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Abstract. Minty variational inequalities have proven to characterize minimizers of

scalar optimization problems. Similar results have been proved in the vector case,

but it is shown that these are not equivalent to the scalar ones. Hence different (and

stronger) concepts of solution of a Minty inequality are presented and their relations

with efficiency and proper efficiency are investigated.

Since scalarization results arise throughout the research, a closing section is

devoted to this problem.

1. Introduction

In the scalar case several results are known which state relations between solu-
tions of a Stampacchia or Minty variational inequality and the underlying min-
imization problem. To summarize briefly, we shall recall that if x∗ ∈ K ⊆ Rn,
K convex and nonempty, is a solution of the primitive minimization problem:

P (f, K) min f(x), x ∈ K

for some f : Rn → R, differentiable on an open set containing K, then x∗ solves
the following Stampacchia type variational inequality:

V I(f ′, K) 〈f ′(x∗), y − x∗〉 ≥ 0, ∀y ∈ K

where f ′ is the gradient of f and 〈·, ·〉 is the inner product on Rn.
Conversely, if x∗ ∈ K solves the following Minty variational inequality:
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MV I(f ′, K) 〈f ′(y), y − x∗〉 ≥ 0, ∀y ∈ K,

then x∗ solves also P (f, K) (see e.g. [11]).
The relations between variational inequalities and optimization are even

deeper, as it has recently been shown (see [4]) that if x∗ solves MV I(f ′, K),
then f is monotone along rays starting at x∗ and, furthermore the existence of
solutions of MV I(f ′, K) can be related to well-posedness of P (f, K).

In the eighties, variational inequalities (of Stampacchia type and later of
Minty type as well) have been proposed in a vector valued formulation, in which
a matrix valued function F : Rn → Rl×n is involved. When F is the Jacobian
matrix of some vector valued function f : Rn → Rl, then Stampacchia and
Minty vector variational inequalities have been related to the vector minimiza-
tion problem:

V P (f, K) v − minK f(x), x ∈ K

with f : Rn → Rl. As it is known (see [9, 14, 19]) several notions have been
introduced to define solutions of V P (f, K). In [6] solutions of vector variational
inequalities are linked to weak efficiency and in [2, 7, 21] also to efficiency.

Sec. 2 summarizes these results and underlines some gaps between those
concerning Minty vector inequality and Minty scalar inequality. A different ap-
proach is presented to fill these gaps and Sec. 3 extends it to the characterization
of proper efficient solutions of V P (f, K). Finally Sec. 4 is devoted to some re-
marks on scalarization of a vector variational inequality.

2. Vector Variational Inequalities and Efficiency

We state first the main results in the scalar case, briefly recalled in the Intro-
duction. Throughout the paper K is a nonempty convex subset of Rn and we
will denote the inner product of two vectors λ and v ∈ Rn, both with 〈λ, v〉 and
with λ�v.

Proposition 1. Let f : Rn → R be differentiable on an open set containing the
subset K ⊆ R

n. If x∗ ∈ K solves P (f, K), then x∗ solves V I(f ′, K). Moreover,
if f is convex, the converse holds true.

Proposition 2. Let f : Rn → R be differentiable on an open set containing
the subset K ⊆ Rn. If x∗ ∈ K solves MV I(f ′, K), then x∗ solves P (f, K).
Moreover, if f is convex, the converse holds true.

Note that, in both propositions, the convexity of f is necessary only to prove
one of the implications.

In the following we consider a real vector space Rl endowed with the order
induced by a cone C, which is assumed to be pointed, closed, convex, and with
nonempty interior, in order to have the order reflexive, antisymmetric and tran-
sitive. For a set A ⊆ Rl its complement is denoted by Ac, its convex hull by
convA, the spanning cone by co A, the convex spanning cone by coneA, the
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closure by clA and the interior by intA. Moreover the polar cone of A is the
set A∗ :=

{
λ ∈ Rl | 〈λ, a〉 ≥ 0, ∀a ∈ A

}
and the strict polar is denoted by

Ao :=
{
λ ∈ Rl | 〈λ, a〉 > 0, ∀a ∈ A

}
. If C is a convex cone which satisfies

the previous assumptions, it is known that C0 = intC. Let M be any of the
cones Cc, C \ {0} and intC. The vector optimization problem (see e.g. [19])
corresponding to M , where f : Rn → Rl, is written as:

V P (f, K) v − minM f(x), x ∈ K.

