L_{p}-Convergence of Some Weighted Dependent Sequences of Random Variables

S. K. Acharya ${ }^{1}$ and C. K. Tripathy ${ }^{2}$
${ }^{1}$ P. G. Department of Statistics, Sambalpur University, Jyoti Vihar, Sambalpur 768019, Orissa, India
${ }^{2}$ Lecturer in Statistics, Govt. College, Bhawanipatna, Bhawanipatna, Orissa, India

Received February 21, 2002

Abstract

The paper is concerned with the L_{p}-convergence of some weighted dependent sequences random variables.

1. Introduction

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables and let $S_{n}=X_{1}+X_{2}+\cdots+$ X_{n}. Pyke and Root (1968) showed that if $\left\{X_{n}, n \geq 1\right\}$ is an independent and identically distributed (i.i.d) sequence of random variables and $E\left\lfloor\left|X_{1}\right|^{p}\right\rfloor<\infty$ for some $0<p<2$, then $n^{-1} E\left\lfloor\left|S_{n}-a_{n}\right|^{p}\right\rfloor \rightarrow 0$ as $n \rightarrow \infty$ where $a_{n}=0$ for $0<$ $p<1$ and $a_{n}=n E\left[X_{1}\right]$ for $1 \leq p<2$. Considering $\left\{X_{n}, n \geq 1\right\}$ to be dominated in distribution by a random variable X such that $E\left\lfloor|X|^{p}\right\rfloor<\infty$ and taking $a_{n}=\sum_{k=1}^{n} E\left[X_{k} \mid X_{1}, X_{2}, \ldots, X_{k-1}\right]$, Chatterjee (1969) proved the above result for $1 \leq p<2$. Chow (1971) strengthened this result by replacing the domination condition by the condition of Uniform Integrability (UI) of $\left\{\left|X_{n}\right|^{p}, n \geq 1\right\}$.

Chandra (1969) introduced a new condition called Cesaro Uniform Integrability (CUI) to establish L_{1}-convergence in the weak law of large numbers. This is weaker than the usual UI condition and yet was shown to be sufficient enough to derive the result.

Bose and Chandra (1992) proved L_{p}-convergence $(0<p<2)$ for some pair-wise independent and dependent sequences under the condition of Cesaro uniform integrability. In this paper we establish L_{p}-convergence $(0<p<2)$
for some weighted dependent sequences of random variables under more general condition. The different sequences under consideration include martingale difference, *-mixing, mixingale difference and martingale transforms.

2. Definition and Preliminaries

This section is devoted to the background materials which have been used in this paper. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables defined on a probability space (Ω, \Im, P).

Definition 1. Given a sequence of random variables $\left\{X_{k}, k \geq 1\right\}$, let $\mathcal{G}_{i j}=$ $\mathcal{B}\left\{X_{k}, i \leq k \leq j\right\}$ for all $1 \leq i \leq j<\infty$. $\left\{X_{k}, k \geq 1\right\}$ is said to be $*$-mixing if there exist an integer M and a function φ for which $\varphi(m) \rightarrow 0$ as $m \rightarrow \infty$ and $A \in \mathcal{G}_{1 n}, \mathcal{B} \in \mathcal{G}_{m+n, m+n}$ implies

$$
|P(A \cap B)-P(A) P(B)| \leq \varphi(m) P(A) P(B)
$$

for all $m \geq M$ and all $n \geq 1$.
Definition 2. Let $\left\{X_{k}, \Im_{k}, k \geq 1\right\}$ be a martingale difference sequence and ν_{k} be \Im_{k-1}-measurable for each $k \geq 1$. Then $\left\{T_{n}, n \geq 1\right\}$ defined by $T_{n}=\sum_{k=1}^{n} \nu_{k} X_{k}$ is called a martingale transform and $\left\{\nu_{k}, k \geq 1\right\}$ is called the transforming sequence.

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables on (Ω, \Im, P) such that $E\left(\left|X_{n}\right|^{p}\right)<\infty$ for some $p \geq 1$ and each $n \geq 1$ and $\left\{\Im_{n}: n=0, \pm 1, \pm 2, \ldots\right\}$ be an increasing sequence of sub-sigma fields of \Im.

