s, \cdot)$ is upper semicontinuous (u.s.c.) for the $\sigma(X, X')$ -topology in X and the $\sigma(Y, Y')$ -topology in Y.
- (F.3) For each $x \in X$, F(.,x) admists a ds-measurable selection.

Then the equation (1) has at least one strongly continuous global solution and any locally bounded global solution of (1) is strongly continuous.

Proof. Set $c = 1 + \sup_{t \in I} ||a(t)||$, $c_1 = \sup_{t \in I} \operatorname{ess.} \sup_{s \in [T_0, t]} ||G(s, t)||_{L(Y, X)}$, $k = \sup\{||y||_Y : y \in K\}; z(t) = -1 + (1 + c) \exp(c_1 k \int_{T_0}^t \alpha(s) ds)$. Then z(t) is the (unique) solution of the equation

$$z(t) = c + kc_1 \int_{T_0}^t \alpha(s)[1 + z(s)]ds$$

(the uniqueness follows from the Gronwall's lemma, although this plays no role in the proof). Set $\Sigma(s) = \alpha(s)[1+z(s)]K$. We can suppose, without loss of generality, that $\alpha(s) \geq 1$ for all $s \in I$ and K is convex, weakly compact and containing the origin in Y. Since $\alpha(\cdot) \in L^1(I)$ one has $S_{\Sigma} \subset L^1_Y(I)$. For any function $f: I \to Y$ we set formally $i_f(t) = \int_{T_0}^t G(s,t)f(s)ds$ and $x_f(t) = a(t) + i_f(t)$. It follows from (G.1) that if $f \in L^1_Y(I_{loc})$ then $i_f(t)$ and hence $x_f(t)$ exist for all $t \in I$. Moreover, for any $t, t' \in [T_0, T)$ and $T_1 \in (\max(t, t'), T)$, one has

$$\begin{aligned} &\|i_f(t) - i_f(t')\| \leq \int\limits_{T_0}^{\min(t,t')} \|G(s,t') - G(s,t)\|_{L(Y,X)} \|f(s)\|_Y ds + c_1 \int\limits_{t}^{t'} \|f(s)\|_Y ds \\ &\leq p \int\limits_{T_0}^{\min(t,t')} \|G(s,t') - G(s,t)\|_{L(Y,X)} ds + 2c_1 \int\limits_{\{s \in [T_0,T_1]: \|f(s)\|_Y > p\}} \|f(s)\|_Y ds \\ &+ c_1 \int\limits_{t}^{t'} \|f(s)\|_Y ds \end{aligned}$$

for all integer $p \in \mathbb{N}$. This yields the strong continuity of $i_f(\cdot)$. Indeed, for any $t \in I$ and $\varepsilon > 0$, we fix first $T_1 \in (t, T)$ and $p \in \mathbb{N}$ such that

$$2c_1 \int_{\{s \in [T_0, T_1]: ||f(s)||_Y > p\}} ||f(s)||_Y ds < \frac{\varepsilon}{3},$$

then we take $\delta > 0$ such that $|t' - t| < \delta$ implies

$$p\int_{T_0}^{\min(t,t')} \|G(s,t') - G(s,t)\|_{L(Y,X)} ds < \frac{\varepsilon}{3} \quad \text{ and } \quad c_1 \int\limits_t^{t'} \|f(s)\|_Y ds < \frac{\varepsilon}{3}.$$

We have therefore $||i_f(t') - i_f(t)|| < \varepsilon$ for all $t' \in (t - \delta, t + \delta)$, showing the strong continuity of $i_f(\cdot)$ and hence $x_f(\cdot)$. For a further purpose, we note here that this argument shows also that for any positive function $\beta(\cdot) \in L^1(I)$, the family $\{x_f(\cdot) : ||f(s)||_Y \le \beta(s) \text{ a.e. on } I\}$ is strongly equi-continuous.

Set now

$$\Gamma(f) = \{q : I \to Y \text{ measurable} : q(s) \in F(s, x_f(s)) \text{ a.e. on } I\}$$

for every measurable function $f: I \to X$ such that $i_f(t)$ exists for all $t \in I$. We claim that $x(\cdot)$ is a locally bounded solution on I for the equation (2.1) if and only if $x(t) = x_f(t)$, $(\forall t \in I)$ with $f \in S_{\Sigma}$ satisfying: $f \in \Gamma(f)$. The claim "if" is obvious.

