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Abstract. The paper is concerned with the Lp-convergence of some weighted depen-

dent sequences random variables.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables and let Sn = X1 +X2 + · · ·+
Xn. Pyke and Root (1968) showed that if {Xn, n ≥ 1} is an independent and
identically distributed (i.i.d) sequence of random variables and Eb|X1|

pc < ∞
for some 0 < p < 2, then n−1Eb |Sn − an|

pc → 0 as n → ∞ where an = 0 for 0 <
p < 1 and an = nE[X1] for 1 ≤ p < 2. Considering {Xn, n ≥ 1} to be dominated
in distribution by a random variable X such that Eb |X|pc < ∞ and taking

an =
n
∑

k=1

E[Xk|X1, X2, . . . , Xk−1], Chatterjee (1969) proved the above result

for 1 ≤ p < 2. Chow (1971) strengthened this result by replacing the domination
condition by the condition of Uniform Integrability (UI) of {|Xn|

p, n ≥ 1}.

Chandra (1969) introduced a new condition called Cesaro Uniform Integra-
bility (CUI) to establish L1-convergence in the weak law of large numbers. This
is weaker than the usual UI condition and yet was shown to be sufficient enough
to derive the result.

Bose and Chandra (1992) proved Lp-convergence (0 < p < 2) for some
pair-wise independent and dependent sequences under the condition of Cesaro
uniform integrability. In this paper we establish Lp-convergence (0 < p < 2)
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for some weighted dependent sequences of random variables under more gen-
eral condition. The different sequences under consideration include martingale
difference, *-mixing, mixingale difference and martingale transforms.

2. Definition and Preliminaries

This section is devoted to the background materials which have been used in
this paper. Let {Xn, n ≥ 1} be a sequence of random variables defined on a
probability space (Ω,=, P ).

Definition 1. Given a sequence of random variables {Xk, k ≥ 1}, let Gij =
B{Xk, i ≤ k ≤ j} for all 1 ≤ i ≤ j < ∞. {Xk, k ≥ 1} is said to be ∗-mixing if

there exist an integer M and a function ϕ for which ϕ (m) → 0 as m → ∞ and

A ∈ G1n, B ∈ Gm+n,m+n implies
∣

∣P (A ∩B) − P (A)P (B)
∣

∣ ≤ ϕ(m)P (A)P (B)

for all m ≥M and all n ≥ 1.

Definition 2. Let {Xk,=k, k ≥ 1} be a martingale difference sequence and νk

be =k−1-measurable for each k ≥ 1. Then {Tn, n ≥ 1} defined by Tn =
n
∑

k=1

νkXk

is called a martingale transform and {νk, k ≥ 1} is called the transforming

sequence.

Let {Xn, n ≥ 1} be a sequence of random variables on (Ω,=, P ) such that

E(|Xn|
p) <∞ for some p ≥ 1 and each n ≥ 1 and {=n : n = 0,±1,±2, . . .} be

an increasing sequence of sub-sigma fields of =.

Definition 3. The pair {(Xn, n ≥ 1), =n : n = 0,±1, ±2, . . .} is called an Lp-

mixingale difference sequence if there exist two sequences of constants {cn, n ≥
1} and {ψm, m ≥ 0} such that ψm → 0 as m→ ∞ and

(a) ‖E[Xn|=n−m]‖p ≤ cnψm,
(b) ‖Xn − E[Xn | =n+m]‖p ≤ cnψm+1,

where ‖X‖p = [E|X|p]1/p for p > 0.

We assume that the following conditions hold.
(A1) Let (ank, k = 1, 2, . . . , n) represent a double sequence of real numbers such
that
(i) ank → 0 as n→ ∞ for every k,
(ii) for M > 0, a constant,

∑n
k=1 |ank|

r ≤M <∞ for all n and 0 < r ≤ 1.
(A2) For 0 < p < 2,

lim sup
n→∞

n
∑

k=1

|ank|
pE

[

|Xk|
pI[|Xk |>a(n)]

]

= 0,

where a(n) is a function of n such that a(n) → ∞ as n→ ∞.

Remark 1. If {Xk} is uniformly integrable then it satisfies Condition (A2).
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Remark 2. Condition (A2) implies that for 0 < p < 2,

lim sup
n→∞

[a(n)]p|ank|
pP [|Xk| > a(n)] = 0.