Definition 3. The pair $\left\{\left(X_{n}, n \geq 1\right), \Im_{n}: n=0, \pm 1, \pm 2, \ldots\right\}$ is called an $L_{p^{-}}$ mixingale difference sequence if there exist two sequences of constants $\left\{c_{n}, n \geq\right.$ $1\}$ and $\left\{\psi_{m}, m \geq 0\right\}$ such that $\psi_{m} \rightarrow 0$ as $m \rightarrow \infty$ and
(a) $\left\|E\left[X_{n} \mid \Im_{n-m}\right]\right\|_{p} \leq c_{n} \psi_{m}$,
(b) $\left\|X_{n}-E\left[X_{n} \mid \Im_{n+m}\right]\right\|_{p} \leq c_{n} \psi_{m+1}$,
where $\|X\|_{p}=\left[E|X|^{p}\right]^{1 / p}$ for $p>0$.
We assume that the following conditions hold.
(A1) Let $\left(a_{n k}, k=1,2, \ldots, n\right)$ represent a double sequence of real numbers such that
(i) $a_{n k} \rightarrow 0$ as $n \rightarrow \infty$ for every k,
(ii) for $M>0$, a constant, $\sum_{k=1}^{n}\left|a_{n k}\right|^{r} \leq M<\infty$ for all n and $0<r \leq 1$.
(A2) For $0<p<2$,

$$
\limsup _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{n k}\right|^{p} E\left[\left|X_{k}\right|^{p} I_{\left[\left|X_{k}\right|>a(n)\right]}\right]=0
$$

where $a(n)$ is a function of n such that $a(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Remark 1. If $\left\{X_{k}\right\}$ is uniformly integrable then it satisfies Condition (A2).

Remark 2. Condition (A2) implies that for $0<p<2$,

$$
\limsup _{n \rightarrow \infty}[a(n)]^{p}\left|a_{n k}\right|^{p} P\left[\left|X_{k}\right|>a(n)\right]=0
$$

Lemma 1. Let $\left\{X_{n}, n \geq 1\right\}$ and $\left\{Y_{n}, n \geq 1\right\}$ be two sequences of random variables on (Ω, \Im, P). Then the following results hold.
(i) If $\left\{\left|X_{n}\right|, n \geq 1\right\}$ satisfies condition (A2) and $\left|Y_{n}\right| \leq\left|X_{n}\right|$ a.s. then, $\left\{\left|Y_{n}\right|\right.$, $n \geq 1\}$ satisfies condition (A2).
(ii) If for some $p>0$, $\left\{X_{n}, n \geq 1\right\}$ and $\left\{Y_{n}, n \geq 1\right\}$ satisfy condition (A2), then so also $\left\{\left|X_{n}+Y_{n}\right|^{p}, n \geq 1\right\}$.
(iii) Let $\left\{\Im_{n}, n \geq 1\right\}$ be a sequence of sub-sigma fields of \Im and $p>0$. If $\left\{\left|X_{n}\right|, n \geq 1\right\}$ satisfies condition (A2), then so also $\left\{Y_{n}=E\left[\left|X_{n}\right|^{p} \mid \Im_{n-1}\right]\right.$, $n>1\}$.

Proof.
(i) is trivial. Again

$$
E\left\lfloor\left|X_{k}+Y_{k}\right|^{p} I_{\left[\left|X_{k}+Y_{k}\right|>a(n)\right]}\right\rfloor \leq 2^{p}\left\{E\left\lfloor\left|X_{k}\right|^{p} I_{\left[\left|X_{k}\right|>a(n)\right]}\right\rfloor+E\left\lfloor\left|Y_{k}\right|^{p} I_{\left[\left|Y_{k}\right|>a(n)\right]}\right\rfloor\right\}
$$

and $\left|X_{k}\right|^{p},\left|Y_{k}\right|^{p}$ satisfy (A2) for some $0<p<2$ and so (ii) is also trivial. To prove (iii), we have

$$
\begin{aligned}
E\left\lfloor\left|Y_{n}\right| I_{\left[\left|Y_{n}\right|>a(n)\right]}\right\rfloor & =E\left[\left|E\left(\left|X_{n}\right|^{p} \mid \Im_{n-1}\right)\right| I_{\left[\left|Y_{n}\right|>a(n)\right]}\right] \\
& =\int_{\left[\left|Y_{n}\right|>a(n)\right]} E\left(\left|X_{n}\right|^{p} \mid \Im_{n-1}\right) d P \leq \int_{\left[\left|X_{n}\right|>a(n)\right]} E\left(\left|X_{n}\right|^{p} \mid \Im_{n-1}\right) d P \\
& =\int_{\left[\left|X_{n}\right|>a(n)\right]}\left|X_{n}\right|^{p} d P=E\left\lfloor\left|X_{n}\right|^{p} I_{\left[\left|X_{n}\right|>a(n)\right]}\right]
\end{aligned}
$$