This amounts to find a point x∗ ∈ K (called the optimal solution), such that
there is no y ∈ K with f(y) ∈ f(x∗) − M . The optimal solutions of the vector
problem corresponding to −Cc (respectively, C\{0} and intC) are called ideal
solutions (respectively, efficient solutions and weakly efficient solutions).

The former concepts of solutions have been strenghtened by several defini-
tions of proper efficiency (for a survey and some relations among them see [9]).
For any l × n matrix A and x ∈ Rn denote by 〈A, x〉l the vector of l inner
products 〈ai, x〉, where ai, i = 1, . . . , l are the rows of A.

Definition 1. Let f be differentiable and f ′ be its Jacobian matrix. A point
x∗ ∈ K is properly efficient in the sense of Hurwicz for f over K when:

cl cone
(
f(K) − f(x∗)

) ∩ (−C
)

=
{
0
}
.

In the sequel PEHu(f, K) denotes the sets properly efficient points in the sense
of Hurwicz of f over K.

It is classical the following result which states a geometrical characterization
of Hurwicz solutions:

Proposition 3. Let f : K ⊆ Rn → Rl be given. Then x∗ ∈ PEHu(f, K) if and
only if there exists λ ∈ int C∗ such that λ�f(y) − λ�f(x∗) ≥ 0 ∀y ∈ K.

A useful property, when dealing with both optimization problems and vari-
ational inequalities, is convexity. We recall the following basic definitions for
vector valued functions (see e.g. [14]):

Definition 2. The function f : K ⊆ Rn → Rl is said to be C–convex (respec-
tively int C–convex) when:

f (tx + (1 − t)y) − [
tf (x) + (1 − t) f (y)

] ∈ −C, ∀x, y ∈ K, ∀t ∈ [0, 1] .(
f (tx + (1 − t)y) − [

tf (x) + (1 − t) f (y)
] ∈ −intC, ∀x, y ∈ K, ∀t ∈ [0, 1]

)
If f is differentiable, then the previous definitions are equivalent to require that:

f(y) − f(x) − 〈∇f(x), y − x〉l ∈ C, ∀x, y ∈ K.(
f(y) − f(x) − 〈∇f(x), y − x〉l ∈ intC, ∀x, y ∈ K

)
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Definition 3. Let F : Rn → Rln be given. We say that F is C–monotone
(respectively intC–monotone) over K, when:

〈F (y) − F (x), y − x〉l ∈ C, ∀x, y ∈ K(〈F (y) − F (x), y − x〉l ∈ intC, ∀x, y ∈ K
)

It is known the following result (see e.g. [1]).

Proposition 4. Let f be differentiable and f ′ denote its Jacobian matrix. Then
f is C–convex (respectively int C–convex) if and only if f ′ is C–monotone (re-
spectively intC–monotone)

The vector valued formulations of V I(F, K) and MV I(F, K) have been in-
troduced in [6, 7], respectively. Here we make use of the following sets:

Ω(x) :=
{
u ∈ R

l |u = 〈F (x), y − x〉l, y ∈ K
}
,

Θ(x) :=
{
w ∈ R

l |w = 〈F (y), y − x〉l, y ∈ K
}
.

Definition 4.
i) A vector x∗ ∈ K is a solution of a strong vector variational inequality of

Stampacchia type when:

V V Is(F, K) Ω(x∗) ∩ (−C) = 0.
ii) A vector x∗ ∈ K is a solution of a weak vector variational inequality of

Stampacchia type when:

V V I(F, K) Ω(x∗) ∩ (−intC) = ∅.

