Vietnam Journal of MATHEMATICS © VAST 2004

Regularity of AP-Injective Rings

Guangshi Xiao¹, Nanqing Ding², and Wenting Tong²

¹Dept. of Mathematics, College of Natural Science, Nanjing Univ. of Aeronautics and Astronautics, Nanjing 210016, P. R. China ²Dept. of Math., Nanjing Univ., Nanjing 210093, P. R. China

> Received August 6, 2003 Revised July 11, 2004

Abstract. A ring R is called right AGP-injective if, for any $0 \neq a \in R$, there exists n > 0 such that $a^n \neq 0$ and Ra^n is a direct summand of $lr(a^n)$. In this paper some conditions which are sufficient or equivalent for a right AGP-injective ring to be von Neumann regular (right self-injective, semisimple) are provided. It is shown that a ring R is von Neumann regular if and only if R is right AGP-injective and for any $0 \neq a \in R$ there exists a positive integer n with $0 \neq a^n$ such that a^nR is a projective right R-module if and only if R is a right R-injective ring whose divisible and torsionfree right R-modules are R-injective. We also show that if R is a primitively finite right R-injective ring, then $R \cong R_1 \times R_2$, where R_1 is semisimple and every simple right ideal of R_2 is nilpotent. In addition, it is proven that if R is a right R-injective ring satisfying the a.c.c on right annihilators, then R is quasi-Frobenius.

1. Introduction

Throughout, R is an associative ring with identity and all modules are unitary. The Jacobson radical, left (right) singular ideal and right socle of R are denoted by J, Z(RR) Z(RR)) and Soc(RR), respectively. For a subset X of R, r(X) (resp. l(X)) is reserved for the right (resp. left) annihilator of X in R, and we write r(x) (resp. l(x)) for $r(\{x\})$ (resp. $l(\{x\})$) when $x \in R$. A right R-module R is called principally injective (R-injective) [11] if every R-homomorphism from a principal right ideal R to R extends to one from R to R. R is said to be generalized principally injective (R-injective) [10] if, for any R is the exists a positive integer R with R is such that any R-homomorphism from

 a^nR to M extends to one from R_R to M. A ring R is called right P-injective (resp. GP-injective) if the right R-module R_R is P-injective (resp. GP-injective). Following [12], a ring R is called right almost principally injective (AP-injective) if every principal left ideal is a direct summand of a left annihilator, and the ring R is called right almost generalized principally injective (AGP-injective) if, for any $0 \neq a \in R$, there exists n > 0 such that $0 \neq a^n$ and Ra^n is a direct summand of $lr(a^n)$. The detailed discussion of right P-injective and right GP-injective rings can be found in [2-3, 7, 10-12, 17-21]. Clearly, P-injective rings are AP-injective and GP-injective rings are AGP-injective. But there exists a right AP-injective ring which is not right GP-injective [12, Example 1.5]. Recently, it was noted that GP-injective rings need not be P-injective (see [3]). Several results which are known for right P-injective (resp. right GP-injective) rings were shown to hold for right AP-injective(resp. right AGP-injective) rings in [12, 21]. In this paper, we discuss the regularity and the self-injectivity of right AGP-injective rings.

In Sec. 2, we characterize the regularity of AGP-injective rings. It is shown that R is von Neumann regular if and only if it is a right AGP-injective ring whose divisible and torsionfree right R-modules are GP-injective; R is strongly regular if and only if it is a right quasi-duo (resp. WRD) and right AGP-injective ring whose divisible and torsionfree right R-modules are GP-injective if and only if it is a right AGP-injective ring with a reduced maximal right ideal. An example is given to show that there is a primitively finite ring which is not semiperfect. We also prove that if R is a primitive finite right AGP-injective ring, then $R \cong R_1 \times R_2$, where R_1 is semisimple and every simple right ideal of R_2 is nilpotent, which extends the results in [11, Theorem 1.4] and [12, Theorem 2.16].

It is well known that a ring R is quasi-Frobenius (QF) if and only if it is right self-injective and left (or right) Noetherian. In Sec. 3, we prove that, if R is a right MI ring, then R is right self-injective if and only if it is right (A)P-injective if and only if it is right (A)GP-injective. In particular, if R is a right MI ring, then R is QF if and only if R is a right AGP-injective ring satisfying the a.c.c on right annihilators.

Recall that a ring R is called left (resp. right) PP [9] if, for any $a \in R, Ra$ (aR) is a projective R-module; R is said to be a left (resp. right) GPP ring [9] if, for any $a \in R$, there exists a positive integer m such that Ra^m (a^mR) is a projective R-module. The classes of these rings were studied by many authors, for example, Hirano, Xue and Zhou (see [8, 13, 21]). In Sec. 3, we consider the class of rings satisfying (*) (R is called a ring satisfying left (resp. right) (*) if, for any $0 \neq a \in R$, there exists a positive integer n such that $0 \neq a^n$ and Ra^n (resp. a^nR) is a projective R-module). Clearly, PP rings are rings satisfying (*) and rings satisfying (*) are GPP rings. We prove that a ring R is von Neumann regular if and only if R is a right AGP-injective ring satisfying right (*), which extends Zhou [21, Proposition 2.5]. An example shows that GPP rings need not be rings satisfying (*), and none of the notions of PP rings, AGP-injective rings and rings satisfying (*) is left-right symmetric.