Hence if $\left|X_{n}\right|^{p}$ satisfies (A2), then so also $E\left(\left|X_{n}\right|^{p} \mid \Im_{n-1}\right)$.
Lemma 2. If $f_{n}: \Re \rightarrow \Re^{+}$where $0 \leq f_{n} \leq 1$ for all $n \geq 1$ and $\sup _{n \in N}\left[x f_{n}(x)\right] \rightarrow$ 0 as $x \rightarrow \infty$ then,

$$
\sup _{n \in N}\left[\frac{1}{y} \int_{0}^{y} x f_{n}(x) d x\right] \rightarrow 0 \quad \text { as } \quad y \rightarrow \infty
$$

Proof. Put $f^{*}(x)=\sup _{n \in N}\left[x f_{n}(x)\right]$. Then

$$
\sup _{n \in N}\left[\frac{1}{y} \int_{0}^{n \epsilon_{y} N} x f_{n}(x) d x\right] \leq \frac{1}{y} \int_{0}^{y} f^{*}(x) d x \text { for all } y>0
$$

Thus it is sufficient to show that $\frac{1}{y} \int_{0}^{y} f^{*}(x) d x \rightarrow 0$ as $y \rightarrow \infty$.
Since $f^{*}(x) \rightarrow 0$ as $x \rightarrow \infty$, for any fixed $\varepsilon>0$ there exists a $x_{0}(\varepsilon)>0$ such that if $x>x_{0}(\varepsilon)$ and $y>x_{0}(\varepsilon)$, then $0 \leq f^{*}(x)<\varepsilon$. Again

$$
\frac{1}{y} \int_{0}^{x_{0}(\varepsilon)} f^{*}(x) d x \rightarrow 0 \quad \text { as } \quad y \rightarrow \infty
$$

and

$$
\frac{1}{y} \int_{x_{0}(\varepsilon)}^{y} f^{*}(x) d x \leq \frac{\varepsilon}{y} \int_{x_{0}(\varepsilon)}^{y} d x<\varepsilon \quad \text { as } \quad y \rightarrow \infty
$$

The result follows, since

$$
\frac{1}{y} \int_{0}^{y} f^{*}(x) d x=\left[\frac{1}{y} \int_{0}^{x_{0}(\varepsilon)} f^{*}(x) d x+\frac{1}{y} \int_{x_{0}(\varepsilon)}^{y} f^{*}(x) d x\right]
$$

3. L_{p}-Convergence of Martingale Difference Sequence

Theorem 1. Let $0<p<1$ and $\left\{X_{n}, n \geq 1\right\}$ be a martingale difference sequence satisfying condition (A2). Then $E\left\lfloor\left|S_{n}\right|^{p}\right\rfloor \rightarrow 0$ as $n \rightarrow \infty$ where $S_{n}=\sum_{k=1}^{n} a_{n k} X_{k}$.
Proof. Let $Y_{n k}=a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-r}\right)}$ and $Z_{n k}=a_{n k} X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-r}\right)}$ for $n \geq 1$ and $0<r<p$. So

$$
\begin{align*}
E\left[\left|S_{n}\right|^{p}\right] & =E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k}\right|^{p}\right]=E\left[\left|\sum_{k=1}^{n}\left(Y_{n k}+Z_{n k}\right)\right|^{p}\right] \\
& \leq E\left[\left|\sum_{k=1}^{n} Y_{n k}\right|^{p}\right]+E\left[\left|\sum_{k=1}^{n} Z_{n k}\right|^{p}\right] \tag{3.1}
\end{align*}
$$