Definition 5.
i) A vector x∗ ∈ K is a solution of a strong vector variational inequality of

Minty type when:
MV V Is(F, K) Θ(x∗) ∩ (−C) = 0.
ii) A vector x∗ ∈ K is a solution of a weak vector variational inequality of Minty

type when:
MV V I(F, K) Θ(x∗) ∩ (−intC) = ∅.

Clearly (see [8, 21]) any strong solution is a weak solution, but the converse
does not necessarily hold true.

The following results (see [6, 7, 12]) are vector extensions of Propositions 1
and 2.

Proposition 5. Let f : Rn → Rl be differentiable on an open set containing
K.
i) If x∗ is a weakly efficient solution of V P (f, K), then it solves also V V I(f ′, K).

ii) If f is C–convex and x∗ is a solution of V V I(f ′, K), then it is a weakly
efficient solution of V P (f, K).



Minty Vector Variational Inequality, Efficiency and Proper Efficiency 99

Proposition 6. Let C = Rl
+. If f is C–convex and differentiable on an open

set containing K, then x∗ ∈ K is a weakly efficient solution of V P (f, K) if and
only if it is a solution of MV V I(f ′, K).

Remark 1. One can easily check that when l = 1, Proposition 5 reduces to Propo-
sition 1. However in Proposition 6, the assumption of C-convexity is essential
both for the necessary and sufficient condition. This implies that Proposition 6
does not collapse onto Proposition 2, since there the convexity assumption was
required only to state the necessary condition.

Some refinements of the relations between the solutions of V V I(f ′, K) and
those of V P (f, K) are given in [3]. In this paper we focus on Minty vector
variational inequalities.

First we show that Proposition 6 cannot be improved, without changing
Definition 5.

Example 1. Let C = R
2
+, K :=

[− 2
π , 0

]
and consider a function f : R → R

2,

f(x) :=
[

f1(x)
f2(x)

]
, defined as follows. We set:

f1(x) =

{
x2 sin

1
x
− x2, x �= 0

0, x = 0

and observe that −2x2 ≤ f1(x) ≤ 0, ∀x ∈ K and f1 is differentiable on K;
its graph is plotted in Fig. 1. Function f1 has a countable number of local
minimizers and of local maximizers over K. The local maximizers of f1 are
the points yk = − 1

π
2 +2kπ , k = 0, 1, . . . and f1(yk) = 0. If we denote by xk,

k = 0, 1, . . . the local minimizers of f over K, we have yk < xk < yk+1, ∀k =
0, 1, . . . .

The function f2 is defined on K as:

f2(x) =

⎧⎪⎪⎨⎪⎪⎩
− f1(xk)

2

[
cos

(
πx

xk−yk
+ π(xk−2yk)

xk−yk

)
− 1

]
, x ∈ [yk, xk)

− f1(xk+1)
2

[
cos

(
πx

yk+1−xk
+ π(2yk+1−3xk)

yk+1−xk

)
− 1

]
, x ∈ [xk, yk+1)

0, x = 0

for k = 0, 1, . . . . It is easily seen that also f2 is differentiable on K and clearly
f is not C-convex.

The points x ∈ [− 2
π , x0] are (weakly) efficient, while the other points in K are

not efficient. In particular, x∗ = 0 is an ideal maximal point (i.e. f(x)−f(x∗) ∈
R2

−, ∀x ∈ K). Anyway, it is easy to see that any point of K is a solution of
MV V I(f ′, K).

To fill this gap we suggest (as in [8], but there for Stampacchia type inequal-
ities) to strengthen the definition of solution of a Minty type vector variational
inequality in the following way:
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Figure 1. f1(x) = −x2sin 1
x − x2.

Definition 6. A vector x∗ ∈ K is a (weak) solution of a convexified Minty
vector variational inequality when:

CMV V I(F, K) convΘ(x∗) ∩ (−intC
)

= ∅.

Remark 2.
i) Clearly, if l = 1 Definition 6 is equivalent to say that x∗ solves MV I(F, K).
ii) If l ≥ 2, it follows from the definitions that, if x∗ ∈ K solves CMV V I(F, K)

then it solves also MV V I(F, K). The converse is not always true, as it is
shown in the following example.