To show the converse, let $x(\cdot)$ be a locally bounded global solution of (1). By definition, there exists, a measurable function $f: I \to Y$ such that $x(t) = x_f(t)$ on I and $f(t) \in F(t, x(t))$ a.e. on I. In view of (F.1) one has $||f(s)||_Y < k\alpha(s)[1 + ||x(s)||]$. Consequently, $f \in L^1_Y(I)$. Hence, as shown above, $x(\cdot) = x_f(\cdot) \in C_X(I)$, proving the second assertion of the theorem.

Furthermore, one has

$$||x(t)|| \le -1 + c + c_1 \int_{T_0}^t ||f(s)||_Y ds \le -1 + c + c_1 k \int_{T_0}^t \alpha(s) [1 + ||x(s)||] ds$$

hence,

$$||x(t)|| - z(t) \le -1 + \int_{T_2}^t kc_1\alpha(s)[||x(s)|| - z(s)]ds$$

for all $t \in I$. Taking into account that $x(s), z(\cdot)$ are continuous and $\alpha(s) \geq 1$, an elementary argument shows that ||x(t)|| < z(t) for all t in I. Therefore, $f(s) \in F(s,x(s)) \subset \alpha(s)[1+||x(s)||]K \subset \alpha(s)[1+z(s)]K = \Sigma(s)$ a.e. on I. Consequently, $f \in \varphi_{\Sigma}$. Hence, $f \in \Gamma(f)$ follows immediately from the definition of this last set-valued mapping. Thus to prove that (1) has a strongly continuous solution it suffices to show that Γ admits a fixed point. Suppose for a while that $\alpha(\cdot)$ is integrable on the whole interval I. Clearly, $S_{\Sigma} \subset L^1_Y(I)$. We assert that $\Gamma(S_{\Sigma}) \subset S_{\Sigma}$. Indeed, let $f \in S_{\Sigma}$. One has

$$||x_f(t)|| \le c + c_1 \int_{T_0}^t ||f(s)||_Y ds < c + c_1 k \int_{T_0}^t \alpha(s) [1 + z(s)] ds = z(t)$$

Hence for any $g \in \Gamma(f)$ one has $g(s) \in F(s, x_f(s)) \subset \alpha(s)[1 + ||x_f(s)||]K \subset \alpha(s)[1 + z(s)]K = \Sigma(s)$ a.e. on I, so that $g \in S_{\Sigma}$, proving our assertion.

Let us endow $L_Y^1(I)$ with the weak topology. By [3, Cor. V. 4], S_Σ is a nonempty convex (weakly) compact set in $L_Y^1(I)$ and $\Gamma(f)$ is nonempty (and convex). We will show that Γ is u.s.c., or equivalently [2], Graph Γ is closed in S_Γ^2 . We observe that S_Σ is metrizable since $L_Y^1(I)$ is (strongly) separable. Let $(f_n, g_n) \to (f, g)$ in S_Σ^2 , as $n \to +\infty$, with $g_n \in \Gamma(f_n)(\forall n \in \mathbb{N})$. We note that for each $h(\cdot) \in L_Y^1(I)$, $t \in I$ and $x' \in X'$ the function $s \to \langle G(s,t)h(s),x'\rangle$ is ds-measurable on I. This implies that $x_{f_n}(\cdot)$ pointwisely converges to $x_f(\cdot)$ in the $\sigma(X, X')$ -topology. On the other hand, since $g_n(s) \in F(s, x_{f_n}(s))$ a.e. on I, it follows, by [3, Th. VI. 4], that $g(s) \in F(s, x_f(s))$ a.e. on I, i.e., $g \in \Gamma(f)$, and hence Graph Γ is closed in S_Σ^2 . According to Kakutani -Ky Fan's theorem, Γ has a fixed point in S_Σ . As stated above, this completes the proof for the case of $\alpha(\cdot)$ being integrable.

Consider the general case. Take a sequence $\{T_i\}_{i=1}^{\infty}$ in I such that $T_i \uparrow T$ and set $I_i = [T_0, T_i]$. By the above, for each $i \in \mathbb{N}$, Γ_i admits a point $f_i \in S_{\Sigma_{I_i}}$, where Γ_i is defined exactly as Γ but only of functions defined on I_i and $S_{\Sigma_{I_i}}$ stands for the restriction of Σ to I_i . Since for each $j \in \mathbb{N}$, $f_i | I_j$ belongs to $S_{\Sigma_{I_i}}$ for all $i \geq j$ and $S_{\Sigma_{I_j}}$ is a compact and metrizable subspace of $L_Y^1(I_j)$ (endowed with the week topology), by using a diagonal process we obtain a subsequence $\{f_{i_k}\}_{k=1}^{\infty}$ of $\{f_i\}_{i=1}^{\infty}$ and an element $\bar{f} \in S_{\Sigma}$ such that for each $j, f_{i_k} \to \bar{f}$ (weakly in $L_Y^1(I_j)$). One has: $\bar{f} \in \Gamma(\bar{f})$. To see this, it suffices to show that $\bar{f}|I_j \in \Gamma_j(\bar{f}|I_j)$ for every j in \mathbb{N} . But this inclusion follows immediately from the u.s.c. of Γ_j j and the fact that $f_{i_k} \in \Gamma_j(f_{i_k})$ for all k large enough. This completes the proof.