Now

$$
\begin{align*}
E\left[\left|\sum_{k=1}^{n} Y_{n k}\right|^{p}\right] & =E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|-r\right)}\right|^{p}\right] \\
& \leq \sum_{k=1}^{n}\left|a_{n k}\right|^{p} E\left[\left|X_{k}\right|^{p} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-r}\right)}\right] \\
& =p \sum_{k=1}^{n}\left|a_{n k}\right|^{p} \int_{\left(0<x \leq\left|a_{n k}\right|^{-r}\right)} x^{p-1} P\left(\left|X_{k}\right|>x\right) d x \\
& \leq\left. p \sum_{k=1}^{n}\left|a_{n k}\right|^{p} \int_{\left(0<x \leq\left|a_{n k}\right|^{-r}\right)}\left|a_{n k}\right|\right|^{r(1-p)} P\left(\left|X_{k}\right|>x\right) d x \\
& <p \varepsilon \sum_{k=1}^{n}\left|a_{n k}\right|^{p} \quad(\text { by Lemma 2) } \\
& \leq p \varepsilon M \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} E\left[\left|\sum_{k=1}^{n} Z_{n k}\right|^{p}\right] \leq \limsup _{n \rightarrow \infty} \sum_{k=1}^{n} E\left[\left|Z_{n k}\right|^{p}\right] \\
= & \limsup _{n \rightarrow \infty} \sum_{k=1}^{n} E\left[\left|a_{n k} X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-r}\right)}\right|^{p}\right] \\
= & 0 \quad \text { (by condition (A2)) } \tag{3.3}
\end{align*}
$$

Hence the result follows from relations (3.2) and (3.3).
Theorem 2. Let $\left\{X_{n}, n \geq 1\right\}$ be a martingale difference sequence satisfying condition (A2). Then $E\left[\left|S_{n}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$, where $S_{n}=\sum_{k=1}^{n} a_{n k} X_{k}$.

Proof. Put $X_{n k}=a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|-(1 / 2)\right)}$ and $Z_{n}=\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]$.
Now

$$
\begin{aligned}
E\left(Z_{n}\right)^{2} & =E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]\right)^{2}=E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right) \\
& +2 \sum_{k<j=1}^{n} E\left\{\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]\left[X_{n j}-E\left(X_{n j} \mid \Im_{j-1}\right)\right]\right\} \\
& =E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right) \\
& +2 \sum_{k<j=1}^{n} E\left\{\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]\left[X_{n j}-E\left(X_{n j} \mid \Im_{j-1}\right)\right] \mid \Im_{k}\right\} \\
& =E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right) \\
& +2 \sum_{k<j=1}^{n} E\left[\left\{X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right\} E\left\{\left[X_{n j}-E\left(X_{n j} \mid \Im_{j-1}\right)\right] \mid \Im_{k}\right\}\right] \\
& =E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right) \\
& +2 \sum_{k<j=1}^{n} E\left[\left\{X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right\}\left\{E\left[X_{n j} \mid \Im_{k}\right]-E\left[E\left(X_{n j} \mid \Im_{j-1}\right) \mid \Im_{k}\right]\right\}\right] \\
& =E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right) \\
& +2 \sum_{k<j=1}^{n} E\left[\left\{X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right\}\left\{E\left[X_{n j} \mid \Im_{k}\right]-E\left[X_{n j} \mid \Im_{k}\right]\right\}\right] \\
& =E\left(\sum_{k=1}^{n}\left[X_{n k}-E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{n}\left\{E\left[X_{n k}^{2}\right]-E\left[E\left(X_{n k} \mid \Im_{k-1}\right)\right]^{2}\right\} \\
& \leq \sum_{k=1}^{n} E\left[X_{n k}^{2}\right] \\
& =\sum_{k=1}^{n} E\left[a_{n k}^{2} X_{k}^{2} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)}\right] \\
& \leq \sum_{k=1}^{n}\left[\left|a_{n k}\right| \frac{1}{\left|a_{n k}\right|^{-1 / 2}} \int_{0<x<\left|a_{n k}\right|^{-1 / 2}}\left|a_{n k}\right|^{1 / 2} x P\left[\left|X_{k}\right|>x\right] d x\right] \\
& <\varepsilon M
\end{aligned}
$$

(by Remark 2 and Lemma 2).
So

$$
\begin{equation*}
E\left[\left|Z_{n}\right|\right] \leq E^{1 / 2}\left[\left|Z_{n}\right|^{2}\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Again $E\left(X_{k} \mid \Im_{k-1}\right)=0$ as X_{n} is a martingale difference sequence. So

$$
\begin{align*}
& E\left[X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right]+E\left[X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right]=0 \\
\Rightarrow & E\left[X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right]=-E\left[X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right] . \tag{3.5}
\end{align*}
$$