Lemma 1. Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of random vari-

ables on (Ω,=, P ). Then the following results hold.

(i) If {|Xn|, n ≥ 1} satisfies condition (A2) and |Yn| ≤ |Xn| a.s. then, {|Yn|,
n ≥ 1} satisfies condition (A2).

(ii) If for some p > 0, {Xn, n ≥ 1} and {Yn, n ≥ 1} satisfy condition (A2),
then so also {|Xn + Yn|

p, n ≥ 1}.
(iii) Let {=n, n ≥ 1} be a sequence of sub-sigma fields of = and p > 0. If

{|Xn|, n ≥ 1} satisfies condition (A2), then so also {Yn = E[|Xn|
p|=n−1],

n > 1}.

Proof.

(i) is trivial. Again

Eb|Xk + Yk|
pI[|Xk+Yk |>a(n)]c ≤ 2p

{

Eb|Xk|
pI[|Xk |>a(n)]c + Eb|Yk|

pI[|Yk|>a(n)]c
}

and |Xk|
p, |Yk|

p satisfy (A2) for some 0 < p < 2 and so (ii) is also trivial.
To prove (iii), we have

Eb|Yn|I[|Yn|>a(n)]c = E
[
∣

∣E
(

|Xn|
p|=n−1

)
∣

∣I[|Yn|>a(n)]

]

=

∫

[|Yn|>a(n)]

E(|Xn|
p|=n−1) dP ≤

∫

[|Xn|>a(n)]

E(|Xn|
p|=n−1) dP

=

∫

[|Xn|>a(n)]

|Xn|
pdP = Eb|Xn|

pI[|Xn|>a(n)]c.

Hence if |Xn|
p satisfies (A2), then so also E

(

|Xn|
p|=n−1

)

.

Lemma 2. If fn : < → <+ where 0 ≤ fn ≤ 1 for all n ≥ 1 and sup
n∈N

[

xfn(x)
]

→

0 as x→ ∞ then,

sup
n∈N

[1

y

y
∫

0

x fn(x) dx
]

→ 0 as y → ∞.

Proof. Put f∗(x) = sup
n∈N

[

xfn(x)
]

. Then

sup
n∈N

[ 1

y

y
∫

0

x fn(x) dx
]

≤
1

y

y
∫

0

f∗(x)dx for all y > 0.

Thus it is sufficient to show that
1

y

∫ y

0

f∗(x) dx→ 0 as y → ∞.

Since f∗(x) → 0 as x → ∞, for any fixed ε > 0 there exists a x0(ε) > 0 such
that if x > x0(ε) and y > x0(ε), then 0 ≤ f∗(x) < ε. Again
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1

y

x0(ε)
∫

0

f∗(x)dx→ 0 as y → ∞,

and

1

y

y
∫

x0(ε)

f∗(x)dx ≤
ε

y

y
∫

x0(ε)

dx < ε as y → ∞.

The result follows, since

1

y

y
∫

0

f∗(x)dx =
[1

y

x0(ε)
∫

0

f∗(x) dx+
1

y

y
∫

x0(ε)

f∗(x) dx
]

.

3. Lp-Convergence of Martingale Difference Sequence

Theorem 1. Let 0 < p < 1 and {Xn, n ≥ 1} be a martingale difference sequence

satisfying condition (A2). Then Eb|Sn|
pc → 0 as n → ∞ where Sn =

n
∑

k=1

ankXk.

Proof. Let Ynk = ankXk I(|Xk|≤|ank|−r ) and Znk = ankXk I(|Xk|>|ank|−r) for
n ≥ 1 and 0 < r < p. So

E
[

|Sn|
p
]

= E
[∣

∣

∣

n
∑

k=1

ankXk

∣

∣

∣

p]

= E
[

|

n
∑

k=1

(Ynk + Znk) |p
]

≤ E
[
∣

∣

∣

n
∑

k=1

Ynk

∣

∣

∣

p]

+E
[
∣

∣

∣

n
∑

k=1

Znk

∣

∣

∣

p]

(3.1)

Now

E
[∣

∣

∣

n
∑

k=1

Ynk

∣

∣

∣

p]

= E
[∣

∣

∣

n
∑

k=1

ankXkI(|Xk |≤|ank|−r)

