Vietnam Journal of MATHEMATICS © VAST 2004

Structure of Ann-Categories of Type (R, N)

Nguyen Tien Quang

Dept. of Math., Hanoi University of Education, Vietnam

Received May 26, 2003 Revised January 26, 2004

Abstract. Ann-category is called almost strict if its natural equivalences, except a natural equivalence of commutativity and of the distributivity, are identities. The purpose of this paper is to prove that every Ann-category is Ann-equivalent to an almost strict Ann-category of the type (R, M) and to give new interpretations of the cohomology groups $H^3(R, M)$ of the rings R.

The present paper consists, in a certain sense, of an extension of our results in [4-6]. Reading the present paper requires certain knowledge of the main results, which were announced in [3]. For completeness, we briefly recall some of the material that will be indispensable for the understanding of this paper.

Throughout this paper, for the tensorial product of two objects A and B, we write AB instead of $A \otimes B$, but for the morphisms we still write $f \otimes g$ to avoid confusion with composition.

1. Preliminaries

1.1. The First Two Invariants of Ann-Category

Let us consider an Ann-category,

$$\mathcal{A} = (\mathcal{A}, a^+, c, (0, g, d), a, (I, l, r), \mathcal{L}, \mathcal{R}), \tag{1}$$

in which (a^+, c, g, d) is a system of natural isomorphisms of associativity, commutativity, unity, respectively, for the Picard category (\mathcal{A}, \oplus) , and (a, l, r) is a system of natural isomorphisms of associativity, unity for the monoidal category

 (\mathcal{A}, \otimes) and $(\mathcal{L}, \mathcal{R})$ is a pair of natural isomorphisms of distributivity

$$\mathcal{L} = \mathcal{L}_{A,B,C} : A(B \oplus C) \longrightarrow AB \oplus AC,$$

$$\mathcal{R} = \mathcal{R}_{A,B,C} : (A \oplus B)C \longrightarrow AC \oplus BC.$$

For each object $A \in \mathcal{A}$, functors $L^A = A \otimes_{-}$, $R^A = _{-} \otimes A$ induce isomorphisms $\widehat{L}^A : A \otimes 0 \longrightarrow 0$, $\widehat{R}^A : 0 \otimes A \longrightarrow 0$.

The set $\Pi_0(\mathcal{A})$ of the isomorphic classes of objects of \mathcal{A} is a ring with the operations induced by \oplus and \otimes in \mathcal{A} , and $\Pi_1(\mathcal{A}) = Aut(0)$ is an abelian group whose composition law is denoted by +. Moreover $\Pi_1(\mathcal{A})$ becomes an $\Pi_0(\mathcal{A})$ -bimodule where the left and right operations of the ring $\Pi_0(\mathcal{A})$ on the abelian group $\Pi_1(\mathcal{A})$ are defined by

$$ru = \lambda_X(u), ur = \rho_X(u), X \in r \in \Pi_0(\mathcal{A}), u \in \Pi_1(\mathcal{A}),$$

where λ_X , ρ_X are the two maps $Aut(0) \to Aut(0)$ given by the following commutative diagrams

The ring $R = \Pi_0(\mathcal{A})$ and R-bimodule $N = \Pi_1(\mathcal{A})$ are the first two invariants of Ann-categories.

1.2. The Almost Strict Ann-Category M(A)

Definition 1. An Ann-category A is called almost strict if its natural equivalences, except the natural isomorphism of commutativity and one isomorphism of distributivity (left or right), are identities.

Definition 2. Let A be an Ann-category with the system natural equivalences (1). A M-functor $(F, \check{F}, \overline{F}) : A \to A$ is an AC-functor (F, \check{F}) with respect to the operation \oplus together with isomorphism \overline{F} ,

$$\overline{F}_{X,Y}: F(XY) \longrightarrow (FX)Y,$$

such that the following diagram is commutative

$$F(A(BC)) \xrightarrow{\overline{F}} FA(BC)$$

$$F(a) \downarrow \qquad \qquad \downarrow a$$

$$F((BC)C) \xrightarrow{\overline{F}} F(AB)C \xrightarrow{\overline{F} \otimes id} ((FA)B)C$$

 $and\ the\ following\ conditions\ are\ satisfied:$

(i) the family $(\overline{F}_{X,Y})_Y$ is \oplus -morphism from $F \circ L^X$ to L^{FX} ,

(ii) the family $(\overline{F}_{X,Y})_X$ is \oplus -morphism from $F \circ R^Y$ to $L^Y \circ F$.