Now

$$
\begin{aligned}
& E\left|\sum_{k=1}^{n} E\left(X_{n k} \mid \Im_{k-1}\right)\right|=E\left|\sum_{k=1}^{n} E\left(a_{n k} X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right)\right| \\
\leq & \sum_{k=1}^{n} E\left(\left|a_{n k}\right|\left|E\left[X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right]\right|\right) \\
\leq & \sum_{k=1}^{n} E\left(\left|a_{n k}\right|\left|E\left[X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right]\right|\right) \quad \text { (by Relation (3.5)) } \\
\leq & \sum_{k=1}^{n}\left|a_{n k}\right| E\left[X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)} \mid \Im_{k-1}\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty \quad \quad \text { (by condition (A2)). }
\end{aligned}
$$

Hence $\sum_{k=1}^{n} E\left(X_{n k} \mid \Im_{k-1}\right) \rightarrow 0$ in L_{1} as $n \rightarrow \infty$. Also from relation (3.4), we have $E\left|Z_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. i.e.

$$
E\left[\left|\sum_{k=1}^{n} X_{n k}\right|\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

i.e.

$$
\begin{equation*}
E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)}\right|\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Thus

$$
\begin{aligned}
E\left(\left|S_{n}\right|\right)= & E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k}\right|\right] \\
= & E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)}+\sum_{k=1}^{n} a_{n k} X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)}\right|\right] \\
\leq & E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)}\right|\right]+\sum_{k=1}^{n} a_{n k} E\left[\left|X_{k}\right| I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)}\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty \quad(\text { using condition (A2) and realtion }(3.6)) .
\end{aligned}
$$

Theorem 3. Let $1<p<2$ and $\left\{X_{n}, n \geq 1\right\}$ be a martingale difference sequence satisfying condition (A2). Then $E\left\lfloor\left|S_{n}\right|^{p}\right\rfloor \rightarrow 0$ as $n \rightarrow \infty$, where $S_{n}=\sum_{k=1}^{n} a_{n k} X_{k}$.

Proof. Using Burkholder's inequality (cf. [7, Th. 2.10]), we have

$$
\begin{aligned}
E\left[\left|S_{n}\right|^{p}\right] & =E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k}\right|^{p}\right] \\
& \leq c E\left[\left|\sum_{k=1}^{n} a_{n k}^{2} X_{k}^{2}\right|^{p / 2}\right] \text { (where } c \text { denotes a generic constant) } \\
& =c E\left[\left|\sum_{k=1}^{n} Y_{n k}^{2}+\sum_{k=1}^{n} Z_{n k}^{2}\right|^{p / 2}\right]
\end{aligned}
$$

where
$Y_{n k}=a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)} \quad$ and $\quad Z_{n k}=a_{n k} X_{k} I_{\left(\left|X_{k}\right|>\left|a_{n k}\right|^{-1 / 2}\right)} \quad$ for $n \geq 1$.
So

$$
\begin{align*}
E\left[\left|S_{n}\right|^{p}\right] & \leq c E\left[\left|\sum_{k=1}^{n} Y_{n k}^{2}\right|^{p / 2}\right]+c E\left[\left|\sum_{k=1}^{n} Z_{n k}^{2}\right|^{p / 2}\right] \\
& \leq c E\left[\left|\sum_{k=1}^{n} Y_{n k}^{2}\right|^{p}\right]+c E\left[\left|\sum_{k=1}^{n} Z_{n k}^{2}\right|^{p}\right] \tag{3.7}
\end{align*}
$$

Now

$$
\begin{aligned}
E\left[\sum_{k=1}^{n}\left|Y_{n k}\right|^{p}\right] & =E\left[\sum_{k=1}^{n}\left|a_{n k} X_{k} I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)}\right|^{p}\right] \\
& =\sum_{k=1}^{n}\left|a_{n k}\right|^{p} E\left[\left|X_{k}\right|^{p}\right] I_{\left(\left|X_{k}\right| \leq\left|a_{n k}\right|^{-1 / 2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =p \sum_{k=1}^{n}\left|a_{n k}\right|^{p} \int_{\left(0<x \leq\left|a_{n k}\right|^{-1 / 2}\right)} P\left[\left|X_{k}\right|>x\right] d x \\
& =p \sum_{k=1}^{n}\left|a_{n k}\right|^{1 / 2}\left[\frac{1}{\left|a_{n k}\right|^{-1 / 2}}\right] \int_{\left(0<x \leq\left|a_{n k}\right|^{-1 / 2}\right)}\left|a_{n k}\right|^{p-1} x^{p-1} P\left[\left|X_{k}\right|>x\right] d x \\
& <p M \varepsilon \quad \text { (using Remark 2 and Lemma 2). }
\end{aligned}
$$

