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Abstract. Let (Xnk) be a double sequence of random variables with zero mean and

finite variances and (Zn) be a sequence of positive integral-valued random variables

such that for each n, Zn, Xn1, Xn2, ... are independent. In this paper, we give nec-

essary and sufficient conditions for weak convergence of the distribution functions of

random sums

SZn = Xn1 + Xn2 + · · ·+ XnZn

to the standard normal distribution function Φ. Moreover, we give a bound of

sup
−∞<x<∞

|P (SZn ≤ x) − Φ(x)| and show that it tends to 0 when (SZn ) converges

weakly to Φ.

1. Introduction and Main Results

The convergence of a sequence of distribution functions of random sums was
first investigated by Robins [11] in 1948 and has been discussed many times in
numerous papers. In this work we investigate the case whose limit distribution
function is the standard normal distribution function Φ.

In the case of one array, let (Xn) be a sequence of independent random vari-
ables with zero mean (this is not an essential restriction) and finite variances.
Let (Zn) be a sequence of positive integral-valued random variables which are
independent of (Xn). Many authors (e.g. [1, 3, 6, 9, 10, 15, 18, 20, 25]) gave con-
ditions for the convergence of the sequence of distribution functions of random
sums X1 + X2 + · · ·+ XZn to Φ.
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In this work we consider a double array of random variables. Let (Xnk)
be a double sequence of random variables with zero mean and finite variances
σ2

nk. For each n, we assume Zn, Xn1, Xn2, ... are independent. In [8, 12, 22], the
authors investigated the convergence of the sequence of distribution functions of
random sums

SZn = Xn1 + Xn2 + · · ·+ XnZn

in case Xn1, Xn2, ... are identically distributed for every n. The aim of our
investigation the case Xn1, Xn2, ... are not necessary identically distributed.
Before we give the main results we state one of the most important versions
of central limit theorem of sums.

Theorem 1.1. ([4, Chap. 12.2]) Let (kn) be a sequence of positive integers.

Assume that lim
n→∞

kn∑
k=1

σ2
nk = 1. Then

(i) the sequence of distribution functions of the sums

Sn = Xn1 + Xn2 + · · ·+ Xnkn

converges weakly to Φ and
(ii) (Xnk), k = 1, 2, ..., kn is infinitesimal, i.e.

max
1≤k≤kn

P (|Xnk| ≥ ε) → 0

for every ε > 0, if and only if (Xnk), k = 1, 2, ..., kn, satisfies the Lindeberg
condition, i.e.

kn∑

k=1

∫

|x|<ε

x2dFnk(x) → 1

for every ε > 0, where Fnk is the distribution function of Xnk.

In this work, we will extend Theorem 1.1 to the case of random sums and
will find a bound of the estimation. This paper is organized as follows.

In Sec. 2 we give necessary and sufficient conditions for the convergence of
sequence of distribution functions of random sums SZn to Φ. The following
theorems are main results of Sec. 2.

Theorem 1.2. Let (Xnk, Zn) be such that
Zn∑
k=1

σ2
nk

p→ 1 and satisfy random

infinitesimal condition (RI), i.e.,

max
1≤k≤Zn

P (|Xnk| ≥ ε) p→ 0

for every ε > 0.
Then the sequence of distribution functions of the random sums SZn converges
weakly to Φ if and only if KZn (u)

p→ K(u) for every continuity point u of K,

where Kn(u) =
n∑

k=1

u∫
−∞

x2dFnk(x) and
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K(u) =
{

0 for u < 0
1 for u ≥ 0.

Theorem 1.3. Let (Xnk, Zn) be such that
Zn∑
k=1

σ2
nk

p→ 1 and satisfy (RI). Then

the sequence of distribution functions of random sums SZn converges weakly to
Φ if and only if (Xnk, Zn) satisfies random Lindeberg condition (RL), i.e.,

Zn∑

k=1

∫

|x|<ε

x2dFnk(x)
p→ 1

for every ε > 0.

Theorem 1.4. Assume that
Zn∑
k=1

σ2
nk

p→ 1. Then

(i) the sequence of distribution functions of random sums SZn converges weakly
to Φ and

(ii) (Xnk, Zn) satisfies (RI)
if and only if (Xnk, Zn) satisfies (RL).