A M-morphism from $(F, \check{F}, \overline{F})$ to $(G, \check{G}, \overline{G})$ is \oplus -morphism $\varphi : F \to G$ such that the following diagram is commutative

$$F(AB) \xrightarrow{\overline{F}} (FA)B$$

$$\varphi \downarrow \qquad \qquad \downarrow \varphi \otimes id$$

$$G(AB) \xrightarrow{\overline{G}} (GA)B$$

The category of M-morphisms and M-functors of Ann-category $\mathcal A$ is denoted by $M(\mathcal A)$.

Theorem 3.

1) M(A) is an almost strict Ann-category in which the commutativity constraint and the left distributivity constraint are defined by

$$c_{F,G}^*(X) = c_{FX,GX},$$

$$\mathcal{L}_{F,G,H}^*(X) = \breve{F}_{GX,HX},$$

where $X \in \mathcal{A}$.

- 2) Any Ann-category A is Ann-equivalent to the almost strict Ann-category M(A).
- 1.3. The Structure of Ann-Category of Type (R, N)

Given an Ann-category \mathcal{A} . The reduced category \mathcal{S} is constructed as follows: its objects are the elements of ring $R = \Pi_0(\mathcal{A})$, and its morphisms are automorphisms of the form (r, u) with $r \in R$, $u \in N = \Pi_1(\mathcal{A})$, i.e.,

$$Aut(r) = \{r\} \times N.$$

The composition law of morphisms is induced by addition in N. We shall use the transportation of structures (see [3]) to transform S into an Ann-category equivalent to A.

Choose for every $r \in R$ a representative $X_r \in \mathcal{A}$ such that $X_0 = 0$, $X_1 = 1$, and then, for every pair $r, s \in R$, two families of isomorphisms

$$\varphi_{r,s}: X_r \oplus X_s \longrightarrow X_{r+s},$$

 $\psi_{r,s}: X_r X_s \longrightarrow X_{rs},$

such that

$$\begin{split} \varphi_{0,s} &= g_{X_s}, \quad \varphi_{r,0} = d_{X_r} \\ \psi_{1,s} &= l_{X_s}, \quad \psi_{r,1} = r_{X_r}, \ \psi_{0,s} = \widehat{R}^{X_s}, \ \psi_{r,0} = \widehat{L}^{X_r}. \end{split}$$

The family (X_r, φ, ψ) is called a *stick* of Ann-category \mathcal{A} .

After that, define the functor $H: \mathcal{S} \longrightarrow \mathcal{A}$ by

$$H(r) = X_r$$
, $H(r, u) = \gamma_{X_r}(u)$,

and put $\check{H} = \varphi^{-1}$, $\widetilde{H} = \Phi^{-1}$, in which

$$\gamma_X : \operatorname{End}(O) \longrightarrow \operatorname{End}(X)$$

$$u \longmapsto \gamma_X(u)$$

is the isomorphism defined by the commutative diagram

$$\begin{array}{ccc} X & \xrightarrow{\gamma_X(u)} & X \\ g \uparrow & & \uparrow g \\ 0 \oplus X & \xrightarrow{u \oplus id} & 0 \oplus X \end{array}$$

(The fact that γ_X is an isomorphism follows from the equivalence of the functors $F = - \oplus X$ in a Gr-category (\mathcal{A}, \oplus)).