2. Nonsingular Right AGP-Injective Rings

Let R be a ring. Recall that R is called (von Neumann) regular if for every $x \in R$, there exists some $y \in R$ such that x = xyx; R is called strongly regular if for every $x \in R$, there exists some $y \in R$ such that $x = x^2y$; R is called right nonsingular if $Z(R_R) = 0$; R is called reduced if it contains no nonzero nilpotent elements; R is called semiprime if it contains no nonzero nilpotent ideal (equivalently, for any $a \in R$, RaRa = 0 implies Ra = 0).

In this section, we characterize the regularity of AGP-injective rings.

Lemma 2.1. Let $c \in C(R)$, where C(R) is the center of R. If c is regular in R, then c is regular in C(R).

Proof. Let c = cdc with $d \in R$. Put u = dcd. Then $c = cuc = uc^2$. We claim that $u \in C(R)$. In fact, for any $x \in R$, $ux - xu \in r(c^2) = r(c)$, so $c^2(xd^2 - d^2x) = c(xu - ux) = 0$, which implies $xd^2 - d^2x \in r(c^2) = r(c)$. Thus $xu - ux = xcd^2 - cd^2x = c(xd^2 - d^2x) = 0$. This completes the proof.

Proposition 2.2. If R is a right nonsingular right AGP-injective ring, then the center C(R) of R is regular.

Proof. By hypothesis, R has a regular maximal right quotient ring S (see [5, Corollary 2.31]). Consequently, the center C(S) of S is regular by Lemma 1.1. For any $0 \neq a \in C(R)$, there exists $s \in S$ such that $a = asa = a^2s = sa^2$. Thus $r(a^n) = r(a) = l(a) = l(a^n)$ for any positive integer n. We claim that a is regular in C(R). Note that $a^2 \neq 0$, so there is a positive integer m with $a^{2m} \neq 0$ such that $lr(a^{2m}) = Ra^{2m} \oplus X_{a^{2m}}$ for some left ideal $X_{a^{2m}}$ of R since R is right AGP-injective. Thus $a^{2m-1} \in lr(a^{2m-1}) = lr(a^{2m})$, and so $a^{2m-1} = da^{2m} + x$ for some $d \in R$ and some $x \in X_{a^{2m}}$. Then $a^{2m} = ada^{2m} + ax$ and $ax \in Ra^{2m} \cap X_{a^{2m}} = 0$. Hence $a^{2m} = ada^{2m}$. Therefore $1 - ad \in l(a^{2m}) = l(a)$, and so a = ada. This implies that C(R) is regular by Lemma 2.1.

Proposition 2.3. If R is a semiprime right AGP-injective ring, then the center C(R) of R is regular.

Proof. For any $0 \neq c \in C(R)$, $Rc \cap l(c) = 0$ since R is semiprime. Therefore, $l(c^m) = l(c) = r(c) = r(c^m)$ for any positive integer m. Note that $c^2 \neq 0$ because $Rc \cap l(c) = 0$. As in the proof of Proposition 2.2, C(R) is regular.

Recall that (1) R is called right (resp. left) duo [1] if every right (resp. left) ideal is a two-sided ideal; (2) R is called right quasi-duo [1] if every maximal right ideal is a two-sided ideal; (3) R is said to be weakly right duo (abbreviated WRD) [15] if for any $a \in R$, there exists a positive integer n such that a^nR is a two-sided ideal. Right quasi-duo (resp. WRD) rings are non-trivial generalizations of right duo rings (see [1, 15]). Note that if R is right quasi-duo (resp. WRD) then R/J is reduced (see [17]).

A right R-module M is called torsionfree if, for any $0 \neq m \in M$, $mc \neq 0$ for every non-zero-divisor c of R. The module M is divisible if M = Mc for each

non-zero-divisor c of R.

Lemma 2.4. If R is a right AGP-injective ring, then any non-zero-divisor is invertible, thus any right (resp. left) R-module is divisible and torsionfree.

Proof. Let $a \in R$ be a non-zero-divisor, then r(a) = l(a) = 0. Hence $r(a^n) = r(a) = l(a) = l(a^n) = 0$ for any positive integer n. Since R is right AGP-injective, there exists a positive integer n with $a^n \neq 0$ such that $R = lr(a^n) = Ra^n \oplus X_{a^n}$ for some left ideal X_{a^n} of R. Thus $1 = ra^n + x$ with $r \in R$, $x \in X$, and so $a^n x = a^n - a^n ra^n \in X_{a^n} \cap Ra^n = 0$, which implies that $a^n = a^n ra^n$. If n = 1, then 1 = ra = ar. If n > 1, then $1 = (ra^{n-1})a = a(a^{n-1}r)$. It follows that a is invertible, and hence any right (resp. left) R-module is divisible and torsionfree.