Example 2. Let l = 2, C = R2
+, F : R → R2, with F (x) =

[
1

1/(x − 1)

]
and

K = [−1/2, 1/2]. It is easy to check that x∗ = 0 solves MV V I(F, K), since
Ω(0)∩ (−intR2

+) = ∅. However it is easy to see that conv Θ(0)∩ (−intR2
+) �= ∅.

By means of this stronger variational inequality, the following result holds
true (see e.g. [5]).

Theorem 1. Let f : Rn → Rl be differentiable on an open set containing K and
x∗ ∈ K be a solution of CMV V I(f ′, K). Then x∗ is a weakly efficient solution
of V P (f, K).

The converse needs C-convexity of f to hold. This result has been proved in
[5], but here we give a shorter proof, based on a scalarization result.

Lemma 1. A vector x∗ ∈ K solves CMV V I(F, K) if and only if there exists a
nonzero vector λ ∈ C∗, such that x∗ is a solution of the following scalar Minty
variational inequality:
MV I(λ�F, K) 〈λ�F (y), y − x∗〉 ≥ 0, ∀y ∈ K.

Proof. Let x∗ ∈ K solve MV I(λ�F, K) for some nonzero λ ∈ C∗. We have
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〈λ, w〉 < 0, ∀w ∈ −intC, while 〈λ, w〉 ≥ 0, ∀w ∈ Θ(x∗). It follows easily that:

Θ(x∗) ⊆ conv Θ(x∗) ⊆ {w ∈ R
l|〈λ, w〉 ≥ 0},

while:
−intC ⊆ {w ∈ R

l|〈λ, w〉 < 0}
and so conv Θ(x∗) ∩ −intC = ∅.

Conversely, assume that x∗ ∈ K solves CMV V I(F, K), which means that
conv Θ(x∗) and −intC are two disjoint convex sets. By classical separation
arguments the thesis follows easily. �

Figure 2. f1(x) and f2(x)

Theorem 2. Let f be C-convex. If x∗ ∈ K is a weakly efficient solution of
V P (f, K), then x∗ solves CMV V I(f ′, K).

Proof. We claim that there exists a vector λ ∈ C∗ such that x∗ solves MV I(λ�F, K).
It is known that, under the C-convexity assumption, any weak efficient point

can be written as the solution of a suitable scalarized minimum problem, i.e.
there exist λ ∈ C∗ such that:

λ�f(x∗) ≤ λ�f(y), ∀y ∈ K.

Hence x∗ solves a (scalar) Stampacchia variational inequality defined by the
function (λ�f)′(x) = λ�f ′(x):

〈λ�f ′(x∗), y − x∗〉 ≥ 0, ∀y ∈ K

Since f is C-convex, λ�f : K ⊆ Rn → R is convex and hence λ�f ′ is a monotone
map, that is:

〈λ�f ′(y) − λ�f ′(x∗), y − x∗〉 ≥ 0, i.e.

〈λ�f ′(y), y − x∗〉 ≥ 〈λ�f ′(x∗), y − x∗〉 ≥ 0
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Finally Lemma [1] applies to get the thesis. �

Remark 3. When l = 1, Theorems 1 and 2 reduce to Proposition 2, as it should
be expected.

We recall that a map F : Rn → Rl×n is hemycontinuous at x∗ when its
restriction along every ray with origin at x∗ is continuous. When this property
holds at any point x∗, then we say that F is hemycontinuous.

The following result, proved in [5], allows to extend Proposition 6 to any
ordering cone C (pointed, closed, convex and with nonempty interior).

Theorem 3. Let F : Rn → Rl×n be hemycontinuous and C-monotone. Then,
any x∗ ∈ K which solves MV V I(F, K) is a solution of CMV V I(F, K).

Corollary 1. Let f : Rn → Rl be a C-convex function whose Jacobian is a
hemycontinuous map. Then the conclusions of Proposition 6 hold whatever the
cone C (closed, pointed, convex and with nonempty interior).

Remark 4. Observe that the hemycontinuity hypothesis on the Jacobian of f , is
not actually additional with respect to Proposition 6 since when f is Rl

+-convex
and differentiable, then its Jacobian is necessarily hemycontinuous [18].