By means of transportation of structures, the category \mathcal{S} has the structure of an Ann-category with respect to which $(H, \check{H}, \widetilde{H})$ is Ann-equivalence from \mathcal{S} to \mathcal{A} . In \mathcal{S} the two operations have the explicit form:

$$r \oplus s = r + s$$
 (sum in ring R),
 $r \otimes s = rs$ (product in ring R),
 $(r, u) \otimes (s, v) = (rs, rv + us)$.

The natural equivalences of the Ann-category structure in \mathcal{S} are induced from those of \mathcal{A} by $(H, \check{H}, \widetilde{H})$. For example natural associativity α of operation \otimes is defined by the commutative diagram

$$X_{r}(X_{s}X_{t}) \xleftarrow{id \otimes \widetilde{H}} X_{r}X_{st} \xleftarrow{\widehat{H}} X_{rst}$$

$$a \downarrow \qquad \qquad \downarrow H(\alpha)$$

$$(X_{r}X_{s})X_{t} \xleftarrow{\widetilde{H} \otimes id} X_{rs}X_{t} \xleftarrow{\widehat{H}} X_{rst}$$

with $H(\alpha(r, s, t)) = \gamma_{X_{rst}}(\alpha(r, s, t)).$

This commutative diagram means the compatibility of (H, \widetilde{H}) with respect to the pair (α, a) of natural isomorphism of associatitity.

In the Ann-category \mathcal{S} , the natural equivalences of unity of the two operations \oplus , \otimes are identities. We denote a system of natural equivalences of \mathcal{S} by

$$(\xi, \eta, (0, id, id), \alpha, (1, id, id), \lambda, \rho).$$

 \mathcal{S} is called Ann-category of type (R, N) and the family of functions $(\xi, \eta, \alpha, \lambda, \rho)$ is called a *structure* of Ann-category of type (R, N). They satisfy 17 relations (see [4]).

If an Ann-category A satisfies the regular condition $c_{X,X} = id$, the function η induced by the commutativity constraint c satisfies condition $\eta(x,x) = 0$. Then

the family $(\xi, \eta, \alpha, -\lambda, \rho)$ is a 3-cocycle of the ring $R = \Pi_0(\mathcal{A})$ with coefficients in the R-bimodule $N = \Pi_1(\mathcal{A})$ in the sense of Mac Lane-Shukla. The main result in [5] is as follows.

Theorem 4. Any regular Ann-category is Ann-equivalent to a reduced Ann-category of type (R, N) having structure isomorphisms $(\xi, \eta, \alpha, \lambda, \rho)$ where ξ, η are identities.

This result will be enhanced in Corollary 8.

2. Main Results

Now we shall present and prove the main result of this paper.

Theorem 5. Any Ann-category A is Ann-equivalent to an almost strict Ann-category of type (R, N).

In order to prove this theorem, we need some lemmas. First, for any two choices of sticks (X_r, φ, ψ) and (X'_r, φ', ψ') we prove the following:

Lemma 6. Suppose S a stick (X_r, φ, ψ) and S' a stick (X'_r, φ', ψ') are two reduced Ann-categories of A. Then

- (i) There exists an Ann-equivalence $(F, \check{F}, \widetilde{F}) : \mathcal{S} \longrightarrow \mathcal{S}'$ with F = id.
- (ii) The two structures $(\xi, \eta, \alpha, \lambda, \rho)$ and $(\xi', \eta', \alpha', \lambda', \rho')$, of S and S' respectively, satisfy the following relations

$$(\xi' - \xi)(x, y, z) = \mu(y, z) - \mu(x + y, z) + \mu(x, y + z) - \mu(x, y),$$

$$(\eta' - \eta)(x, y) = \mu(x, y) - \mu(y, x) = ant \ \mu(x, y),$$

$$(\alpha' - \alpha)(x, y, z) = x\nu(y, z) - \nu(xy, z) + \nu(x, yz) - \nu(x, y)z,$$

$$(\lambda' - \lambda)(x, y, z) = \nu(x, y + z) - \nu(x, y) - \nu(x, z) + x\mu(y, z) - \mu(xy, xz),$$

$$(\rho' - \rho)(x, y, z) = \nu(x + y, z) - \nu(x, z) - \nu(y, z) + \mu(x, y)z - \mu(xz, yz),$$

where $\mu, \nu: R \times R \longrightarrow N$ are two functions satisfying the conditions

$$\mu(0,y) = \mu(x,0) = 0,$$

$$\nu(0,y) = \nu(x,0) = \nu(1,y) = \nu(x,1) = 0.$$

Proof.