Let M be a right R-module. We write $l_M(X) = \{m \in M \mid ma = 0 \text{ for any } a \in X\}$, where X is a subset of R, and write $Z_r(M) = \{m \in M \mid mK = 0 \text{ for some essential right ideal } K \text{ of } R\}$.

Lemma 2.5. [20, Proposition 1] Let M be a right R-module. Then M is GP-injective if and only if, for any $0 \neq a \in R$, there exists a positive integer n such that $a^n \neq 0$ and $l_M(r(a^n)) = Ma^n$.

Theorem 2.6. Let R be a right AGP-injective ring. The following conditions are equivalent:

- (1) R is strongly regular;
- (2) R is a right quasi-duo (resp. WRD) ring containing a nonsingular maximal right ideal;
- (3) R is a right quasi-duo (resp. WRD) ring with $Z(R_R) = 0$;
- (4) R is a right quasi-duo (resp. WRD) ring whose divisible and torsionfree right R-modules are GP-injective;
- (5) R has a maximal right ideal M such that for any $y \in M$, there exists a central idempotent $e \in M$ and a right regular element $c \in R$ (i.e, r(c) = 0) such that y = ce;
- (6) R is a ring with a reduced maximal right ideal;
- (7) R is a reduced ring.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (4)$ are clear.

- $(2)\Rightarrow(3)$: Let M be a nonsingular maximal right ideal. We claim $Z(R_R)=0$. In fact, for any $a\in Z(R_R),\ a\in J\subseteq M$ by [12, Corollary 2.3]. Thus $Z(R_R)=Z(R_R)\cap M=Z_r(M)=0$.
- $(3)\Rightarrow(7)$: Assume that the condition (3) holds. Then R/J is reduced. By [12, Corollary 2.3], $J=Z(R_R)=0$. Thus R is reduced.
- $(4)\Rightarrow(3)$: Let $0\neq a\in Z(R_R)$ with $a^2=0$. By Lemma 2.4, aR is divisible and torsionfree. Therefore aR is GP-injective. By Lemma 2.5, $l_{aR}(r(a))=aRa$. Note that $a\in l_{aR}(r(a))$, so a=aba for some $b\in R$. Then a=0 since $ba\in Z(R_R)$, a contradiction. This shows that $Z(R_R)$ is reduced, and so $Z(R_R)=0$.
 - $(1)\Rightarrow(5)$: By [4, Corollary 4.2], R is unit-regular. Let M be a maximal right

ideal. For any $y \in M$, there exist unit element $c, d \in R$ such that y = ydy and d = dcd. Note that $y = y^2d$ and $d = d^2c$, thus y = ydc. Let e = yd, then $e^2 = e \in M$ and y = ec. Since R is strongly regular, so e is central.

 $(5)\Rightarrow(6)$: If $b\in M$ with $b^2=0$, then b=ce, where e is a central idempotent in M and c is right regular. Then r(b)=r(e)=l(e) and b=be, which implies b=be=eb=0 because $b\in r(b)$. Hence M is reduced.

 $(6)\Rightarrow (7)$: Let M be a reduced maximal right ideal. If I is a nilpotent ideal of R, then $I\subseteq J\subseteq M$, and thus I=0 because M is reduced, so R is semiprime. If M is essential, then there is $0\neq r\in R$ such that $0\neq ar\in M$ for any $0\neq a\in R$, thus $0\neq ara$ and $0\neq a^2$ since M is reduced. This proves that R is reduced. If M is not essential, then $R=M\oplus L$. Thus M=eR, U=(1-e)R, where $e^2=e\in R$ and U is a minimal right ideal of R. Note that $(1-e)\in l(eR)=l(M)\subseteq r(M)=r(eR)$ since M is reduced. So eR(1-e)=0, and hence e is central since R is semiprime. Take $a\in R$ with $a^2=0$. Then a=ec+(1-e)d for some c, $d\in R$, so $0=a^2=ec^2+(1-e)d^2$, and therefore d(1-e)d=0. If $(1-e)d\neq 0$, then U=(1-e)dR by the minimality of U, which implies d(1-e)=0. Hence (1-e)d=0 since e is central, a contradiction. This gives that $a=ec\in M$. Then a=0 since M is reduced, and so R is reduced.

 $(7)\Rightarrow(1)$: For any $0 \neq a \in R$, $a^2 \neq 0$ since R is reduced. Then there is a positive integer n with $a^{2n} \neq 0$ such that $lr(a^{2n}) = Ra^{2n} \oplus X$ for some $X \leq_R R$. But R is reduced, so $a^{2n-1} \in lr(a^{2n-1}) = lr(a^{2n})$. Hence $a^{2n} = ada^{2n}$ for some $d \in R$. Since R is reduced, we obtain $1 - ad \in l(a^{2n}) = l(a) = r(a)$. Thus $a = a^2d$, R is strongly regular.