Let M be a compact metric space. Consider the equation

$$x(\xi,t) \in a(\xi,t) + \int_{T_0}^t G(\xi,s,t)F(\xi,s,x(\xi,s)ds$$
 (2)

where ξ is a parameter taken in M, a, G, F be the functions defined as $a: M \times I \to X, G: \{(\xi, s, t) \in M \times I^2 : s \leq t\} \to L(Y, X)$ and F is a multi-valued function from $M \times I \times X$ to Y. For each $\xi \in M$, let $S(\xi)$ denote the set of all strongly continuous global solutions of (2).

Theorem 2.2. Suppose that

$$a(\cdot,\cdot) \in C_X(M \times I)$$
 and $\sup\{\|a(\xi,t)\| : (\xi,t) \in M \times I\} < \infty$.

and the following conditions hold:

(G.1) For each $\xi \in M$, $t \in I$ and $y \in Y$, G(.,t)y is $(\mathcal{L}, \mathcal{B}(X))$ - measurable on $I_t = [T_0, t]$ and $\sup_{(\xi, s) \in M \times [T_0, t]} esssup_{s \in I} t \|G(\xi, s, t)\|_{L(Y, X)} < +\infty;$ (G.2) For each $t \in I$

$$\int_{T_0}^{\min(t,t')} \|G(\xi,s,t') - G(\xi,s,t)\|_{L(X,X')} ds \to 0, \quad as \quad |t-t'| \to 0.$$

in I, uniformly with respect to ξ in M.

- (G.3) For each $\xi \in M, t \in I, x' \in X'$ the function $G(\cdot, s, t)x' : M \to Y$ is strongly continuous at ξ for all s in a subset of full measure $I^t(\xi)$ of I^t .

 Moreover, assume
- (F.1) For each $\xi \in M$, $F(\xi, s, x)$ is closed, convex and contained in $\alpha(s)[1+||x||]K$ for all s in a subset of full measure $I(\xi)$ of I and for all $x \in X$, where $\alpha(\cdot) \geq 0$ is a locally integrable function on I and K is a relatively weakly compact set in Y.
- (F.2) For almost $s \in I, F(\cdot, s, \cdot)$ is a upper semicontinuous (u.s.c) set-valued mapping from $M \times X_{\sigma}$ to Y_{σ}
- (F.3) For each $(\xi, x) \in M \times X$, $F(\xi, \cdot, x)$ admists at leat one ds-measurable selection.

Then for each $\xi \in M, S(\xi)$ is a nonempty compact set in $C_{X_{\sigma}}(I)$ and the set-valued mapping S is u.s.c. when $C_{X_{\sigma}}(I)$ is endowed with the topology of compact convergence.

Proof. Set

$$\begin{split} c &= 1 + \sup_{(\xi,t) \in M \times I} \|a(\xi,t)\|, \\ c_1 &= 1 + \sup_{(\xi,t) \in M \times I} \mathrm{e}ss. \sup_{s \in [T_0,t]} \|G(\xi,s,t)\|_{L(Y,X)}, k = \sup\{\|y\|_Y : y \in K\}. \end{split}$$

Define $z(\cdot)$ and Σ literally as in the proof of Theorem 2.1. Here also, we can suppose that K is convex weakly compact, containing the origin in Y. For each $\xi \in M$ and $f \in L^1_Y(I)$, the integral $\int_{T_0}^t G(\xi, s, t) f(s) ds$ exists in X for all $t \in I$. Let $\Gamma(\xi, f)$ denote the set of all ds-measurable functions $g: I \to Y$ such that $g(s) \in F(\xi, s, x_{\xi, f}(s))$ a.e. on I, where $x_{\xi, f}(t) = a(\xi, t) + \int_{T_0}^t G(\xi, s, t) f(s) ds$. Exactly as in the proof of Theorem 2.1 for each $\xi \in M$ we have $\emptyset \neq S(\xi) = \{x_{\xi, f}(\cdot): f \in S_{\Sigma} \cap \Gamma(\xi, f)\} \subset \mathcal{X} \subset C_X(I)$, where \mathcal{X} is the set of all functions $x_{\xi, f}(\cdot)$ with $(\xi, f) \in M \times S_{\Sigma}$.