Again $E\left[\sum_{k=1}^{n}\left|Z_{n k}\right|^{p}\right] \rightarrow 0$ as $n \rightarrow \infty$ by condition (A2).
Hence the result follows from relation (3.7).
Theorem 4. $\left\{X_{k}, \Im_{k}, k \geq 1\right\}$ be a martingale difference sequence having transforming sequence $\left\{\nu_{k}, k \geq 1\right\}$ with sup $\left|\nu_{k}\right|<\infty$, and X_{k} satisfying the condition (A2). Then for $S_{n}^{\prime}=\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k}$ and $0<p<2, E\left[\left|S_{n}^{\prime}\right|^{p}\right] \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Fix $L>0$. Let

$$
t=\left\{\begin{array}{l}
\inf \left\{n \geq 1: \sum_{k=1}^{n} X_{k} \geq L\right\} \\
\infty, \quad \text { if no such } n \text { exists }
\end{array}\right.
$$

and $\quad R_{k}=\nu_{k} X_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}$ for $k \geq 1$. Here $\nu_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}$ is $\Im_{k-1^{-}}$ measurable.

Hence

$$
E\left[R_{k} \mid \Im_{k-1}\right]=E\left\lfloor\nu_{k} X_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)} \mid \Im_{k-1}\right\rfloor=\nu_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)} E\left[X_{k} \mid \Im_{k-1}\right]=0
$$

(since X_{k} is a martingale difference sequence).
So, $\left\{R_{k}, k \geq 1\right\}$ is a martingale difference sequence.
But since $\left|R_{k}\right|=\left|\nu_{k} X_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}\right| \leq L\left|X_{k} I_{(t \geq k)}\right| \leq L\left|X_{k}\right|$ and X_{k} satisfies condition (A2), $\left|R_{k}\right|$ also satisfies condition (A2) by Lemma 1.
Hence

$$
\begin{equation*}
E\left[\left|\sum_{k=1}^{n} a_{n k} R_{k}\right|^{p}\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { for } \quad 0<p<2 \tag{3.8}
\end{equation*}
$$

(by Theorems 1, 2 and 3.), and

$$
\begin{equation*}
E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k}\right|^{p}\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.9}
\end{equation*}
$$

(by Theorems 1, 2 and 3.).
Since $\sup \left|\nu_{k}\right|<\infty$, for $0<p \leq 1$ we have

$$
\begin{aligned}
E\left[\left|S_{n}^{\prime}\right|^{p}\right] & =E\left[\left|\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k}\right|^{p}\right] \\
& \leq E\left[\left|\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}\right|^{p}\right]+E\left[\left|\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k} I_{(t<k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}\right|^{p}\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq E\left[\left|\sum_{k=1}^{n} a_{n k} R_{k}\right|^{p}\right]+L^{p} E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k} I_{(t<k)}\right|^{p}\right] \\
& \leq E\left[\left|\sum_{k=1}^{n} a_{n k} R_{k}\right|^{p}\right]+L^{p} E\left[\left|\sum_{k=1}^{n} a_{n k} X_{k}\right|^{p}\right] \\
& \quad \rightarrow 0 \text { as } n \rightarrow \infty \text { (by relations (3.8) and (3.9)). } \tag{3.10}
\end{align*}
$$