By the proof " $(1) \Leftrightarrow (3)$ " of Theorem 2.6, the following result is immediate.

Corollary 2.7. A ring R is regular if and only if R is a right AGP-injective ring whose divisible and torsionfree right R-modules are GP-injective.

A ring Q is called a classical right quotient ring of R (see [5]) if (a) $R \subseteq Q$; (b) every non-zero-divisor of R is invertible in Q; (c) for any $q \in Q$, $q = ab^{-1}$, where $a, b \in R$ and b is a non-zero-divisor.

Theorem 2.8. If R is a right AGP-injective ring and has classical right quotient ring Q, then the following conditions are equivalent:

- (1) Q is strongly regular;
- (2) R is reduced.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2)\Rightarrow(1)$: For any $q=ab^{-1}\in Q$ with $q^2=0$, we see that $ab^{-1}ab^{-1}=0$ and $ab^{-1}a=0$. Since Q is a classical right quotient ring, there exist $c,\ d\in R$ such that $b^{-1}a=dc^{-1}$, so ac=bd and $adc^{-1}=0$. Then dbd=dac and ad=0, this implies da=0 since R is reduced. Hence dbd=0, bd=0 since R is reduced. Thus ac=0, a=0, and hence $q=ab^{-1}=0$. This shows that Q is reduced. By Theorem 1.6, R is regular. Take $q=ab^{-1}\in Q$ with $a,\ b\in R$. Then there exists $r\in R$ such that $a=ara=ab^{-1}bra=qbra$ since R is regular. This shows that $q=ab^{-1}=qbrab^{-1}=qbrq$, and $br\in R\subseteq Q$. Hence Q is strongly regular.

Let e be an idempotent element of R. If eRe is a local ring, then e is called a local idempotent. It is well known that local idempotents are primitive, but the converse is not true. For the integral ring \mathbb{Z} , 1 is a primitive idempotent, but it is not local idempotent since \mathbb{Z} is not a local ring.

Recall that a ring R is called orthogonally finite if R has no infinite subsets consisting of orthogonal idempotents; R is called primitively finite if there exist finite orthogonal primitive idempotents e_1, e_2, \ldots, e_n such that $1 = e_1 + e_2 + \cdots + e_n$. It is well known that R is semiperfect if and only if 1 is a sum of finite orthogonal local idempotents. Thus, every semiperfect ring is primitively finite, but the converse is not true as shown by the following example.

Example 1. There exists a primitively finite ring R which is not semiperfect.

Let
$$R = \left\{ \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}$$
. Then $e = e_{11} + e_{22}$, where $e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

and e is a unit of $M_2(\mathbb{Z})$. Thus R is primitively finite since e_{11} and e_{22} are primitive idempotent elements of R. But $J = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$, and $R/J \cong \mathbb{Z} \times \mathbb{Z}$, hence R is not semiperfect.

The following theorem extends the results in [11, Theorem 1.4] and [12, Theorem 2.16].

Theorem 2.9. If R is a primitively finite right AGP-injective ring, then $R \cong R_1 \times R_2$, where R_1 is semisimple and every simple right ideal of R_2 is nilpotent.

Proof. Since R is primitive finite, there exist orthogonal primitive idempotents e_1, \ldots, e_n , such that $1 = e_1 + \cdots + e_n$. We assume that there exists a natural number $m(1 \le m \le n)$ such that e_iR is simple $(1 \le i \le m)$ and e_jR is not simple $(m < j \le n)$.

Claim (1) $e_i R e_j = 0, 1 \le i \le m, m < j \le n.$

If not, then there exist $(0 \neq) a \in e_i Re_i$ and a nonzero right R-homomorphism

$$f: e_j R \to e_i R; e_j r \mapsto a e_j r.$$

Since e_iR is simple, so f is an epimorphism. Since e_iR is projective, so $e_jR = \operatorname{Ker} f \oplus T$, where $T \cong e_iR$. Hence $\operatorname{Ker} f = 0$ and $e_jR \cong e_iR$ since e_j is primitive, it is a contradiction.

Claim (2) $e_i R e_i = 0, \ 1 \le i \le m, \ m < j \le n.$

If not, there exist $0 \neq b \in e_i Re_i$ and R-homomorphism

$$g: e_i R \to e_j R; e_i r \mapsto b e_i r.$$

Clearly, g is a nonzero homomorphism, so g is a monomorphism since e_iR is simple. Hence $e_iR \cong g(e_iR)$. Since R is a right AGP-injective ring, by [12, Proposition 2.13], $g(e_iR)$ is a direct summand of R. Hence there exists $u^2 = u \in R$ such that $g(e_iR) = uR$, thus $e_jR = e_jR \cap R = e_jR \cap (uR \oplus (1-u)R) = uR \oplus (e_jR \cap (1-u)R)$, so $e_jR \cap (1-u)R = 0$ and $e_jR = uR = g(e_iR) \cong e_iR$ since e_j is primitive. This is a contradiction.

Claim (3) $R \cong R_1 \times R_2$, where R_1 is semisimple and every simple right ideal of R_2 is nilpotent.