In Sec. 3, we give a bound of the approximation in Sec. 2. The main theorems
of Sec. 3 are the followings.

Theorem 1.5. If σ2
nk ≤ 1 for all n and k, then for ε > 0 we have a constant C

such that
sup

−∞<x<∞
|Fn(x) − Φ(x)| ≤ CE(gn(Zn, ε)),

where Fn is the distribution function of SZn and

gn(j, ε) =
[1
3

max
1≤k≤j

σ2
nk

j∑

k=1

σ2
nk

] 1
5

+
[10ε

9
max

( j∑

k=1

σ2
nk, 1

)] 1
4

+
[ j∑

k=1

∫

|x|>ε

x2dFnk +
1
2
|

j∑

k=1

σ2
nk − 1|

]1
3
.

Theorem 1.6. Let (Xnk, Zn) be such that
Zn∑
k=1

σ2
nk

p→ 1 and satisfy (RI). If
( Zn∑

k=1

σ2
nk

)
is bounded and σ2

nk ≤ 1 for all n and k, then the sequence of distribu-

tion functions of the random sums SZn converges weakly to Φ if and only if there
exists a sequence of positive real numbers (εn) such that E[gn(Zn, εn)] → 0.

The following corollary follows directly from Theorem 1.5 and Hölder inequality.

Corollary 1.7. Let (Xn) be a sequence of independent identically distributed
random variables with zero mean and variance σ2. Assume that (Xn) and (Zn)
are independent. Then for ε > 0
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sup
−∞<x<∞

∣∣∣P
(SZn√

n
≤ x

)
− Φ(x)

∣∣∣ ≤
(σ4

n2
E(Zn)

) 1
5
+

(10ε

9
E

(
max

(σ2

n
Zn, 1

))) 1
4
+

(σ2

n
E(Zn) +

1
2
E

[∣∣∣σ
2

n
Zn–1

∣∣∣
]) 1

3
.

We also give examples of the convergence in Sec. 4.

2. Convergence Theorems

2.1. Auxiliary Results

In this section we give some auxiliary results for proving the main theorems in
Subsec. 2.2.

Proposition 2.1. [13] For every n, let (ank), be a nondecreasing sequence of
non-negative real numbers and let a ≥ 0 be fixed. Then anZn

p→ a if and only if
anln(q) → a for all q ∈ (0, 1) where ln : (0, 1) → N defined by

ln(q) = max{k ∈ N |P (Zn < k) ≤ q}.

In what follows, we let Fn, F
(q)
n and Fnk be the distribution functions of

SZn = Xn1 + Xn2 + · · · + XnZn , S
(q)
n = Xn1 + Xn2 + · · · + Xnln(q) and Xnk

respectively.

Proposition 2.2. [24] Let (Xnk, Zn) satisfy (RI). If Fn
w→ F for some distribu-

tion function F , then there exists a subsequence (n′) such that for a.e. q ∈ (0, 1),
there exist a distribution function F

(q)
and a bounded sequence of real numbers

(a(q)
n′ ) such that

F
(q)
n′ ∗ E

a
(q)
n′

w→ F
(q)

,

where Ea stands for the degenerated distribution function with parameter a ∈ R.

Proposition 2.3. [24] If for a.e. q ∈ (0, 1), there exists a distribution function
F (q) such that F

(q)
n

w→ F (q). Then Fn
w→ F , where F is the distribution function

defined by F (x) =
1∫
0

F (q)(x)dq.

Theorem 2.4. [16] Let (Yn) be a sequence of random variables and put Hn(x) =
P (Yn ≤ x). Suppose sup

n∈N
E[Y 2

n ] < ∞. If Hn
w→ H for some distribution function

H then we have lim
n→∞

E(Yn) =
∞∫

−∞
x dH(x) < ∞.