Now for $1<p<2$, we have

$$
\begin{align*}
E\left[\left|S_{n}^{\prime}\right|^{p}\right]= & E\left[\left|\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k}\right|^{p}\right] \\
\leq & \left\{E^{1 / p}\left[\left|\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k} I_{(t \geq k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}\right|^{p}\right]\right. \\
+ & \left.E^{1 / p}\left[\left|\sum_{k=1}^{n} a_{n k} \nu_{k} X_{k} I_{(t<k)} I_{\left(\left|\nu_{k}\right| \leq L\right)}\right|^{p}\right]\right\}^{p} \\
\leq & \left\{E^{1 / p}\left[\left|\sum_{k=1}^{n} a_{n k} R_{k}\right|^{p}\right]+L E^{1 / p}\left[\left.\left|\sum_{k=1}^{n} a_{n k} X_{k} I_{(t<k)}\right|\right|^{p}\right]\right\}^{p} \\
\leq & \left\{E^{1 / p}\left[\left|\sum_{k=1}^{n} a_{n k} R_{k}\right|^{p}\right]+L E^{1 / p}\left[\left|\sum_{k=1}^{n} a_{n k} X_{k}\right|^{p}\right]\right\}^{p} \\
& \rightarrow 0 \text { as } n \rightarrow \infty \quad \text { (by relations }(3.8) \text { and }(3.9)) . \tag{3.11}
\end{align*}
$$

Hence the result follows by combining (3.10) and (3.11).

4. L_{p}-Convergence of Mixing and Mixingale Difference Sequences

Theorem 5. Let $\left\{X_{k}, k \geq 1\right\}$ be a*-mixing sequence with respect to a function φ and an integer M such that $E\left[X_{k}\right]=0$ and $E\left[\left|X_{k}\right|\right] \leq K<\infty$ for each k. Further suppose that $\left\{X_{k}, k \geq 1\right\}$ satisfies condition (A2) for some $0<p<2$. Then $E\left[\left|S_{n}\right|^{p}\right] \rightarrow 0$ as $n \rightarrow \infty$ and for $0<p<2$, where $S_{n}=\sum_{k=1}^{n} a_{n k} X_{k}$.

Proof. Fix $\varepsilon>0$. As in the proof of Theorem 1

$$
\begin{equation*}
\left|E\left[X_{n M_{1}+k} \mid X_{(n-1) M_{1}+k}, X_{(n-2) M_{1}+k}, \ldots, X_{M_{1}+k}\right]\right| \leq \varepsilon K \tag{4.1}
\end{equation*}
$$

for M_{1} sufficiently large .
Now fix $0 \leq k \leq M_{1}$. Let $\mathcal{G}_{n}=\mathcal{B}\left(X_{n M_{1}+k}, X_{(n-1) M_{1}+k}, X_{(n-2) M_{1}+k}, \ldots\right.$, $\left.X_{M_{1}+k}\right)$ for each $n \geq 1$ and $\mathcal{G}_{0}=\{\phi, \Omega\}$.

Denote $Z_{n M_{1}+k}=X_{n M_{1}+k}-E\left(X_{n M_{1}+k} \mid \mathcal{G}_{n-1}\right)$. So $\left\{Z_{n M_{1}+k}, \mathcal{G}_{n}, n \geq 2\right\}$ is a martingale difference sequence.

As $\left\{\left|X_{n M_{1}+k}\right|^{p}, n \geq 1\right\}$ satisfies condition (A2), then so also $\left\{E\left(\left|X_{n M_{1}+k}\right|^{p}\right.\right.$ $\left.\left.\mid \mathcal{G}_{n-1}\right), n \geq 1\right\}$ by Lemma 1(iii).

But by Lemma 1(ii) $\left\{\left|Z_{n M_{1}+k}\right|^{p}, n \geq 1\right\}$ satisfies condition (A2) for $0<p<$ 2. Thus by Theorems 1, 2 and 3

$$
E\left|\sum_{n=2}^{N} a_{N, n} Z_{n M_{1}+k}\right|^{p} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty \quad \text { for } \quad 0<p<2
$$

i.e.,

$$
E\left[\left|\sum_{n=2}^{N} a_{N, n} X_{n M_{1}+k}-\sum_{n=2}^{N} a_{N, n} E\left[X_{n M_{1}+k} \mid \mathcal{G}_{n-1}\right]\right|^{p}\right] \rightarrow 0
$$

as $N \rightarrow \infty$ for $0<p<2$ and $0 \leq k \leq M_{1}$.
Since $\varepsilon>0$ was arbitrarily chosen, by using relation (4.1),

$$
E\left|\sum_{n=2}^{N} a_{N, n} X_{n M_{1}+k}\right|^{p} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty \quad \text { for } \quad 0<p<2
$$

and hence the result follows.
Theorem 6. Let $\left\{\left(X_{n}, n \geq 1\right), \Im_{n}: n=0, \pm 1, \pm 2, \ldots\right\}$ be an L_{p}-mixingale difference sequence and $\left\{\left|X_{n}\right|^{p}, n \geq 1\right\}$ satisfy condition (A2) for $1 \leq p<2$. Further assume that $\limsup _{n}\left|\sum_{k=1}^{n} a_{n k} c_{k}\right|<\infty$, for c_{k} as in the definition of mixingale difference sequence. Then $E\left\lfloor\left|S_{n}\right|^{p}\right\rfloor \rightarrow 0$ as $n \rightarrow \infty$ for $1 \leq p<2$, where $S_{n}=\sum_{k=1}^{n} a_{n k} X_{k}$.