(i) We have canonical Ann-equivalences:

$$(H, \breve{H}, \widetilde{H}): \mathcal{S} \longrightarrow \mathcal{A},$$

 $(H', \breve{H}', \widetilde{H}'): \mathcal{S}' \longrightarrow \mathcal{A},$

where $\breve{H}=\varphi^{-1},\, \widetilde{H}=\psi^{-1},\, \breve{H}^{,}=\varphi^{,-1},\, \widetilde{H}^{,}=\psi^{,-1}.$

Let $(K, \breve{K}, \widetilde{K})$ be the Ann-functor inverse to the Ann-equivalence $(H, \breve{H}, \widetilde{H})$. We put

$$F = K \circ H', \quad \check{F} = \check{KH}', \quad \widetilde{F} = \widetilde{KH}',$$

and then $(F, \check{F}, \widetilde{F}) : \mathcal{S}' \longrightarrow \mathcal{S}$ is an Ann-equivalence where F = id.

(ii) We put $\mu = \check{KH}'$, $\nu = \widetilde{KH}'$. Then the compatibility of Ann-functor $(F, \check{F}, \widetilde{F}) = (id, \mu, \nu)$ for natural equivalences of \mathcal{S} and \mathcal{S}' implies the relations to be proved. Moreover, we can check that

$$\mu(0,y) = \mu(x,0) = 0,$$

$$\nu(0,y) = \nu(x,0) = \nu(1,y) = \nu(x,1) = 0.$$

by the "normality" of functions $\xi, \mu, \alpha, \lambda, \rho$.

Lemma 7. Let S be the reduced Ann-category of A, with the structure $(\xi, \eta, \alpha, \lambda, \rho)$ and let $\mu, \nu : R \times R \longrightarrow N$ be any pair of functions satisfying the conditions

$$\mu(0,y) = \mu(x,0) = 0,$$

$$\nu(0,y) = \nu(x,0) = \nu(1,y) = \nu(x,1) = 0.$$

Then the family $(\xi', \eta', \alpha', \lambda', \rho')$ satisfying the rules in Lemma 6 is a structure of the reduced Ann-category S' of A.

Proof. Let μ , ν be as in Lemma 6. After choosing the representation (X'_r) , where $X'_0 = 0$, $X'_1 = 1$, we construct functor $H' : \mathcal{S} \longrightarrow \mathcal{A}$. Then \check{H}' and \check{H}' are chosen for $\check{H}\check{K}' = \mu$ and $\check{K}\check{H}' = \nu$ with $(K, \check{K}, \check{K})$ an Ann-functor in the proof of Lemma 6. Now we put $\varphi' = (\check{H}')^{-1}$ and $\psi' = (\check{H}')^{-1}$. With the stick (X'_r, φ', ψ') we construct the reduced Ann-category \mathcal{S}' . The rest follows from Lemma 6.

Proof of Theorem 5. Let S = (R, N) be the reduced Ann-category of an Ann-category A and $(\xi, \eta, \alpha, \lambda, \rho)$ is its structure. We shall prove S is Ann-equivalent to an almost strict reduced Ann-category S' of A in the sense of Lemma 7.