Theorem 2.5. [5, p. 116] For some suitably chosen constants An the sequence
of distributions of the sums
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Xn1 + Xn2 + · · ·+ Xnkn − An

of independent infinitesimal random variables converges to a limit, it is necessary
and sufficient that there exist non-decreasing functions M and N defined on
the intervals (−∞, 0) and (0, +∞), respectively, such that M (−∞) = 0 and
N (+∞) = 0 and a constant σ ≥ 0 such that

(i) lim
n→∞

kn∑

k=1

Fnk(u) = M (u) for every continuity point u of M ;

(ii) lim
n→∞

kn∑

k=1

(Fnk(u) − 1) = N (u) for every continuity point u of N ;

(iii) lim
ε→0+

lim inf
n→∞

kn∑

k=1

{ ∫

|x|<ε

x2dFnk(x) −
( ∫

|x|<ε

xdFnk(x)
)2}

= lim
ε→0+

lim sup
n→∞

kn∑

k=1

{ ∫

|x|<ε

x2dFnk(x) −
( ∫

|x|<ε

xdFnk(x)
)2}

= σ2.

The constants An may be chosen according to the formula

An =
kn∑

k=1

∫

|x|<τ

xdFnk(x) − γ(τ ),

where γ(τ ) is any constant and −τ and τ are continuity points of M and N ,
respectively.

If the limit distribution function is Φ, then M ≡ N ≡ 0 and σ2 = 1.

Theorem 2.6. [5, p. 98] Let (kn) be a sequence of positive integers. Assume that

(Xnj), j = 1, 2, ..., kn, is infinitesimal and lim
n→∞

kn∑
k=1

σ2
nk < ∞. Then the sequence

of distribution functions of Xn1 + Xn2 + · · ·+ Xnkn converges weakly to a limit
distribution function if and only if the accompanying distribution function of
Xn1 +Xn2 + · · ·+Xnkn converges weakly to the same limit distribution function,
where the accompanying distribution function of Xn1+ Xn2+ · · ·+ Xnkn is the
distribution function whose logarithm of its characteristic function ϕ̂n(t) is given
by

ln ϕ̂n(t) =
kn∑

k=1

∞∫

−∞

(eitx − 1)dFnk(x).

We also know that the limit distribution function is infinitely divisible [5, p. 73].

Proposition 2.7. [13] For a.e. q ∈ (0, 1) let F (q) = L(aq, σ
2
q , Mq, Nq) be an

infinitely divisible distribution function with zero mean. Suppose that σ2
q and the

functions Mq , |Nq| are non-decreasing in q and the integral F (x) =
1∫
0

F (q)(x)dq

exists for all x ∈ R. Then we have F = Φ if and only if F (q) = Φ a.e. q ∈ (0, 1).
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Theorem 2.8. Let (Xnk, Zn) be such that
Zn∑
k=1

σ2
nk

p→ 1 and satisfy (RI). Then

Fn
w→ Φ if and only if F

(q)
n

w→ Φ for every q ∈ (0, 1).

Proof. (⇒) By Proposition 2.2, there exists a subsequence (n′) of (n) such that
for a.e. q ∈ (0, 1), we have a distribution function F

(q)
and a bounded sequence

(a(q)
n′ ) such that

F
(q)
n′ ∗ E

a
(q)
n′

w→ F
(q)

. (2.1)

Since
Zn∑
k=1

σ2
nk

p→ 1, by Proposition 2.1, we have
ln(q)∑
k=1

σ2
nk → 1 for all q ∈ (0, 1).

Then for each q ∈ (0, 1)

sup
n∈N

E[(S(q)
n )2] = sup

n∈N

ln(q)∑

k=1

σ2
nk < ∞. (2.2)

Thus, from (2.2) and the boundedness of (a(q)
n′ ), we have

sup
n′∈N

E[(S(q)
n′ + a

(q)
n′ )2] = sup

n′∈N
[E[(S(q)

n′ )2] + (a(q)
n′ )2] < ∞ a.e. q ∈ (0, 1).

From this fact and (2.1) we can apply Theorem 2.4 to Yn′ = S
(q)
n′ +a

(q)
n′ and then

lim
n′→∞

a
(q)
n′ = lim

n′→∞
(E[S(q)

n′ + a
(q)
n′ ]) =

∞∫

−∞

xdF
(q)

(x)

for a.e. q ∈ (0, 1). Let a(q) =
∞∫

−∞
xdF

(q)
(x). Thus lim

n′→∞
a
(q)
n′ = a(q) < ∞ for

a.e. q ∈ (0, 1) and
F

(q)
n′

w→ F (q) a.e. q ∈ (0, 1),

where F (q) = F
(q) ∗ E−a(q) . By Proposition 2.3, Φ(x) =

1∫
0

F (q)(x)dq.