Let $e = e_1 + \cdots + e_m$, then $e^2 = e \in R$ and eR(1 - e) = (1 - e)Re = 0 by the above proof. Hence e and 1 - e are central idempotents of R, eR and (1 - e)R are two-sided ideals of R. Thus $R \cong R_1 \times R_2$, where $R_1 = eR$ and $R_2 = (1 - e)R$. Obviously, R_1 is semisimple. We shall prove that every simple right ideal K of R_2 is nilpotent.

If not, then there exists a nonzero element $t \in K$ such that $tK \neq 0$, where K is a simple right ideal of R_2 . Since K is simple, K = tK. Thus there exists $u \in K$ such that tu = t, and so $u^2 - u \in r(t) \cap K$. Hence $u^2 = u \in K$, $tK \neq 0$ and K is simple. So $uR_2 = K$. Since $(1 - e)K = K(1 - e) \neq 0$, there exists $j \ (m < j \leq n)$ such that $Ke_j = KRe_j \neq 0$. Let $0 \neq c \in Ke_j = uR_2e_j = uRe_j$, then there exists an R-homomorphism

$$h: e_j R \to u R; e_j r \mapsto c e_j r.$$

Since e_j is primitive and $uR = uR_2 = K$ is projective simple, $e_jR = K$. This contradicts the assumption that e_jR is not simple. Therefore tK = 0, and K is nilpotent.

3. Right AGP-Injective Rings with Right Chain Conditions

From [12, Example 1.5(2)], we know that right AGP-injective rings satisfying the a.c.c on right annihilators need not be regular. In this section, we characterize the self-injectivity of right AGP-injective rings.

Recall that a ring R is π -regular if, for any $a \in R$, there exists a positive integer m such that $a^m = a^m b a^m$ for some $b \in R$. Following [2], a ring R is called generalized π -regular if, for any $a \in R$, there exists a positive integer m such that $a^m = a^m b a$ for some $b \in R$. For convenience, a ring R is said to be left generalized π -regular if, for any $a \in R$, there exists a positive integer m such that $a^m = aba^m$ for some $b \in R$.

Definition 3.1. A ring R is said to satisfy the a.c.c on the special right annihilators if, for any $0 \neq x \in R$, the chain $r(x) \subseteq r(x^2) \subseteq \cdots \subseteq r(x^n) \subseteq \cdots$ terminates.

From [21, Theorem 1.5], it is easy to verify that if R is a right AGP-injective ring satisfying the a.c.c on the special right annihilators, then J is nilpotent. Now, we have the following result.

Proposition 3.2. If R is a right AGP-injective ring satisfying the a.c.c on the special right annihilators, then R is left generalized π -regular.

Proof. Let $0 \neq a \in J$, then there is a positive integer n such that $r(a^n) = r(a^{n+1})$ by hypothesis. If $a^n = 0$, we are done. If $0 \neq a^n$, then $0 \neq a^{n+1}$, and so there is a positive integer m such that $0 \neq a^{m(n+1)}$ and $lr(a^n) = lr(a^{m(n+1)}) = Ra^{m(n+1)} \oplus X$ with $X \leq_R R$. Thus $a^n = ra^{m(n+1)} + x$ with $r \in R$ and $x \in X$.

If m=1, then $a^{n+1}=ara^{n+1}$. If m>1, then $a^{m(n+1)}=a^{(m-1)(n+1)}ara^{m(n+1)}$. In all cases, R is left generalized π -regular.

By Proposition 3.2 and [2, Theorem 2.2], we have the following corollary.

Corollary 3.3. If R is a right AGP-injective ring satisfying the a.c.c on the special right annihilators and $N_1 = \{0 \neq a \in R \mid a^2 = 0\}$ is regular (every element of N_1 is von Neumann regular), then R is regular.

The following proposition extends [18, Proposition 10].

Proposition 3.4. Let R be a right AGP-injective ring satisfying the a.c.c on right annihilators. If K_1 , K_2 are injective right R-modules, $g_1: M_1 \to K_1$, $g_2: M_2 \to K_2$ right R-monomorphisms of right R-modules M_1 , M_2 into K_1 , K_2 respectively, and $f: M_1 \to M_2$ a right R-homomorphism, then there exists a right R-homomorphism $h: K_1 \to K_2$ such that $hg_1 = g_2f$. If $g_i(r_{M_i}(J)) = r_{K_i}(J)$, i = 1, 2, and f is a monomorphism (resp. isomorphism), then h is a monomorphism (resp. isomorphism).

Proof. There exists a right R-homomorphism $h: K_1 \to K_2$ such that $hg_1 = g_2 f$ since K_2 is an injective right R-module. By [5, Proposition 3.31], $Z(R_R)$ is nilpotent, which shows that J is nilpotent by [12, Corollary 2.3]. The proof of [18, Proposition 10] can be used to prove the result.

Corollary 3.5. If R is a right AGP-injective ring satisfying the a.c.c on right annihilators, E, Q are injective right R-modules such that $r_E(J)$ is isomorphic to $r_Q(J)$ (as right R-modules), then $E_R \cong Q_R$.