First, we describe the structure of reduced Ann-category \mathcal{S} due to the Ann-equivalences between \mathcal{S} and an almost strict Ann-category $M(\mathcal{S})$ mentioned in Theorem 3. Let

$$\Phi: \mathcal{S} \longrightarrow M(\mathcal{S}),$$

be an Ann-equivalence and Γ be the Ann-functor inverse to Φ mentioned in Theorem 3. They have the explicit forms:

$$\Phi(x) = \Phi_x = (L^x, \check{L}^x, \widetilde{L}^x), \quad x \in R, \ L^x = x \otimes -,$$

$$\Phi(x, u) = u^* : L^x \longrightarrow L^x, \ u_y^* = (x, u) \otimes (y, 0) = (xy, uy),$$

$$\check{\Phi}_{x,y}(z) = ((x+y)z, \rho(x, y, z)) = (\bullet, \rho(x, y, z)),$$

$$\tilde{\Phi}_{x,y}(z) = (xyz, -\alpha(x, y, z)) = (\bullet, -\alpha(x, y, z)),$$

and

$$\Gamma: M(\mathcal{S}) \longrightarrow \mathcal{S},$$

 $(F, \check{F}, \widetilde{F}) \longmapsto F(1).$

For $\varphi: F \longrightarrow G$, an M-morphism, we set

$$\Gamma(\varphi) = \varphi_1 : F(1) \longrightarrow G(1).$$

Then we have an isomorphism

$$r:\Gamma\circ\Phi\simeq id_{\mathcal{S}}$$

where r is the natural isomorphism for right unity of S. As r = id, so $\Gamma \circ \Phi = id_S$.

Now we shall prove some properties of the Ann-equivalence $(\Gamma, \check{\Gamma}, \widehat{\Gamma})$, and describe natural isomorphisms of S. The isomorphism

$$\check{\Gamma}_{F,G}:\Gamma(F\oplus G)\longrightarrow\Gamma F\oplus\Gamma G,$$

where $F, G \in M(\mathcal{S})$, induces a function $f: R \times R \longrightarrow N$,

$$(x+y, f(x,y)) = \check{\Gamma}_{\Phi_x,\Phi_y} : \Gamma(\Phi_x \oplus \Phi_y) \longrightarrow \Gamma\Phi_x \oplus \Gamma\Phi_y (=x+y).$$

For the isomorphism $\check{\Gamma}$, we have the following relations:

$$\check{\Gamma}_{\Phi_x,\Phi_y\oplus\Phi_z} = \check{\Gamma}_{\Phi_x,\Phi_{y+z}} = (x+y+z, f(x,y+z)),$$
(2)

$$\overset{\sim}{\Gamma}_{\Phi_x \oplus \Phi_y, \Phi_z} = \overset{\sim}{\Gamma}_{\Phi_{x+y}, \Phi_z} = (x+y+z, f(x+y, z)).$$
(3)

Actually, according to the naturality of $\check{\Gamma}$, we have the commutative diagram

$$\Gamma(\Phi_x \oplus (\Phi_y \oplus \Phi_z)) \xrightarrow{\check{\Gamma}} \Gamma\Phi_x \oplus \Gamma(\Phi_y \oplus \Phi_z)$$

$$\Gamma(id \oplus \check{\Phi}) \uparrow \qquad \qquad \uparrow id \oplus \Gamma\check{\Phi}$$

$$\Gamma(\Phi_x \oplus \Phi_{y+z}) \xrightarrow{(\bullet, f(x, y+z)) \oplus id} \Gamma\Phi_x \oplus \Gamma\Phi_{y+z}$$

According to the proof of Theorem 3 (see [4]) we get

$$\Gamma(\check{\Phi}_{y,z}) = (y+z, \rho(y,z,1)) = (y+z,0).$$

Then by definition,

$$\Gamma(id \oplus \check{\Phi}) = id$$
,

we get equation (2). Similarly we have equation (3).