Next, we will show that F (q) is Φ for every q ∈ (0, 1). First we will show
that F (q) satisfies all conditions of Proposition 2.7. Applying Theorem 2.4 to
Yn′ = S

(q)
n′ , we have

∞∫

−∞

xdF (q)(x) = lim
n′→∞

E[S(q)
n′ ] = 0

for a.e. q ∈ (0, 1). Thus F (q) has zero mean. Since (Xnk) satisfies (RI), by
Proposition 2.1 we have

lim
n→∞

sup
1≤l≤ln(q)

P (|Xnl| ≥ ε) = 0

for all q ∈ (0, 1). Applying Theorem 2.6, the sequence of the accompanying
distribution functions of S

(q)
n′ converges weakly to F (q) for a.e. q ∈ (0, 1). Let
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F (q) = L(aq , σ
2
q , Mq, Nq). From monotonicity of the ln(q) we can use Theorem

2.5 to show that σ2
q , Mq, |Nq| are non-decreasing in q. Therefore Proposition 2.7

can be applied and it follows that F (q) = Φ for a.e. q ∈ (0, 1). So F
(q)
n′

w→ Φ for
a.e. q ∈ (0, 1). Next we will show that F

(q)
n′

w→ Φ for all q ∈ (0, 1). Let q ∈ (0, 1)
and A = {t ∈ (0, 1)|F (t)

n′
w→ Φ}. Then there exist q1 and q2 in A such that

q1 < q < q2. From Theorem 2.5 and the non-decreasing monotonicity of the
ln′(q), we have for u < 0,

0 = lim
n′→∞

ln′ (q1)∑

k=1

Fn′k(u) ≤ lim
n′→∞

ln′ (q)∑

k=1

Fn′k(u) ≤ lim
n′→∞

ln′ (q2)∑

k=1

Fn′k(u) = 0.

Hence (F (q)
n′ ) satisfies condition (i) of Theorem 2.5 for M (u) = 0. Similarly, we

can show that the conditions (ii) and (iii) of Theorem 2.5 hold for N (u) = 0
and σ2 = 1. Hence, F

(q)
n′

w→ Φ. By the same argument we can show that every
convergent subsequence of (F (q)

n ) converges weakly to Φ for all q. Thus (F (q)
n )

converges weakly to Φ for all q ∈ (0, 1).
(⇐) Follows directly from Proposition 2.3. �

Lemma 2.9. Let K, K1, K2, ... be bounded, non-decreasing, right-continuous
functions from R into [0,∞) and vanish at −∞. Assume that the followings
hold
(i) ∞∫

−∞

f(t, x)dKn(x) →
∞∫

−∞

f(t, x)dK(x)

for every real number t where f(t, ·) : R → R defined by

f(t, x) =

{
(eitx − 1 − itx) 1

x2 if x 6= 0

− t2

2
if x = 0.

(ii) (Kn(+∞)) is bounded.
Then Kn

w→ K.

Proof. By Helley Theorem [23, p. 133] there exist a subsequence (Knk) of (Kn)
and a bounded, non-decreasing, right-continuous function K such that Knk

w→
K. Sincef(t, ·) is bounded for every t ∈ R,

∞∫

−∞

f(t, x)dKnk(x) →
∞∫

−∞

f(t, x)dK(x).

From this fact and (i) we have
∞∫

−∞

f(t, x)dK(x) =

∞∫

−∞

f(t, x)dK(x).
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By the uniqueness of Kolmogorov’ formula [8], we have K = K . So Knk

w→ K.
By the same argument we have that every subsequence of (Kn), it contains a
subsequence which converges weakly to K. This implies that (Kn) converges
weakly to K. �

2.2. Proof of Main Results

In this section we prove our main results of convergent conditions.

Proof of Theorem 1.2.
(⇒) To prove KZn(u) p→ K(u), by Proposition 2.1 it suffices to show that

Kln(q)
w→ K

for every q ∈ (0, 1). By Theorem 2.6, Theorem 2.8 and continuity Theorem,
ln ϕ̂ln(q)(t) → −t2/2 for every real number t, where ϕ̂ln(q) is the characteristic
function of the accompanying distribution function of S

(q)
n . This implies

∞∫

−∞

f(t, x)dKln(q)(x) →
∞∫

−∞

f(t, x)dK(x).