3. Proper Efficiency

We now wish to present a solution concept of a Minty vector variational in-
equality, stronger then CMV V I(F, K), which is a sufficient condition for proper
efficiency of the primitive multiobjective problem.

Definition 7. Let F be a function from Rn to Rln. A vector x∗ ∈ K is a proper
solution of a convexified Minty vector variational inequality when:

CMV V IP (F, K) cl cone Θ(x∗) ∩ (−C) = {0}.

Clearly if x∗ solves CMV V IP (F, K), then x∗ solves also CMV V I(F, K),
since convΘ(x∗) ⊆ cl coneΘ(x∗). Hence it also follows that x∗ is a solution of
MV V I(F, K). The converse is not always true, as it can be easily seen:

Example 3. Let l = 2, K := [−1, 1] and F (x) :=
[

1
2x

]
. Clearly, x∗ = 0 satisfies

CMV V I(F, K), but, since cl coneΘ(0) = {(x, y) ∈ R2 | y ≥ 0}, the same x∗ is
not a solution of CMV V IP (F, K).

Remark 5. Note that the function F involved in the previous example can be

easily related to the primitive function f(x) =
[

x
x2

]
. It is classical that x∗ = 0

is an efficient solution of V P (f, K) but not properly efficient.
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The following result links the solutions of CMV V IP (F, K) to the properly
efficient solutions of V P (F, K).

Theorem 4. Let f : Rn → Rl be differentiable and f ′ = F be its Jacobian. If
x∗ solves CMV V IP (f ′, K), then x∗ ∈ PEHu(f, K).

Proof. Let x∗ be a solution of CMV V IP (f ′, K). By Taylor’s formula for vector
valued functions, we have that ∀y ∈ K:

f(y) − f(x∗) ∈ cl conv{〈f ′(ty + (1 − t)x∗), y − x∗〉l, t ∈ (0, 1)}.
Let Φy(x∗) := cl conv{〈f ′(ty+(1−t)x∗), y−x∗〉l, t ∈ (0, 1)}, by Charatheodory

Theorem, γ ∈ Φy(x∗) if and only if there exist sequences
{
tki

}
k≥0

∈ (0, 1),

i = 1, . . . , l + 1 and
{
λk

i

}
k≥0

∈ [0, 1], i, . . . , l + 1, with
∑l+1

i=1 λk
i = 1, ∀k, such

that:

γ = lim
k→+∞

l+1∑
i=1

λk
i 〈f ′(tki y + (1 − tki )x∗), y − x∗〉l.

It easily follows that:

γ = lim
k→+∞

l+1∑
i=1

λk
i

tki
〈f ′(tki y + (1 − tki )x∗), tki (y − x∗)〉l

= lim
k→+∞

l+1∑
i=1

λk
i

tki
〈f ′(ξk

i ), ξk
i − x∗〉l,

where ξk
i = tki y + (1 − tki )x∗ ∈ K.

We claim that γ ∈ clcone Θ(x∗). In fact, for each i and k we have 1
tk
i

〈f ′(ξk
i ), ξk

i −
x∗〉l ∈ coΘ(x∗) and hence

∑l+1
i=1

λk
i

tk
i

〈f ′(ξk
i ), ξk

i − x∗〉l ∈ cone Θ(x∗), ∀k, from
which the assertion follows. Therefore we have shown:

f(y) − f(x∗) ∈ cl cone Θ(x∗), ∀y ∈ K.

If we denote by f(K) the image of K through the function f it follows that:

cl cone
{
f(K) − f(x∗)

} ⊆ cl cone Θ(x∗)

and hence clcone
{
f(K) − f(x∗)

} ∩ (−C
)

=
{
0
}
. This completes the proof. �

The converse of the previous theorem is not true without additional assump-
tions.