The coherence condition for $\check{\Gamma}$ (for distributivity) gives us the commutative diagram

$$x + (y + z) \xrightarrow{id \oplus \check{\Gamma}} x + \Gamma(\Phi_y \oplus \Phi_z) \xleftarrow{\check{\Gamma}} \Gamma(\Phi_x \oplus (\Phi_y \oplus \Phi_z))$$

$$\downarrow (\bullet, \xi(x, y, z)) \qquad \qquad \downarrow \Gamma(id)$$

$$(x + y) + z \xleftarrow{x + (y + z)} \Gamma((\Phi_x \oplus \Phi_y) \oplus \Phi_z) \xleftarrow{\check{\Gamma}} \Gamma((\Phi_x \oplus \Phi_y) \oplus \Phi_z)$$

Hence

$$\xi(x,y,z) = -f(y,z) + f(x+y,z) - f(x,y+z) + f(x,y). \tag{4}$$

Now, the isomorphism $\widetilde{\Gamma}$ defines a function $g: R \times R \to N$ as follows:

$$(xy, g(x, y)) = \widetilde{\Gamma}_{\Phi_x, \Phi_y} : \Gamma(\Phi_x \Phi_y) \longrightarrow \Gamma \Phi_x \Gamma \Phi_y = xy.$$

The natural property of the isomorphism $\check{\Gamma}$ implies the commutative diagram

$$\Gamma(\Phi_x(\Phi_y\Phi_z)) \xrightarrow{\widetilde{\Gamma}} \Gamma\Phi_x\Gamma(\Phi_y\Phi_z)$$

$$\Gamma(id\otimes\widetilde{\Phi}) \uparrow \qquad \qquad \uparrow id\otimes\Gamma\widetilde{\Phi}$$

$$\Gamma(\Phi_x\Phi_{yz}) \xrightarrow{\widetilde{\Gamma}} \Gamma\Phi_x\Gamma\Phi_{yz}$$

Also from the proof of Theorem 3, we have

$$\widetilde{\Phi}_{y,z} = \left(-\alpha(y,z,t)\right)_{t \in R},$$

$$\Gamma \widetilde{\Phi_{y,z}} = (yz, -\alpha(y,z,1)) = (yz,0)$$

and

$$\Gamma(id \otimes \widetilde{\Phi}) = id.$$

Finally

$$\widetilde{\Gamma}_{\Phi_x,\Phi_y\Phi_z} = (xyz,g(x,yz)), \tag{2'}$$

and

$$\widetilde{\Gamma}_{\Phi_x \Phi_y, \Phi_z} = (xyz, g(xy, z)). \tag{3'}$$

Now the compatibility of isomorphism $\widetilde{\Gamma}$ for a pair of natural isomorphisms of associativity $(a = id, \alpha)$ of products in $M(\mathcal{S})$ and \mathcal{S} give us:

$$\alpha(x, y, z) = -xg(y, z) + g(xy, z) - g(x, yz) + g(x, y)z.$$
 (5)

Similarly, the compatibility of pair $(\breve{F}, \widetilde{F})$ for natural isomorphisms of right distributivity $(R^* = id, \rho)$ gives us the relation

$$\rho(x, y, z) = f(xz, yz) - f(x, y)z + g(x, y) + g(y, z) - g(x + y, z). \tag{6}$$

In particular, for a pair of natural isomorphisms of left distributivity (\mathcal{L}^*, λ) , the compatibility of $(\Gamma, \check{\Gamma}, \widetilde{\Gamma})$ for them gives the following commutative diagram

$$\Gamma(\Phi_x(\Phi_y \oplus \Phi(z)) \xrightarrow{\widetilde{\Gamma}} \Gamma\Phi_x.\Gamma(\Phi_y \oplus \Phi_z) \xrightarrow{id \oplus \widecheck{\Gamma}} \Gamma\Phi_x\Gamma\Phi_y \oplus \Gamma\Phi_x\Gamma\Phi_z$$
$$\Gamma(\mathcal{L}^*) \Big\downarrow \qquad (\bullet, \lambda(x, y, z)) \Big\downarrow$$

Since

$$\Gamma(\mathcal{L}^*) = \mathcal{L}^*(1) = (\check{\Phi}_x)_{\Phi_y(1),\Phi_z(1)}$$
$$= (\check{\Phi}_x)_{y,z} = (x(y+z), \lambda(x,y,z)),$$

we obtain the relation

$$g(x, y+z) - g(x,y) - g(x,z) + xf(y,z) - f(xy,xz) = 0.$$
 (7)

Now, according to Lemma 7, we can choose the new stick with $\mu = f$ and $\nu = g$. Then according to Lemma 6 and Relations (4)–(7), the reduced Ann-category S' has the structure $(\xi', \eta', \alpha', \lambda', \rho')$ satisfying

$$\xi' = 0, \ \eta' = \eta + ant\mu, \ \alpha' = 0, \ \rho' = 0, \ \lambda' = \lambda,$$

which means S' is almost strict. The proof is complete.