We are going to show that \mathcal{X} is a relatively compact metrizable subset of $C_{X_{\sigma}}(I)$. First, by what noted in the proof of Theorem 2.1, \mathcal{X} is an equicontinuous set in $C_{X_{\sigma}}(I)$. In addition, as in [3] it can be shown that for each $t \in I$ the function $(\xi, f) \to x_{\xi, f}(t)$ from $M \times S_{\Sigma|I_t}$ into X (where $I_t = [T_0, t]$) is weakly continuous when $S_{\Sigma|I_t}$ is equipped with the topology $\sigma(L_Y^1(I_t), L_{Y'}^{\infty}(I_t))$. Since $S_{\Sigma|I_t}$ is compact, by [3, Cor. V. 4], the set $\mathcal{X}(t) = \{x_{\xi, f}(t) : (\xi, f) \in M \times S_{\Sigma|}\} = \{x_{\xi, f}(t) : (\xi, f) \in M \times S_{\Sigma|I_t}\}$ is weakly compact. Hence, by the Ascoli's theorem (see e.g. [4, Th. 0.4.11]) \mathcal{X} is relatively compact in $C_{X_{\sigma}}(I)$. Next, it follows from the equicontinuity of X that the topology (of compact convergence) in this set coincides with the topology of pointwise convergence at the rational points in I. In the other words, \mathcal{X} can be regarded as a subspace of the product $\prod_{i=1}^{\infty} \mathcal{X}(r_i)$ of the spaces $\mathcal{X}(r_i)$ endowed with the $\sigma(X, X')$ -topology. Since each $\mathcal{X}(r_i)$ is metrizable, $\prod_{i=1}^{\infty} \mathcal{X}(r_i)$ is also metrizable, hence so is \mathcal{X} .

Since $S(\xi) \subset \mathcal{X}$ for each $\xi \in M$, the proof of Theorem 2.2 is therefore reduced to showing that Graph S is a sequentially complete subset of $M \times \mathcal{X}$. To this

end, let $\{x_n(\cdot)\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathcal{X} and $\xi_n \to \xi$ in M such that $x_n(\cdot) \in S(\xi_n)$. One has $x_n(\cdot) = x_{\xi_n, f_n}(\cdot)$ with $f_n(s)$ satisfying:

$$f_n(s) \in F(\xi_n, s, x_n(s))$$
 a.e. on $I \ (\forall n \in \mathbb{N}).$ (3)

By the same argument as in the end of the proof of Theorem 2.1, it can be supposed that $\{f_n\}_{n=1}^{\infty}$ converges weakly in each space $L_Y^1([T_0,t])$ $(\forall t \in I)$ to a function $f \in S_{\Sigma}$. Then, clearly, $x_n(t) = x_{\xi_n,f_n}(t) \to x_{\xi,f}(t)$ in X_{σ} as $n \to +\infty$, for all $t \in I$. Since the pointwise convergence in \mathcal{X} is equivalent to the compact convergence, this means that $x_n(\cdot) \to x_{\xi,f}(\cdot)$ in $C_{X_{\sigma}}(I)$ as $n \to +\infty$. On the other hand, by [3, Th. VI. 4], it follows from (3) that $f(s) \in F(\xi, s, x_{\xi,f}(s))$ a.e. on I, i.e., $x_{\xi,f}(\cdot) \in S(\xi)$. This shows that Graph S is complete, as to be shown.

References

- G. Anichini and P. Zecca, Multivalued differential equations in Banach spaces. An application to control theory. J. Optimization Theory and Applications 21 (1977) 477–486.
- 2. C. Berge, Spaces Topologiques, In: Fonction Multivoques, Dunod, Paris, 1959.
- 3. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springes-Verlag, Berlin, New York, 1977.
- 4. R. E. Edwardl, Functional Analysis. Theory and Applications, Holt, Rinehert and Winston–New York, London, 1965.
- N.D. Huy and N.K. Son, On the qualitative properties of the solution set to functional differential inclusions in Banach spaces, Vietnam J. Math. 19(1991) 43–58.
- Nguyen Dinh Huy and Nguyen Khoa Son, On the existence of solutions to functional differential inclusions with boundary values, *Vietnam J. Math.* 25 (1997) 331–340.
- 7. Phan Van Chuong, A density theorem with application in relaxation of non-convex valued differential equations, *J. Math.Anal. Appl.* **124** (1987) 1–14.