So (i) of Lemma 2.9 is satisfied. Since
Zn∑
k=1

σ2
nk

p→ 1, by Proposition 2.1,

(Kln (q)(+∞)) is bounded for every q in (0, 1). Therefore the condition (ii) of
Lemma 2.9 is satisfied. Thus Kln(q)

w→ K.

(⇐) To prove the sufficient condition, by Proposition 2.3 and Theorem 2.6 it
suffices to show that ϕ̂ln(q)(t) → e−t2/2 for q ∈ (0, 1) and t ∈ R.

Let q ∈ (0, 1) and t be any real number. It follows from (i) and Proposition
2.1 that

Kln(q)
w→ K.

Since f(t, ·) is bounded and continuous,
∞∫

−∞

f(t, x)dKln(q)(x) →
∞∫

−∞

f(t, x)dK(x),

i.e., ln ϕ̂ln(q)(t) → −t2/2 which implies ϕ̂ln(q)(t) → e−t2/2. �

Proof of Theorem 1.3.
To prove the theorem, it suffices to show that (RL) is equivalent to the condition
(i) of Theorem 1.2.
(⇒) Let u be the continuity point of K.
Case 1: u < 0.

Since
Zn∑
k=1

∫
|x|≥−u

x2dFnk(x) =
Zn∑
k=1

σ2
nk −

Zn∑
k=1

∫
|x|<−u

x2dFnk(x)
p→ 1 − 1 = 0, we

have
Zn∑
k=1

u∫
−∞

x2dFnk(x)
p→ 0 ,i.e., KZn (u)

p→ K(u).
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Case 2: u > 0.

From the fact that
Zn∑
k=1

∫
|x|≥u

x2dFnk(x) = 0 we have
Zn∑
k=1

−u∫
−∞

x2dFnk(x) p→ 0. So

Zn∑

k=1

u∫

−∞

x2dFnk(x) =
Zn∑

k=1

−u∫

−∞

x2dFnk(x) +
Zn∑

k=1

∫

|x|<u

x2dFnk(x)
p→ 0 + 1 = 1.

That is KZn(u)
p→ K(u).

(⇐) Assume that (i) of Theorem 1.2 holds. Note that

Zn∑

k=1

∫

|x|<ε

x2dFnk(x) =
Zn∑

k=1

ε∫

−∞

x2dFnk(x) −
Zn∑

k=1

−ε∫

−∞

x2dFnk(x) p→ 1 − 0 = 1.

Thus (RL) is satisfied. �

Proof of Theorem 1.4.
(⇒) Follows from Theorem 1.3.

(⇐) Since
Zn∑
k=1

σ2
nk

p→ 1 and (Xnk, Zn) satisfies (RL), we have
Zn∑
k=1

∫
|x|≥ε

x2dFnk(x)
p→

0 for every ε > 0. Hence

sup
1≤k≤Zn

P (|Xnk| ≥ ε) = sup
1≤k≤Zn

∫

|x|≥ε

dFnk(x)

≤ 1
ε2

Zn∑

k=1

∫

|x|≥ε

x2dFnk(x)

converges in probability to 0, i.e., (Xnk, Zn) satisfies (RI). So (i) follows from
Theorem 1.3. �

3. Error of Estimation

To prove main theorems (Theorem 1.5 and Theorem 1.6 ), we need the following
well-known theorem.

Theorem 3.1. [5 p. 196-197] Let A, T and ε > 0 be constants, F a nonde-
creasing function and G a function of bounded variation. If
1. F (−∞) = G(−∞) , F (+∞) = G(+∞),
2.

∫
|F (x)− G(x)|dx < ∞ ,

3. G′(x) exists for all x and |G′(x)| ≤ A,

4.
T∫

−T

|f(t) − g(t)
t

|dt = ε where f(t) =
∫
R

eitxdF (x) and g(t) =
∫
R

eitxdG(x),



34 K. Neammanee and P. Rattanawong

then for every number a > 1 there corresponds a positive number c(a) depending
only on a such that

|F (x)− G(x)| ≤ a
ε

2π
+ c(a)

A

T
.