Proof. For $n \geq 1$ and $i=0, \pm 1, \pm 2, \ldots$, let

$$
Y_{n i}=E\left[X_{i} \mid \Im_{n+i}\right]-E\left[X_{i} \mid \Im_{n+i-1}\right]
$$

So $E\left[Y_{n i} \mid \Im_{n+i-1}\right]=0$ and hence $\left\{Y_{n i}, \Im_{n+i}, n \geq 1\right\}$ is a martingale difference sequence for each i.

Define $S_{n i}=\sum_{k=1}^{n} a_{n k} Y_{k i}$. So by Theorems 1, 2 and 3

$$
E\left\lfloor\left|S_{n i}\right|^{p}\right\rfloor \rightarrow 0 \text { for } 1 \leq p<2
$$

Therefore

$$
\begin{aligned}
& \left\|\sum_{k=1}^{n} a_{n k} X_{k}\right\|_{p}=\| \sum_{k=1}^{n} a_{n k}\left[X_{k}-E\left(X_{k} \mid \Im_{k+m}\right)\right] \\
+ & \sum_{k=1}^{n} a_{n k} E\left[X_{k} \mid \Im_{k-m}\right]+\sum_{i=-m+1}^{m} S_{n i} \|_{p} \\
\leq & \left\|\sum_{k=1}^{n} a_{n k}\left[X_{k}-E\left(X_{k} \mid \Im_{k+m}\right)\right]\right\|_{p}+\left\|\sum_{k=1}^{n} a_{n k} E\left[X_{k} \mid \Im_{k-m}\right]\right\|_{p}+\left\|\sum_{i=-m+1}^{m} S_{n i}\right\|_{p} \\
\leq & \sum_{k=1}^{n} a_{n k}\left\|\left[X_{k}-E\left(X_{k} \mid \Im_{k+m}\right)\right]\right\|_{p}+\sum_{k=1}^{n} a_{n k}\left\|E\left[X_{k} \mid \Im_{k-m}\right]\right\|_{p}+\left\|\sum_{i=-m+1}^{m} S_{n i}\right\|_{p} \\
\leq & \sum_{k=1}^{n} a_{n k} c_{k} \psi_{m+1}+\sum_{k=1}^{n} a_{n k} c_{k} \psi_{m}+\left\|\sum_{i=-m+1}^{m} S_{n i}\right\|_{p}
\end{aligned}
$$

Now since $\limsup \left|\sum_{k=1}^{n} a_{n k} c_{k}\right|<\infty, \psi_{m} \rightarrow 0$ as $m \rightarrow \infty$ and $E\left[\left|S_{n i}\right|\right]^{p} \rightarrow 0$ as $n \rightarrow \infty$, the result follows.

References

1. A. Bose and T. K. Chandra, Cesaro uniform integrability and L_{p}-convergence, Sankhya, Ser. A 55 (part I) (1993) 12-28.
2. T. K. Chandra, Uniform integrability in cesaro sense and the weak law of large numbers, Sankhya, Ser. A 51 (part III) (1989) 309-317.
3. T. K. Chandra and A. Goswami, Cesaro uniform integrability and the strong law of large numbers, Sankhya, Ser. A 54 (part II) (1992) 215-231.
4. S. D. Chatterjee, An L_{p}-convergence theorem, Ann. Math. Statist. 40 (1969) 1068-1070.
5. Y.S. Chow, On the L_{p}-convergence for $n^{1 / s} S_{n}, 0<p<2$, Ann. Math. Statist. 42 (1971) 393-394.
6. R. Pyke and D. Root, On the convergence in $\mathrm{r}^{\text {th }}$ mean of normalised partial sums, Ann. Math. Statist. 39 (1968) 379-381.
7. P. Hall and C. C. Hyde, Martingale Limit Theory and its Applications, Academic Press, New York, 1980.
8. W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.
