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Abstract. We give formulas for the degree of C0−sufficiency of an analytic germ with

respect to a principal ideal.

1. Introduction

Let C{x, y} be the ring of germs of analytic functions of two complex variables,
and f, g ∈ C{x, y}. We say that f and g are topologically equivalent if there
exists a homeomorphism φ: (C2, 0) → (C2, 0) such that f ◦ φ = g.

Let I ⊂ C{x, y} be an ideal in C{x, y}. A germ f is said to be C0-sufficient

of order r with respect to I, if for any g such that f − g ∈ Ir+1 , the germs f and
g are topologically equivalent.

We call

SuffI(f) = min{r | f is C0-sufficient w.r.t. I}

the degree of C0-sufficiency of f w.r.t. I.

Problem. How to compute SuffI(f)?

In the case when I is a maximal ideal of C{x, y}, this problem has been
solved by Kuo and Lu [1]. In that case, the degree of C0-sufficiency is equal to
[L] + 1, where L is the Lojasiewicz number of f at the origin. Kuo and Lu also
gave a formula for L in terms of Puiseux’s expansions of f . In [3] Lê and Weber
computed the Lojasiewicz number via the data of the resolution tree of f.

In this paper, we give a formula for SuffI(f) in the case when I is a principal
ideal, I = (g)C{x, y}. We compute SuffI(f) in several ways: in terms of the
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jacobian quotients of the map Φ = (f, g); in terms of the resolution tree of the
germ fg = 0 and finally; in terms of intersection multiplicities of germs f−1(0)
and g−1(0) with jacobian curve.

To do this, we follow the method of Lê and Weber [3] and we use results of
Maugendre on the jacobian quotients [4, 5].

2. Statement of Results

We always suppose that

f−1(0) ∩ g−1(0) = {0}.

Let us denote

J(f, g) = det

(

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

.

Let J(f, g) = qs1

1 . . . qsk

k be a decomposition of J(f, g) into irreducible factors,
and J(f, g)red be the product of those qj which are not factors of fg. Write

Σ = {(x, y) ∈ C
2 | J(f, g)red = 0}.

We consider the map

Φ: (C2, 0) → (C2, 0), (x, y) 7→ (u = f(x, y); v = g(x, y)).

Let

∆ = Φ(Σ).

For any irreducible component δ of ∆, let u = av
mδ

nδ + · · · be the Puiseux
expansion of δ. Following Maugendre [4], the numbers mδ

nδ

will be called jacobian

quotients of Φ.

Theorem 1. If a germ f(x, y) has at most an isolated singularity and I is the

ideal generated by a germ g(x, y), then

SuffI(f) = max
{[mδ

nδ

]

| δ ∈ ∆
}

.

Let π be the minimal resolution of fg = 0. Let π−1(0) be the set of excep-
tional divisors. An exceptional divisor E is said to be “rupture”, if E intersects
with at least three irreducible components of π−1((f.g)−1(0)). For every E we
denote by C(E) a germ of a curve in (C2, 0), whose strict transformation inter-
sects E transversally.

Corollary 1. Under the conditions of Theorem 1, we have

SuffI(f) = max
{ (f−1(0), C(E))0

(g−1(0), C(E))0

}

,

where ( , )0 is the intersection multiplicity at 0 of two curves and the maximum

is taken over all the rupture components E.
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Corollary 2. With the assumptions of Theorem 1, we have

SuffI (f) = max
(f−1(0), q−1

i (0))0

(g−1(0), q−1
i (0))0

,

where the maximum is taken over all irreducible factors of Jred(f, g).

3. Proofs

Let ht(x, y) = f(x, y) − tg(x, y), t ∈ C, and Vt be the germ of h−1
t (0) at the

origin. We denote by B(f, g) the set of all the special values of the parametry
of the family Vt : B(f, g) consists of all values t0 ∈ C, at which the family is not
topologically equisingular. First, we are interested in finding the set B(f, g) for
given f and g. This problem was solved by Lê and Weber in [3]. Here, it is more
convenient for us to characterize B(f, g) using jacobian curve.

Let us denote by P the set of all Puiseux expansions of the curve J(f, g)(x, y) =
0. Each element of P can be written in the form (x(s), y(s)), where x(s) and
y(s) are convergent series in s.

Lemma 1.

B(f, g) =
{

t0 ∈ C | ∃(x(s), y(s)) ∈ P, t0 = lim
s→0

f(x(s), y(s))

g(x(s), y(s))

}

.

Proof. Assume that t0 = lims→0
f(x(s),y(s))
g(x(s),y(s))

and q1((x(s), y(s)) = 0. There are
two cases:
(a) ht0(x(s), y(s)) ≡ 0; and
(b) Otherwise.

Case (a). We can write y = y(x) as the Puiseux expansions (x(s), y(s)) which

give t0 = lims→0
f(x,y(x))
g(x,y(x))

and ht0(x, y(x)) ≡ 0. It implies

∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x)).ẏ(x) − t0

∂g

∂x
(x, y(x)) − t0

∂g

∂y
(x, y(x)).ẏ(x) ≡ 0.