Proof of Theorem 1.5.

For each n, let Im Zn = {knj|knj < kn(j+1)}, qnj =
knj∑
k=1

P (Zn = k) and

qn0 = 0. Then for q ∈ [qn(j−1), qnj) we have ln(q) = knj and

Fn(x) = P (SZn ≤ x)

=
∑

knj∈Im Zn

P (S(q)
n ≤ x)P (Zn = knj)

=
∑

knj∈Im Zn

P (S(q)
n ≤ x)(qnj − qn(j−1))

=
∑

knj∈Im Zn

∫

(qn(j−1) ,qnj )

F (q)
n (x)dq

=

1∫

0

F (q)
n (x)dq.

Hence

|Fn(x) − Φ(x)| ≤
1∫

0

|F (q)
n − Φ(x)|dq. (3.1)

Let ϕln(q) and ϕnk be the characteristic functions of S
(q)
n and Xnk, respectively.

Then

|ϕln(q)(t) − e
t2
2 | ≤ | lnϕln(q)(t) −

t2

2
|

≤ |
ln(q)∑

k=1

(1 − ϕnk(t)) −
t2

2
| + | lnϕln(q)(t) −

ln(q)∑

k=1

(1 − ϕnk(t))|

= |
∫

R

f(t, x)d(Kln(q)(x) − K(x))| + |
ln(q)∑

k=1

ln ϕnk(t) −
ln(q)∑

k=1

(1 − ϕnk(t))|

≤ An + Bn,

(3.2)

where

An = |
∫

R

f(t, x)d(Kln(q)(x) − K(x))| and Bn =
ln(q)∑

k=1

| lnϕnk(t) − (1 − ϕnk(t))|.

Shapiro [17] showed that
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An ≤ t2
ln(q)∑

k=1

∫

|x|≥ε

x2dFnk(x)+
t2

2

∣∣
ln(q)∑

k=1

σ2
nk−1

∣∣+ 5
3
ε|t|3 max

( ln(q)∑

k=1

σ2
nk, 1

)
. (3.3)

Next, we find a bound of Bn. By Taylor formula, we have

ϕnk(t) = 1 +
1
2
θσ2

nkt2 for some |θ| ≤ 1. (3.4)

Let Tln(q) =
1

gn(ln(q), ε)
and t be such that |t| < Tln(q). Note that

|ϕnk(t) − 1| = |θ|
1
2
σ2

nkt2

≤ 1
2
σ2

nkT 2
ln(q)

≤ σ2
nk

2(gn(ln(q), ε))2

≤ 4
5
(σnk)

2
5

≤
4
5
. (3.5)

Hence lnϕnk(t) =
∞∑

j=1

(−1)j+1

j (1 − ϕnk(t))j and

| lnϕnk(t) − (1 − ϕnk(t))| ≤
∞∑

j=2

|1 − ϕnk(t)|j

j

≤ 1
2

( |1 − ϕnk(t)|2

1 − |1 − ϕnk(t)|

)

≤ 5
2
|1 − ϕnk(t)|2 (by (3.5))

≤ 5
8
σ4

nkt4 (by (3.4))

≤ 5
8
t4[ max

1≤j≤ln(q)
σ2

nj]σ
2
nk.

So for |t| < Tln(q),

Bn ≤ 5
8
t4[ max

1≤k≤ln(q)
σ2

nk

ln(q)∑

k=1

σ2
nk]. (3.6)

From (3.2) - (3.6) we have

|ϕln(q)(t) − e
t2
2 | ≤ 5

8
t4[ max

1≤k≤ln(q)
σ2

nk

ln(q)∑

k=1

σ2
nk] + t2

ln(q)∑

k=1

∫

|x|≥ε

x2dFnk(x)

+
t2

2
|
ln(q)∑

k=1

σ2
nk − 1|+ 5

3
ε|t|3 max(

ln(q)∑

k=1

σ2
nk, 1)



36 K. Neammanee and P. Rattanawong

for |t| < Tln(q). Therefore

Tln(q)∫

−Tln(q)

|
ϕln(q)(t) − e−

t2
2

t
|dt

≤ 5
4
[ max
1≤k≤ln(q)