According to Theorem 5, each structure of a reduced Ann-category of type (R, N) is a pair of functions

$$\eta: R \times R \longrightarrow N, \ \lambda: R \times R \times R \longrightarrow N$$

satisfying the following relations

- 1. $\eta(x+y,z) \eta(x,z) \eta(y,z) = 0$.
- 2. $\eta(x, y) + \eta(y, x) = 0$.
- 3. $\eta(x, y)z \eta(xz, yz) = 0$.
- 4. $x\eta(y,z) \eta(xy,xz) = \lambda(x,y,z) \lambda(x,z,y)$.
- 5. $\lambda(x,z,t) \lambda(x,y+z,t) + \lambda(x,y,z+t) \lambda(x,y,z) = 0$.
- 6. $\lambda(x,z,t) + \lambda(y,z,t) \lambda(x+y,z,t) = -\eta(xt,yz)$.
- 7. $x\lambda(y,z,t) + \lambda(x,yz,yt) \lambda(xy,z,t) = 0$.
- 8. $\lambda(x, yt, zt) \lambda(x, y, z)t = 0$.
- 9. $\lambda(1, y, z) = \lambda(0, y, z) = \lambda(x, 0, z) = \lambda(x, y, 0) = 0.$

The above relations can be derived from 17 relations for a structure in [4].

Corollary 8. For a regular Ann-category A, its reduced Ann-category S has the structure function $\lambda: R \times R \times R \longrightarrow N$ satisfying the following relations

$$\begin{split} &\lambda(x,y,z) - \lambda(x,z,y) = 0, \\ &\lambda(x,z,t) - \lambda(x,y+z,t) + \lambda(x,y,z+t) - \lambda(x,y,z) = 0, \\ &\lambda(x,z,t) + \lambda(y,z,t) - \lambda(x+y,z,t) = 0, \\ &x\lambda(y,z,t) + \lambda(x,yz,yt) - \lambda(xy,z,t) = 0, \\ &\lambda(x,yt,zt) = \lambda(x,y,z)t, \\ &\lambda(1,y,z) = \lambda(0,y,z) = \lambda(x,0,z) = \lambda(x,y,0) = 0. \end{split}$$

Proof. Since an Ann-category \mathcal{A} is regular, so $c_{X,X} = id$ and hence $\eta(x,x) = 0$ for each $x \in \mathbb{R}$. Then we can choose a new stick with $\eta = id$ (see [6]).

Since any structure of regular Ann-category of type (R, N) corresponds to an element of the cohomology group $H^3(R, N)$ of the ring R, the above result gives us a new interpretation of the cohomology group $H^3(R, M)$ and this suggests us a construction of a complex which is simpler than those in [6, 7].

References

- 1. S. Mac Lane, Extensions and Obstruction for rings, Illinois J. Math. 2 (1958) 316–345.
- 2. B. Mitchell, Low dimentional group cohomology and monoidal structure, Amer. J. Math. 105 (1983) 1049–1066.
- 3. N.T. Quang, Introduction to Ann-categories, J. Math. 15 (1987) 14–24.
- 4. N. T. Quang, On the structure of the Ann-categories, *Scientific information*, Hanoi University of Education, D (1987) 12–18.
- 5. N.T. Quang, Enough strict Ann-categories, J. Math. 20 (1992) 41–47.
- 6. N. T. Quang, On the cohomology classification theorem for regular Ann-categories, Scientific information, Hanoi University of Education 1 (1992) 3–7.
- 7. U. Shukla, Cohomologie des Algebras Associatives, Thèse, Paris, 1960.