Following [19], a ring R is called right IF if every injective right R-module is flat, and R is called right MI if R contains an injective maximal right ideal. In [19], Yue Chi Ming gave an example, in which R is an MI-ring but not left self-injective, and proved that if R is a left MI-ring, then R is a left IF-ring satisfying the a.c.c on right annihilators if and only if R is QF. The result remains true if IF-rings are replaced by AGP-injective rings as shown by the following theorem.

Theorem 3.6. Let R be a right AGP-injective and right MI-ring. Then R is right self-injective.

Proof. Since R is a right MI-ring, there exists $e^2 = e \in R$ such that $R_R = M \oplus L$, where M = eR is an injective maximal right ideal of R and L = (1 - e)R is a minimal right ideal of R.

If $LM \neq 0$, we claim that L_R is injective, and hence $R_R = M \oplus L$ also is injective.

In fact, there exists $u \in L$ such that $uM \neq 0$, which implies that L = uM. Thus there is a right R-epimorphism $\varphi : M \to L$ with $\varphi(x) = ux$. Since L = (1 - e)R is projective, there exists a right submodule T of M such that $M = \text{Ker}(\varphi) \oplus T$ with $T \cong L$. Hence $L \cong T$ is injective by the injectivity of M_R , so R is injective.

If LM = 0, then M = r(L) is a two-sided ideal of R. Let f = 1 - e. Then for any $0 \neq u \in Rf$, u = uf and r(u) = M = r(f) by the maximality of M. The fact that R is right AGP-injective implies that there exists a positive integer n with $0 \neq u^n$ such that $lr(u^n) = Ru^n \oplus X_{u^n}$ for some left ideal X_{u^n} of R. Note that $M = r(u) = r(u^n)$ by the maximality of M, so $Rf = lr(f) = Ru^n \oplus X$. Therefore $u^n f = u^n = u^n r u^n$ for some $r \in R$. Thus $(f - r u^n) \in r(u^n) = r(f)$, which implies that $f = fru^n$ and $Rf \subseteq Ru$. This shows that R(1-e) is a minimal left ideal of R. Consequently, Re is a maximal left ideal of R. Since eR = M is a two-sided ideal of R, we see that M = eR = Re by the maximality of Re. Then $R(R/M) \cong R(1-e)$ is projective, and so it is flat. Let L be a right ideal of R and $f: L \to (R/M)_R$ a non-zero right R-homomorphism. Since R(R/M) is flat, we see that $LM = M \cap L$. If $L \subseteq M$, then $L = M \cap L = LM$, and hence f(L) = f(LM) = f(L)M = 0. This contradicts $f \neq 0$. Thus $L \nsubseteq M$, and so L + M = R by the maximality of M. This shows that 1 = a + b for some $a \in L$ and some $b \in M$. Therefore for every $x \in L$, $x - ax = bx \in L \cap M = LM$, and hence $f(x - ax) \in f(LM) = f(L)M = 0$. This implies that f(x) = f(a)xfor all $x \in L$. Thus $L \cong (R/M)_R$ is injective, and so $R_R = M \oplus L$ is injective.

Corollary 3.7. If R is a right MI ring, then R is QF if and only if R is a right AGP-injective ring satisfying the a.c. c on right annihilators.

Proof. By Theorem 3.6, R is right self-injective. So R is QF by [6, Corollary 24.22].

Corollary 3.8. Let R be a ring with $Soc(R_R) \nsubseteq J$. The the following conditions are equivalent:

- (1) R is right self-injective;
- (2) R is right MI, right P-injective;
- (3) R is right MI, right AP-injective;
- (4) R is right MI, right GP-injective;
- (5) R is right MI, right AGP-injective.

Proof. (2) \Rightarrow (3), (2) \Rightarrow (4) and (4) \Rightarrow (5) are clear.

 $(1)\Rightarrow (2)$. Since $Soc(R_R) \nsubseteq J$, there exists a minimal right ideal M of R such that $M^2 \neq 0$. Thus there exists $e^2 = e \in R$ such that M = eR by the minimality of M. But $R_R = (1-e)R \oplus eR$ is right self-injective, and so (1-e)R is an injective maximal right ideal of R by the minimality of M.

- $(5) \Rightarrow (1)$. By Theorem 3.6.
- $(3) \Rightarrow (1)$. It follows from the proof of Theorem 3.6.

Recall that a ring R is right uniform if any two nonzero right ideals of R have nonzero intersection, equivalently, if $R \neq 0$ and every nonzero right ideal is essential in R. Yue Chi Ming [16] proved that any right Noetherian right uniform right GP-injective ring is right Artinian and local. Now we prove that

_

the result is still true for AGP-injective rings.

Proposition 3.9. Let R be a right uniform right AGP-injective ring. Then R is a local ring and $J = Z(R_R)$ is the unique maximal left (and right) ideal of R.