Example 4. Let f : R → R2 be defined as f(x) =
[

x
−xex

]
. It is clear that

f is differentiable over K := [−1, 1] and f ′(x) =
[

1
−ex(1 + x)

]
. It is easy to

show that x∗ = 0 is Hurwicz properly efficient for f over K, but x∗ is not a
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solution of CMV V IP (f ′, K). This is easily seen, since, for y = −1 we have

〈f ′(y), y − x∗〉l =
[−1

0

]
∈ −C and this point is in cl cone Θ(x∗).

Proposition 7. Let f : Rn → Rln be differentiable and C–convex. If x∗ ∈
PEHu(f, K) then x∗ solves CMV V IP (f ′, K).

Proof. By assumption (recall Proposition 3), there exists λ̂ ∈ intC∗ such that
λ̂�f(y) − λ̂�f(x∗) ≥ 0, ∀y ∈ K. Moreover, being f C-convex, it easily follows
that λ̂�f is a real valued convex function and therefore x∗ solves MV I(λ̂�f ′, K),
that is 〈λ̂�f ′(y), y − x∗〉 ≥ 0, ∀y ∈ K. By Caratheodory Theorem, each θ ∈
cl coneΘ(x∗) can be expressed as:

θ = lim
k→+∞

l+1∑
i=1

βk
i δk

i 〈f ′(yk
i ), yk

i − x∗〉,

for sequences {yk
i }k≥0 ∈ K, {δk

i }k≥0, and {βk
i }k≥0 ∈ [0, 1], i = 1, . . . , l+1, with

δk
i ≥ 0 and

∑l+1
i=1 βk

i = 1, ∀k.

Hence, it follows easily that it holds:

λ̂�θ ≥ 0, ∀θ ∈ cl cone Θ(x∗).

Now assume, by contradiction, that x∗ does not solve CMV V IP (f ′, K),
that is there exists a vector θ̄ ∈ cl cone Θ(x∗) ∩ −C \ {0}. But this implies that
∀λ ∈ intC∗ we have:

λ�θ < 0

which is the absurdo. �

Remark 6. It is classical that the assumption of C-convexity of the objective
function implies that Hurwicz proper efficiency is equivalent to several other
notions of proper efficiency (see e.g. [9]). Therefore the previous Proposition
could be stated also with other proper efficient solutions in the hypothesis.

4. Scalarization: Some Remarks

In the previous sections, we have already used some scalarization results (see
Lemma 1). When dealing with vector valued problems, scalarization is a classical
tool, which allows to reduce the original problem to a family of scalar ones.

Several scalarization techniques are known and applied in vector optimization
(see e.g. [14, 19]). The most common is linear scalarization, which consists in
summing up the l criteria of the vector problem, averaged by nonnegative weights
and it has been already used in the previous results. The application of this
technique to vector variational inequalities of Stampacchia type is known (see
e.g. [3, 13, 16, 22]).
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Definition 8. Let F : Rn → Rln be given. A vector x∗ ∈ K is a scalarized
solution of a Stampacchia type vector variational inequality when there exists
λ ∈ C∗ (or λ ∈ int C∗) such that:
V I(λ�F, K) 〈λ�F (x∗), y − x∗〉 ≥ 0, ∀y ∈ K

Theorem 5. [22] The following implications hold true:
i) if x∗ solves V I(λ�F, K) for some λ ∈ int C∗, then it solves also V V Is(F, K);
ii) if x∗ solves V I(λ�F, K) for some λ ∈ C∗, then it solves also V V I(F, K);
iii) if x∗ solves V V I(F, K), then there exists λ ∈ C∗ such that x∗ is a solution

of V I(λ�F, K).

In general, implication i) is not reversible as we can prove by an example.

Example 5. Let K:=
{
(x1, x2) ∈ R

2 |x1≥0 , x2 ≥ 0 , x2 ≤ −x2
1 + 2x1

}
, F (x1, x2)

=
[

x1 − 2 x2 − 1
0 x2 − 2

]
and assume the Pareto order (i.e. C := R2

+). Therefore:

Ω(x) :=
{

w ∈ R
l |w =

[
(x1 − 2)(y1 − x1) + (x2 − 1)(y2 − x2)

(x2 − 2)(y2 − x2)

]
, y ∈ K

}
For x∗ = (1, 1) we have Ω(x∗) ∩ (−C

)
=

{
0
}
.