∣

∣

∣

p]

≤

n
∑

k=1

|ank|
pE

[

|Xk|
pI(|Xk|≤|ank|−r)

]

= p

n
∑

k=1

|ank|
p

∫

(0<x≤|ank|−r)

xp−1P ( |Xk| > x) dx

≤ p

n
∑

k=1

|ank|
p

∫

(0<x≤|ank|−r)

|ank|
r(1−p)P (|Xk| > x) dx

< pε

n
∑

k=1

|ank|
p (by Lemma 2)

≤ p εM (3.2)
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and

lim sup
n→∞

E
[
∣

∣

∣

n
∑

k=1

Znk

∣

∣

∣

p]

≤ lim sup
n→∞

n
∑

k=1

E
[

|Znk|
p
]

= lim sup
n→∞

n
∑

k=1

E
[

|ankXk I(|Xk|>|ank|−r)|
p
]

= 0 (by condition (A2)) (3.3)

Hence the result follows from relations (3.2) and (3.3).

Theorem 2. Let {Xn, n ≥ 1} be a martingale difference sequence satisfying

condition (A2). Then E[|Sn|] → 0 as n → ∞, where Sn =
∑n

k=1 ankXk.

Proof. Put Xnk = ankXkI(|Xk|≤|ank|−(1/2)) and Zn =
n
∑

k=1

[

Xnk −E(Xnk|=k−1)
]

.

Now

E(Zn)2 = E
(

n
∑

k=1

[

Xnk − E(Xnk|=k−1)
]

)2

= E
(

n
∑

k=1

[

Xnk −E(Xnk|=k−1)
]2

)

+ 2

n
∑

k<j=1

E
{

[Xnk −E(Xnk|=k−1)][Xnj − E(Xnj|=j−1)]
}

= E
(

n
∑

k=1

[Xnk − E(Xnk|=k−1)]
2
)

+ 2

n
∑

k<j=1

E{[Xnk − E(Xnk|=k−1)][Xnj −E(Xnj |=j−1)]|=k}

= E
(

n
∑

k=1

[Xnk − E(Xnk|=k−1)]
2
)

+ 2

n
∑

k<j=1

E
[

{Xnk − E(Xnk|=k−1)}E{[Xnj −E(Xnj |=j−1)] | =k}
]

= E
(

n
∑

k=1

[

Xnk − E(Xnk | =k−1)
]2

)

+ 2

n
∑

k<j=1

E
[

{Xnk − E(Xnk | =k−1)} {E
[

Xnj | =k

]

−E
[

E(Xnj | =j−1) | =k

]}]

= E
(

n
∑

k=1

[

Xnk − E(Xnk | =k−1)
]2

)

+ 2

n
∑

k<j=1

E
[

{Xnk − E(Xnk | =k−1)
} {

E
[

Xnj | =k

]

−E
[

Xnj | =k

]}]

= E
(

n
∑

k=1

[

Xnk − E(Xnk | =k−1)
]2

)



6 S. K. Acharya and C. K. Tripathy

=

n
∑

k=1

{

E[X2
nk]− E

[

E(Xnk | =k−1

)]2}

≤
n

∑

k=1

E[X2
nk]

=

n
∑

k=1

E
[

a2
nkX

2
kI(|Xk| ≤|ank|−1/2)

]

≤

n
∑

k=1

[

|ank|
1

|ank|−1/2

∫

0<x<|ank|−1/2

|ank|
1/2xP [|Xk| > x]dx

]

< εM

(by Remark 2 and Lemma 2).
So

E[|Zn|] ≤ E1/2[|Zn|
2] → 0 as n → ∞. (3.4)

Again E(Xk | =k−1) = 0 as Xn is a martingale difference sequence. So

E
[

XkI(
|Xk|≤|ank|−1/2

)| =k−1

]

+ E
[

XkI(
|Xk |>|ank|−1/2

)| =k−1

]

= 0

⇒ E
[

XkI(
|Xk|≤|ank|−1/2

)| =k−1

]

= −E
[

XkI(
|Xk|>|ank|−1/2

)| =k−1

]

.