Since (x, y(x)) ∈ q−1
1 (0) ⊂ J(f, g)−1(0),

λ(x) grad f(x, y(x)) = grad g(x, y(x))

for some λ(x) ∈ C.

We get then

(1 − t0λ(x))
[∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x)).ẏ(x)

]

≡ 0.

If (1 − t0λ(x)) 6≡ 0 then

∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x)).ẏ(x) = 0

and
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∂g

∂x
(x, y(x)) +

∂g

∂y
(x, y(x)).ẏ(x) = 0.

Therefore f(x, y(x)) = g(x, y(x)) = 0, which means that q−1
1 (0) ⊂ g−1(0) ∩

f−1(0), what contradicts to g−1(0) ∩ f−1(0) = {0}.

Thus (1− t0λ(x)) ≡ 0, and consequently gradht0(x, y(x)) ≡ 0. The curve Vt0

has non-isolated singularity at 0 ∈ C2. Hence, t0 ∈ B(f, g).

Case (b). f(x(s), y(s)) − t0g(x(s), y(s)) 6≡ 0.

Let U be a sufficiently small ball centered at 0 ∈ C2 such that U ∩ Vt0 ∩

J(f, g)−1(0) = {0}. Put t(s) = f(x(s),y(s))
g(x(s),y(s)) ; i.e., (x(s), y(s)) ∈ Vt(s).

Consider the following map

πt(s)
g : U ∩ Vt(s) \ {0} → C, (x, y) 7→ g(x, y).

If there exists a sequence of singular points of Vt(s), going to 0 ∈ C2 as
s → 0, then it must be that µ(Vt0 , 0) > µ(Vt(s), 0), i.e., the Milnor number is not
constant at t0. We have then t0 ∈ B(f, g). Assume that Vt(s)\{0} is nonsingular.

We see that the map πt0
g is a finite covering without ramification, while π

t(s)
g is

ramified over the value π
t(s)
g (x(s), y(s)). From this fact we can conclude that

χ(Vt0 \ {0}) > χ(Vt(s) \ {0}), where χ(.) is the Euler characteristics. It implies
t0 ∈ B(f, g).

We have shown that if t0 = lims→0
f(x(s),y(s))
g(x(s),y(s)) for some (x(s), y(s)) ∈ P then

t0 ∈ B(f, g). Now we are going to prove that the converse is also true.

Assume that t0 6= lims→0
f(x(s),y(s))
g(x(s),y(s))

for any (x(s), y(s)) ∈ P. Then there

exist a disc D ⊂ C, t0 ∈ D and a ball U ⊂ C2, such that U ∩ J(f, g)−1(0)∩ Vt =
{0} for every t ∈ D. This means that if (x, y) ∈ U, the vectors gradf(x, y) and
gradg(x, y) are linearly independent. Moreover, if the ball U and the disc D are
sufficiently small, the curve Vt intersects with ∂U transversally, and this holds
for every t ∈ D. Using these facts, we can construct a vector field whose integral
curve (x(τ ), y(τ )) have the following properties

(i) g(x(τ ), y(τ )) = const;
(ii) (x(τ ), y(τ )) ∈ Vt(τ); and
(iii) If (x(0), y(0)) ∈ ∂U then (x(τ ), y(τ )) ∈ ∂U.

One can see that the flow of this vector field will give a smooth trivializa-
tion of the family Vt \ {0}, t ∈ D, and consequently, it induces a topologically
trivialization of Vt, t ∈ D. Thus t0 6∈ B(f, g). The lemma is proved. �

Lemma 2. Under the condition of Theorem 1, the set B(f, g) is empty if and

only if every jacobian quotient of (f, g) is less than 1.

Proof. By an argument similar to that in the proof of Lemma 1, we can show that
if f−1(0) has an isolated singularity at 0 ∈ C2, then J(f, g)−1(0)∩ f−1(0) = {0}
in a small neighborhood of 0. Let qi(x, y) be an irreducible factor of J(f, g), and
y = yi(x) its Puiseux expansion. Assume that qi(x, y) is not a factor of g(x, y).



Degree of C0-Sufficiency of Analytic Germ with Respect to Principal Ideal 17

We denote by v(f(x, yi(x)) and v(g(x, yi(x)) the valuations of corresponding
series. By a classical formula on the intersection multiplicities, we have

v(f(x, yi(x)) = (f−1(0) ∩ q−1
i (0))0

and

v(g(x, yi(x)) = (g−1(0) ∩ q−1
i (0))0.