Let’s assume x∗ solves V I(λ�F, K), for some λ∗ =
[

λ∗
1

λ∗
2

]
, i.e.:

λ∗
1(1 − y1) + λ∗

2(1 − y2) ≥ 0, ∀y ∈ K, (1)

where λ∗
i > 0, i = 1, 2. If we put γ = λ∗

1
λ∗
2

> 0 and evaluate (1) along the portion
of δK (the boundary of K) defined by the equation y2 = −y2

1 + 2y1, we get:

y2
1 − (2 + γ)y1 + 1 + γ ≥ 0, ∀y1 ∈ [0, 2].

This inequality admits solutions in the intervals y1 ≤ 1 and y1 ≥ 1 + γ. Since
γ > 0, there exists y∗

1 ∈ (1, 1 + γ) which does not solve (1) and therefore a
contradiction.

Now we focus on the scalarization problem for Minty type vector variational
inequalities. We have already presented Lemma 1, which shows that solutions of
CMV V I(F, K) coincide with the solutions of scalar Minty variational inequali-
ties. Here we remark that Example 2 shows as well a solution of MV V I(F, K)
which does not admit a scalar representation by means of λ ∈ C∗ (while points ii)
and iii) of Theorem 5 state a different result for Stampacchia type inequalities).
This is another lack of Definition 5which has been filled by CMMV I(F, K).

Also solutions of CMV V IP (F, K) can be written in terms of scalar Minty
variational inequality. The proof of the next lemma follows along the lines of
Proposition 7 and is omitted.

Lemma 2. Let λ ∈ int C∗. Any x∗ ∈ K which solves the scalar variational
inequality MV I(λ�F, K) is such that x∗ solves CMV V IP (F, K).

The converse of the previous Lemma hods true too.
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Lemma 3. Let x∗ ∈ CMV V IP (F, K). Then there exists λ ∈ intC∗ such that
x∗ solves MV I(λ�F, K).

Proof. The closed convex cone clconeΘ(x∗) has a compact base A. Hence we
can find a vector λ ∈ C∗ such that 〈λ, v〉 ≤ 0, ∀v ∈ −C and 〈λ, a〉 > 0, ∀a ∈ A.
Since A ∩ (−C) = ∅, we can choose λ ∈ intC∗. �

Therefore we can present an alternative and quicker proof of Theorem 4 and
Proposition 7, as we did for Theorem 1, by means of scalarization:

Theorem 6. Let f : Rn → Rl be differentiable and f ′ = F be its Jacobian. If
x∗ solves CMV V IP (f ′, K), then x∗ ∈ PEHu(f, K). The converse holds true
under C-convexity of f .

Proof. Assume x∗ solves CMV V IP (f ′, K). Then, by Lemma 2, we know ∃λ ∈
intC∗ such that x∗ solves MV I(λ�f ′, K). By Proposition 2, the latter means x∗

is a minimizer for λ�f over K, i.e. it is proper efficient in the sense of Hurwicz.
Conversely, convexity is necessary to prove that minimizers of λ�f over K,

for some λ ∈ intC∗, are solutions of MV I(λ�f ′, K), and hence of CMV V IP

(f ′, K). �

The following result allows to characterize efficient solutions by means of a
scalar Minty variational inequality:

Theorem 7. Let f : Rn → Rl be differentiable on an open subset containing
K ⊆ Rn and x∗ ∈ K be a solution of the following strict Minty variational
inequality (see [7]):

〈λ�f ′(y), y − x∗〉 > 0 ∀y ∈ K, y �= x∗, (2)

for some λ ∈ C∗. Then x∗ is an efficient solution of V P (f, K).

Proof. Since x∗ is a solution of (2), then it is the unique minimizer of λ�f over
K (see [5]). By contradiction, assume that x∗ is not efficient. Hence there exists
a vector x ∈ K such that:

f(x) − f(x∗) ∈ −C,

that is:
λ�(

f(x) − f(x∗)
) ≤ 0.

Hence λ�f(x) = λ�f(x∗) which is a contradiction. �
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