(3.5)

Now

E
∣

∣

∣

n
∑

k=1

E
(

Xnk | =k−1

)

∣

∣

∣
= E

∣

∣

∣

n
∑

k=1

E
(

ankXkI(
|Xk|>|ank|−1/2

)| =k−1

)

∣

∣

∣

≤

n
∑

k=1

E
(

|ank|
∣

∣E
[

XkI(
|Xk|≤|ank|−1/2

)| =k−1

]
∣

∣

)

≤

n
∑

k=1

E
(

|ank|
∣

∣E
[

XkI(
|Xk|>|ank|−1/2

)| =k−1

]
∣

∣

)

(by Relation (3.5))

≤

n
∑

k=1

|ank|E
[

XkI(
|Xk|>|ank|−1/2

)| =k−1

]

→ 0 as n → ∞ (by condition (A2)).

Hence
∑n

k=1E(Xnk | =k−1) → 0 in L1 as n → ∞. Also from relation (3.4), we
have E |Zn| → 0 as n→ ∞.
i.e.

E
[∣

∣

∣

n
∑

k=1

Xnk

∣

∣

∣

]

→ 0 as n→ ∞.

i.e.

E
[
∣

∣

∣

n
∑

k=1

ankXkI(
|Xk |≤|ank|−1/2

)

∣

∣

∣

]

→ 0 as n→ ∞. (3.6)
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Thus

E( |Sn| ) = E
[
∣

∣

∣

n
∑

k=1

ankXk

∣

∣

∣

]

= E
[∣

∣

∣

n
∑

k=1

ankXkI(
|Xk |≤|ank|−1/2

) +
n

∑

k=1

ankXkI(
|Xk|>|ank|−1/2

)

∣

∣

∣

]

≤ E
[
∣

∣

∣

n
∑

k=1

ankXkI(
|Xk |≤|ank|−1/2

)

∣

∣

∣

]

+

n
∑

k=1

ankE
[

|Xk|I(
|Xk|>|ank|−1/2

)

]

→ 0 as n→ ∞ (using condition (A2) and realtion (3.6)).

Theorem 3. Let 1 < p < 2 and {Xn, n ≥ 1} be a martingale difference

sequence satisfying condition (A2). Then Eb |Sn|
pc → 0 as n → ∞, where

Sn =
∑n

k=1 ankXk.

Proof. Using Burkholder’s inequality (cf. [7, Th. 2.10]), we have

E
[

|Sn|
p
]

= E
[
∣

∣

∣

n
∑

k=1

ankXk

∣

∣

∣

p]

≤ cE
[
∣

∣

∣

n
∑

k=1

a2
nkX

2
k

∣

∣

∣

p/2]

(where c denotes a generic constant)

= cE
[∣

∣

∣

n
∑

k=1

Y 2
nk +

n
∑

k=1

Z2
nk

∣

∣

∣

p/2]

where

Ynk = ankXkI(
|Xk |≤|ank|−1/2

) and Znk = ankXkI(
|Xk |>|ank|−1/2

) for n ≥ 1.

So

E
[

|Sn|
p
]

≤ cE
[
∣

∣

∣

n
∑

k=1

Y 2
nk

∣

∣

∣

p/2]

+ cE
[
∣

∣

∣

n
∑

k=1

Z2
nk

∣

∣

∣

p/2]

≤ cE
[
∣

∣

∣

n
∑

k=1

Y 2
nk

∣

∣

∣

p]

+ cE
[
∣

∣

∣

n
∑

k=1

Z2
nk

∣

∣

∣

p]

. (3.7)

Now

E
[

n
∑

k=1

| Ynk|
p
]

= E
[

n
∑

k=1

∣

∣ankXkI(
|Xk|≤|ank|−1/2

)

∣

∣

p
]

=

n
∑

k=1

|ank|
pE

[

|Xk|
p
]

I(
|Xk|≤|ank|−1/2

)
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= p

n
∑

k=1

|ank|
p

∫

(0<x≤|ank|−1/2)

P
[

|Xk| > x
]

dx

= p

n
∑

k=1

|ank|
1/2

[ 1

|ank|−1/2

]

∫

(0<x≤|ank|−1/2)

|ank|
p−1xp−1P

[

|Xk| > x
]

dx

< pMε (using Remark 2 and Lemma 2).

Again E
[
∑n

k=1 |Znk |
p
]

→ 0 as n → ∞ by condition (A2).
Hence the result follows from relation (3.7).