Proof. If $Z(R_R)=0$, then r(a)=0 for any $0\neq a\in R$ since R is right uniform. For any $0\neq a\in R$, there is a positive integer n such that $0\neq a^n$ and $lr(a^n)=Ra^n\oplus X_{a^n}$ for some left ideal X_{a^n} of R since R is right AGP-injective. Note that $r(a^n)=0$, and so $R=lr(a^n)=Ra^n\oplus X_{a^n}$. Hence $1=ra^n+x$ with $r\in R$, $x\in X_{a^n}$. This implies $a^n=a^nra^n$, so $1-ra^n\in r(a^n)=0$ and $1=ra^n$. Thus a is left invertible. Hence R is a division ring. If $Z(R_R)\neq 0$, then any proper left ideal I of R is contained in $Z(R_R)$. If not, there is $0\neq a\in I\setminus Z(R_R)$. Then r(a)=0. By the preceding proof, there is $c\in R$ such that ca=1, which implies I=R. This is a contradiction. By [12, Corollary 2.3], $J=Z(R_R)$ is the unique maximal left (and right) ideal of R.

The next corollary follows from [21, Corollary 1.2] and Proposition 3.9.

Corollary 3.10. Any right Noetherian right uniform right AGP-injective ring is right Artinian and local.

4. Right AGP-Injective Rings and PP Rings

We say that a ring R satisfies left (resp. right) (*) if, for any $0 \neq a \in R$, there exists a positive integer n such that $0 \neq a^n$ and Ra^n (a^nR) is a projective R-module. Clearly, every right PP-ring satisfies right (*).

Let us start this section with the following proposition.

Proposition 4.1. If R is a ring satisfying right (*), then $Z(R_R) = 0$, i.e., R is a right nonsingular ring.

Proof. Suppose that $0 \neq a \in Z(R_R)$ with $a^2 = 0$. Then aR is projective, and so the short exact sequence $0 \to r(a) \to R \to aR \to 0$ splits, where $\varphi : R \to aR$; $r \mapsto ar$. This implies $R = r(a) \oplus L$ for some $L \leq R$. But $r(a) \neq R$ since $0 \neq a$, and hence $L \neq 0$, contradicting $a \in Z(R_R)$. Thus $Z(R_R)$ is reduced, $Z(R_R) = 0$.

The following theorem extends [13, Theorem 3], [2, Theorem 2.9], [14, Theorem 2.3], and [21, Proposition 2.5].

Theorem 4.2. A ring R is von Neumann regular if and only if R is a right AGP-injective ring satisfying right (*).

Proof. One direction is obvious. Conversely, suppose that R is a right AGP-injective ring satisfying right (*). For any $0 \neq a \in R$, there is a positive integer m with $0 \neq a^m$ such that $lr(a^m) = Ra^m \oplus X_{a^m}$ for some left ideal X_{a^m} of R. Put $b = a^m$. Then there is a positive integer n such that $0 \neq b^n$ and b^nR is

projective. Thus the short exact sequence $0 \to r(b^n) \to R \to b^n R \to 0$ splits. This implies that $r(b^n) = eR$ with $e^2 = e \in R$. Let f = 1 - e. Then $lr(b^n) = Rf$ and $f^2 = f \in R$, and so $b^n = b^n f$. Since $lr(b^n) \subseteq lr(b)$, $f = da^m + x$ for some $d \in R$ and some $x \in X_{a^m}$. Thus

$$b^{n}x = b^{n}f - b^{n}da^{m} = a^{mn} - a^{mn}da^{m} \in Ra^{m} \cap X_{a^{m}} = 0.$$

This shows that $a^{mn}=a^{mn}da^m$, and so R is generalized π -regular. If $0\neq a$ with $a^2=0$, the argument above gives that a is a regular element. Thus, by [2, Theorem 2.2], R is a regular ring.

Corollary 4.3. [21, Proposition 2.5] A ring R is von Neumann regular if and only if R is right PP and right AGP-injective.

Corollary 4.4. Suppose that R is a right PP-ring having a classical right quotient ring Q. Then Q is right AGP-injective if and only if Q is regular.

Proof. By [8, Proposition 1], Q is a right PP ring. Thus, by Corollary 3.5, Q is regular. The converse is obvious.

Following [6, Definition 1.1], a ring R is called completely right p-injective (briefly, right cp-injective) if every ring homomorphic image of R is right P-injective.

Example 2.

(1) Let $R = \mathbb{Z}_{q^2}$, where \mathbb{Z}_{q^2} is the ring of integers modulo q^2 and q is a prime number. By [7, Example 1.4(1)], R is a commutative cp-injective ring but it is not von Neumann regular. By [7, Proposition 1.7], R is strongly π -regular. Thus R is a GPP ring. Obviously, cp-injective rings are AGP-injective. This shows that R is a GPP and AGP-injective ring which is not regular. Thus, by Theorem 4.2, R is a GPP ring which is not a ring satisfying (*).