By [4, Lemma 1.1] the number
(f−1(0)∩q

−1

i
(0))0

(g−1(0)∩q
−1

i
(0))0

belongs to the set of jacobian

quotients. The condition (ii) gives then v(f(x,yi(x))
v(g(x,yi(x)) < 1. It follows from Lemma 1,

that every component qi(x, y), which is not a factor of g(x, y), does not contribute
any special value. In particular, we have 0 6∈ B(f, g). Using again Lemma 1, we
can see that if 0 6∈ B(f, g) then the map t0 ∈ B(f, g) 7→ 1

t0
∈ B(g, f) is bijective.

Assume now that qi(x, y) is a factor of g(x, y). Then, as in the proof of Lemma
1, we can show that B(g, f) = {0}. Hence, by the above bijection, B(f, g) = ∅,
i.e., the conditions (i) - (ii) are sufficient for the family Vt to be equisingular. It
follows from Lemma 1 that they are also nessecary for B(f, g) to be empty. �

Proof of Theorem 1. Let

l = max
{[mδ

nδ

]

, δ ∈ ∆
}

.

(A) Let k ≥ l + 1, I = (g(x, y))C{x, y}, and r(x, y) ∈ Ik. We have to show that
f(x, y) and f(x, y)+ r(x, y) have the same topologically type. To do this, by [2],
it suffices to show that the family

Vt = {f(x, y) − tr(x, y) = 0}

is equisingular for t ∈ C.

Case 1. r(x, y) = g(x, y)k. A number α is an jacobian quotient of (f, g) if and
only if α

k
is that of (f, gk). Thus, if k > l then 1 > mδ

nδ

for any component δ ∈ ∆
and the equisingularity follows from Lemma 2.

Case 2. r(x, y) = gl+1(x, y)g1(x, y), where g1(x, y) and f(x, y) have no common
factor.

Case 2.1. Additionally, we suppose that f.r and f.gl+1 have the same minimal
resolution π. For an exceptional divisor D ∈ π−1(0), let us denote by vD(.) the
multiplicity on D. We see that

vD(f ◦ π)

vD(r ◦ π)
=

vD(f ◦ π)

vD(gl+1 ◦ π) + vD(g1 ◦ π)
≤

vD(f ◦ π)

vD(gl+1 ◦ π)
.

The numbers
vD(f◦π)

vD(gl+1◦π) and
vD(f◦π)
vD(r◦π) are called contact quotients (see [3]). Ac-

cording to ([5, Theorem 1.1]), each contact quotient at a rupture vertex belongs
to the set of jacobian quotients. From these facts it is easy to see that every
jacobian quotient of (f, r) is less than 1, and the equisingularity of the family
f(x, y) − tg(x, y) = 0, t ∈ C, follows from Lemma 2.
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Case 2.2. The minimal resolutions of f.gl+1 and f.r may be different.

To investigate this case, we do use the result of Maugendre on the behavior
of contact quotients on a colored resolution tree of a product of two germs. Let
Ac(f.r) be the colored resolution tree of f.g (we refer [5] for this notion). The
minimal resolution π′ of f.r can be obtained from the minimal resolution π of
f.gl+1 by making some additional blowing-ups in order to solve the singularities
caused by the factor g1(x, y). According to [5], the part of Ac(f.r), corresponding
to these additional blowing-ups must be colored in green color. Maugendre
proved that the contact quotients are decreasing if we are following a green path
in a geodesic direction [5]. This implies

max
D′∈π′−1(0)

vD′(f ◦ π′)

vD′ (r ◦ π′)
≤ max

D∈π−1(0)

vD(f ◦ π)

vD(gl+1 ◦ π)
.

Hence every jacobian quotient of (f, r) is less than 1. The equisingularity of
considered family is proved.

Case 3. r(x, y) = gl+1(x, y)g1(x, y), and f and g1 have a common factor:
f(x, y) = ϕ(x, y)f1(x, y), g1(x, y) = ϕ(x, y)g2(x, y). The equisingularity of the
family f(x, y) − tr(x, y) = 0 is then equivalent to that of the family

f1(x, y) − tgl+1(x, y)g2(x, y) = 0.

In comparing the resolution π of f.gl+1 and π1 of f1.g
l+1 and by an argument

similar to that of the Case 2.2, we can show that

max
D1∈π−1

1
(0)

vD1
(f1 ◦ π1)

vD1
((gl+1g2) ◦ π′)

≤ max
D∈π−1(0)

vD(f ◦ π)

vD(gl+1 ◦ π)
< 1.

The equisingularity of the family is then followed from Lemma 2.

(B) If k ≤ l, we take r(x, y) = gk(x, y). It is clear that there exists δ ∈ ∆ such
that mδ

knδ
≥ 1. Hence, by Lemma 2, the family f(x, y) − tgk(x, y) can not be

equisingular; and therefore f(x, y) and f(x, y)− t0g
k(x, y), for t0 ∈ B(f, gk), are

not topologically equivalent.

Proof of Corollary 1. It follows from Theorem 1 and ([5, Theorem 1.1]).

Proof of Corollary 2. It follows from Lemma 1 and Theorem 1.
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