Theorem 4. {Xk,=k, k ≥ 1} be a martingale difference sequence having trans-

forming sequence {νk, k ≥ 1} with sup | νk| <∞, and Xk satisfying the condition

(A2). Then for S′
n =

∑n
k=1 ankνkXk and 0 < p < 2, E

[

|S′
n|

p
]

→ 0 as n → ∞.

Proof. Fix L > 0. Let

t =

{

inf
{

n ≥ 1 :
∑n

k=1Xk ≥ L
}

∞, if no such n exists

and Rk = νkXkI(t≥k)I(|νk|≤L) for k ≥ 1. Here νkI(t≥k)I(|νk|≤L) is =k−1-
measurable.

Hence

E[Rk|=k−1] = EbνkXkI(t≥k)I(|νk|≤L)|=k−1c = νkI(t≥k)I(|νk|≤L)E[Xk|=k−1] = 0

(since Xk is a martingale difference sequence).
So, {Rk, k ≥ 1} is a martingale difference sequence.
But since |Rk| = |νkXkI(t≥k)I(|νk|≤L)| ≤ L|XkI(t≥k)| ≤ L|Xk| and Xk satis-

fies condition (A2), |Rk| also satisfies condition (A2) by Lemma 1.
Hence

E
[∣

∣

∣

n
∑

k=1

ankRk

∣

∣

∣

p]

→ 0 as n→ ∞ for 0 < p < 2 (3.8)

(by Theorems 1, 2 and 3.), and

E
[∣

∣

∣

n
∑

k=1

ankXk

∣

∣

∣

p]

→ 0 as n → ∞ (3.9)

(by Theorems 1, 2 and 3.).

Since sup |νk| <∞, for 0 < p ≤ 1 we have

E
[

|S′
n|

p
]

= E
[
∣

∣

∣

n
∑

k=1

ankνkXk

∣

∣

∣

p]

≤ E
[
∣

∣

∣

n
∑

k=1

ankνkXkI(t≥k)I(|νk|≤L)

∣

∣

∣

p]

+ E
[
∣

∣

∣

n
∑

k=1

ankνkXkI(t<k)I(|νk|≤L)

∣

∣

∣

p]
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≤ E
[
∣

∣

∣

n
∑

k=1

ankRk

∣

∣

∣

p]

+ LpE
[
∣

∣

∣

n
∑

k=1

ankXkI(t<k)

∣

∣

∣

p]

≤ E
[
∣

∣

∣

n
∑

k=1

ankRk

∣

∣

∣

p]

+ LpE
[
∣

∣

∣

n
∑

k=1

ankXk

∣

∣

∣

p]

→ 0 as n → ∞ (by relations (3.8) and (3.9)). (3.10)

Now for 1 < p < 2, we have

E
[

|S′
n|

p
]

= E
[∣

∣

∣

n
∑

k=1

ankνkXk

∣

∣

∣

p]

≤
{

E1/p
[
∣

∣

∣

n
∑

k=1

ankνkXkI(t≥k)I(|νk|≤L)

∣

∣

∣

p]

+ E1/p
[
∣

∣

∣

n
∑

k=1

ankνkXkI(t<k)I(|νk|≤L)

∣

∣

∣

p]}p

≤
{

E1/p
[
∣

∣

∣

n
∑

k=1

ankRk

∣

∣

∣

p]

+ LE1/p
[
∣

∣

∣

n
∑

k=1

ankXkI(t<k)

∣

∣

∣

p]}p

≤
{

E1/p
[∣

∣

∣

n
∑

k=1

ankRk

∣

∣

∣

p]

+ LE1/p
[∣

∣

∣

n
∑

k=1

ankXk

∣

∣

∣

p]}p

→ 0 as n→ ∞ (by relations (3.8) and (3.9)). (3.11)

Hence the result follows by combining (3.10) and (3.11).

4. Lp-Convergence of Mixing and Mixingale Difference Sequences

Theorem 5. Let {Xk, k ≥ 1} be a ∗-mixing sequence with respect to a function

ϕ and an integer M such that E[Xk] = 0 and E[|Xk|] ≤ K < ∞ for each k.

Further suppose that {Xk, k ≥ 1} satisfies condition (A2) for some 0 < p < 2.
Then E[|Sn|

p] → 0 as n→ ∞ and for 0 < p < 2, where Sn =
∑n

k=1 ankXk.