(2) Let
$$K = \mathbb{Z}_2$$
 and $R = \begin{pmatrix} K & K \\ 0 & A \end{pmatrix}$ with
$$A = \{(a_1, a_2, \dots, a_n, d, d, \dots) \mid d, a_1, a_2, \dots, a_n \in K, n \in \mathbb{N}\}.$$

Then \mathbb{Z}_2 is a left (and right) A-module by defining

$$A \times \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2; (\alpha, k) \mapsto \alpha k \doteq dk$$

 $\mathbb{Z}_2 \times A \longrightarrow \mathbb{Z}_2; (k, \alpha) \mapsto k\alpha \doteq kd$

By [2, Example 1], R is a left PP and right P-injective ring, so is a right AGP-injective ring satisfying left (*). Note that R is not regular since $J \neq 0$, thus by Corollary 4.3, R is neither left AGP-injective nor right PP. By Theorem 4.2, R is not a ring satisfying right (*).

Remark 1. Example 2(1) above shows that GPP rings need not be rings satisfying (*), and hence GPP rings need not be PP rings. Example 2(2) shows that the condition "R is right AGP-injective" cannot be replaced by "R is left AGP-injective" in Theorem 3.2, and hence the notion of AGP-injective rings

is not left-right symmetric. Likewise, the notions of PP rings and rings satisfying (*) are not left-right symmetric. However, we do not know if every ring satisfying right (*) is a right PP ring.

Proposition 3.6. If R is a right GPP and right AGP-injective ring, then R is π -regular.

Proof. For any $0 \neq a \in R$, there exists a positive integer m such that $a^m R$ is projective by the assumption. Thus the short exact sequence

$$0 \to r(a^m) \to R \to a^m R \to 0$$

splits, and so there exists $T \cong a^m R$ such that $R_R = r(a^m) \oplus T$. By [11, Proposition 2.13(2)], $a^m R$ is a direct summand of R_R . Thus R is π -regular.

Acknowledgements. The authors would like to thank the referee for his useful suggestions. This work is supported by the Doctorate Foundation of China Education Ministry (20020284009).

References

- S. H. Brown, Rings over which every simple module is rationally complete, Canad. J. Math. 25 (1973) 693-701.
- J. L. Chen and N. Q. Ding, On regularity of rings, Algebra Colloquium 4 (2001) 267–274.
- 3. J.L. Chen, Y.Q. Zhou, and Zhanmin Zhu, *GP*-injective rings need not be *P*-injective, *Comm. Algebra* **32** (2004) 1–9.
- 4. K. R. Goodearl, *Von Neumann Regular Rings*, Krieger publishing company, Malabar, Florida, 1991.
- K. R. Goodearl, Ring Theory: Nonsingular rings and modules, *Pure Appl. Math.* Marcel Dekker, New York, 1991.
- 6. C. Faith, Algebral(II): Ring Theory, New York, Springer-Verlag, Berlin, 1976.
- C. Y. Hong, N. K. Kim and Y. Lee, On rings whose homomorphic images are P-injective, Comm. Algebra 30 (2002) 261–271.
- 8. Y. Hirano, M. Hongan and M. Ohori, On right PP-rings, *Math. J. Okayama Univ.* **24** (1982) 99–109.
- 9. Y. Hirano, On generalized PP-rings, Math. J. Okayama Univ. 25 (1983) 7–11.
- S. B. Nam, N. K.Kim, and J. Y.Kim, On simple GP-injective modules, Comm. Algebra 23 (1995) 5437–5444.
- 12. W. K. Nicholson and M. F. Yousif, Principally injective rings, *J. Algebra* 174 (1995) 77–93.
- 13. S. S. Page and Y. Q. Zhou, Generalizations of Principally Injective Rings, *J. Algebra* **206** (1998) 706–721.
- 14. W. M. Xue, On *PP*-rings, *Kobe. J. Math.* **7** (1990) 77–80.
- 15. G. S. Xiao, X. B. Yin, and W. T. Tong, A note on AP-injective rings, J.Math. Research and Exposition 23 (2003) 211–216.
- 16. X. Yao, Weakly right duo rings, Pure Appl. Math. Sci. 21 (1985) 19–24.

- 17. R.Yue Chi Ming, On regular rings and Artinian rings, *Riv. Mat. Univ. Parma* 11 (1985) 101–109.
- 18. R. Yue Chi Ming, On annihilator ideals, IV, $\it Riv.~Mat.~Univ.~Parma~{\bf 13}~(1987)~19–27.$
- 19. R. Yue Chi Ming, On injectivity and P-injectivity, J. Math. Kyoto Univ. 27 (1987) 439–452.
- 20. R. Yue Chi Ming, On injectivity and $P\mbox{-injectivity(II)},$ Soochow J. Math. ${\bf 21}$ (1995) 401–412.
- 21. J. L. Zhang and J. Wu, Generalizations of principal injectivity, *Algebra Colloquium* **6(3)** (1999) 277–282.
- 22. Y. Q. Zhou, Rings in which certain right ideals are direct summands of annihilators, *J. Austral. Math. Soc.* **73** (2002) 335–346.