Proof. Fix ε > 0. As in the proof of Theorem 1
∣

∣E[XnM1+k|X(n−1)M1+k, X(n−2)M1+k, . . . , XM1+k]
∣

∣ ≤ εK (4.1)

for M1 sufficiently large .
Now fix 0 ≤ k ≤ M1. Let Gn = B(XnM1+k, X(n−1)M1+k, X(n−2)M1+k, . . . ,

XM1+k) for each n ≥ 1 and G0 = {φ,Ω}.
Denote ZnM1+k = XnM1+k − E(XnM1+k | Gn−1). So {ZnM1+k, Gn, n ≥ 2} is

a martingale difference sequence.
As

{

|XnM1+k|
p, n ≥ 1

}

satisfies condition (A2), then so also
{

E
(

|XnM1+k|
p

|Gn−1

)

, n ≥ 1
}

by Lemma 1(iii).

But by Lemma 1(ii)
{

|ZnM1+k|
p, n ≥ 1

}

satisfies condition (A2) for 0 < p <

2. Thus by Theorems 1, 2 and 3
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E
∣

∣

∣

N
∑

n=2

aN,nZnM1+k

∣

∣

∣

p

→ 0 as N → ∞ for 0 < p < 2.

i.e.,

E
[∣

∣

∣

N
∑

n=2

aN,nXnM1+k −

N
∑

n=2

aN,nE
[

XnM1+k | Gn−1

]

∣

∣

∣

p]

→ 0

as N → ∞ for 0 < p < 2 and 0 ≤ k ≤M1.
Since ε > 0 was arbitrarily chosen, by using relation (4.1),

E
∣

∣

∣

N
∑

n=2

aN,nXnM1+k

∣

∣

∣

p

→ 0 as N → ∞ for 0 < p < 2

and hence the result follows.

Theorem 6. Let {(Xn, n ≥ 1),=n : n = 0,±1,±2, . . .} be an Lp-mixingale

difference sequence and {|Xn|
p, n ≥ 1} satisfy condition (A2) for 1 ≤ p < 2.

Further assume that lim sup
n

|
∑n

k=1 ankck| < ∞, for ck as in the definition of

mixingale difference sequence. Then Eb|Sn|
pc → 0 as n → ∞ for 1 ≤ p < 2,

where Sn =
∑n

k=1 ankXk.

Proof. For n ≥ 1 and i = 0,±1,±2, . . . , let

Yni = E[Xi|=n+i] −E
[

Xi|=n+i−1

]

.

So E[Yni|=n+i−1] = 0 and hence {Yni,=n+i, n ≥ 1} is a martingale difference
sequence for each i.

Define Sni =
∑n

k=1 ankYki. So by Theorems 1, 2 and 3

Eb|Sni|
pc → 0 for 1 ≤ p < 2.

Therefore

∥

∥

∥

n
∑

k=1

ankXk

∥

∥

∥

p
=

∥

∥

∥

n
∑

k=1

ank

[

Xk − E(Xk | =k+m)
]

+

n
∑

k=1

ankE[Xk | =k−m] +

m
∑

i=−m+1

Sni

∥

∥

∥

p

≤
∥

∥

∥

n
∑

k=1

ank

[

Xk − E(Xk | =k+m)
]

∥

∥

∥

p
+

∥

∥

∥

n
∑

k=1

ankE
[

Xk | =k−m

]

∥

∥

∥

p
+

∥

∥

∥

m
∑

i=−m+1

Sni

∥

∥

∥

p

≤

n
∑

k=1

ank

∥

∥

[

Xk − E(Xk | =k+m)
]
∥

∥

p
+

n
∑

k=1

ank

∥

∥E
[

Xk | =k−m

]
∥

∥

p
+

∥

∥

∥

m
∑

i=−m+1

Sni

∥

∥

∥

p

≤
n

∑

k=1

ankckψm+1 +
n

∑

k=1

ankckψm +
∥

∥

∥

m
∑

i=−m+1

Sni

∥

∥

∥

p
.
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Now since lim sup
n

∣

∣

∑n
k=1 ankck| < ∞, ψm → 0 as m → ∞ and E

[

|Sni|
]p

→ 0

as n → ∞, the result follows.
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