σ2
nk

ln(q)∑

k=1

σ2
nk]

Tln(q)∫

0

t3dt + 2
ln(q)∑

k=1

∫

|x|≥ε

x2dFnk(x)

Tln(q)∫

0

tdt

+ |
ln(q)∑

k=1

σ2
nk − 1|

Tln(q)∫

0

tdt +
10
3

ε max(
ln(q)∑

k=1

σ2
nk, 1)

Tln(q)∫

0

t2dt

≤ [
1
3

max
1≤k≤ln(q)

σ2
nk

ln(q)∑

k=1

σ2
nk]

1

[13 max
1≤k≤ln(q)

σ2
nk

ln(q)∑
k=1

σ2
nk]

4
5

+
[ ln(q)∑

k=1

∫

|x|≥ε

x2dFnk(x) +
1
2
|
ln(q)∑

k=1

σ2
nk − 1|

]

×
1

[ ln(q)∑
k=1

∫
|x|≥ε

x2dFnk(x) + 1
2 |

ln(q)∑
k=1

σ2
nk − 1|

]2
3

+
10ε

9
max

( ln(q)∑

k=1

σ2
nk, 1

) 1
[

10ε
9 max

( ln(q)∑
k=1

σ2
nk, 1

)
ε
] 3

4

= gn(ln(q), ε).

Now applying Theorem 3.1 we see that for any a > 1,

sup
−∞<x<∞

∣∣F (q)
n (x) − Φ(x)

∣∣ ≤ a

2π
g(ln(q), ε) +

c(a)
Tn

= Cgn(ln(q), ε), (3.7)

where C =
a

2π
+ c(a). Then the theorem follows from (3.1), (3.7) and the fact

that
1∫

0

gn(ln(q), ε)dq =
∑

knj∈Im Zn

∫

[qn(j−1) ,qnj )

gn(ln(q), ε)dq

=
∑

knj∈Im Zn

gn(knj, ε)(qnj − qn(j−1))

=
∑

knj∈Im Zn

gn(knj, ε)P (Zn = knj)

= E(gn(Zn, ε)). �
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Proof of Theorem 1.6.
(⇒) Let (εn) be a sequence of positive real numbers such that 0 < εn < 1
and εn → 0. In order to show E(g(Zn, εn)) → 0, it suffices to show that
g(Zn, εn) p→ 0. Note that gn(Zn, εn) = Cn + Dn + En where

Cn =
[1
3

max
1≤k≤Zn

σ2
nk

Zn∑

k=1

σ2
nk

] 1
5

Dn =
[10εn

9
max

( Zn∑

k=1

σ2
nk, 1

)] 1
4

En =
[ Zn∑

k=1

∫

|x|>ε

x2dFnk(x) +
1
2

∣∣∣
Zn∑

k=1

σ2
nk − 1

∣∣∣
]1

3
.

By Theorem 1.4, (Xnk, Zn) satisfies (RL). From this fact and the fact that
Zn∑
k=1

σ2
nk

p→ 1 we have (Dn) and (En) converge in probability to 0. To prove

Cn
p→ 0, it suffices to show max

1≤k≤Zn

σ2
nk

p→ 0. This is true by Theorem 1.2, (RI)

and the fact that

max
1≤k≤Zn

σ2
nk = max

1≤k≤Zn

∞∫

−∞

x2dFnk(x)

= max
1≤k≤Zn

∫

|x|≤
√

ε
5

x2dFnk(x) + max
1≤k≤Zn

∫

√
ε
5 <|x|≤1

x2dFnk(x)

+ max
1≤k≤Zn

∫

|x|>1

x2dFnk(x)

≤ ε

5
+ max

1≤k≤Zn

P (|Xnk| >

√
ε

5
) + KZn(−1) + KZn(+∞) − KZn(1).

for every ε > 0.

(⇐) This follows directly from Theorem 1.5. �

4. Examples

Example 1. For each n, let Zn be such that

P (Zn = n) = 1 − 1
n2

and P (Zn = n + 1) =
1
n2

.

For each n and k, define Xnk as follows.
If k 6= n + 1, let Xnk be defined by

P (Xnk =
1√
n

) = P (Xnk = − 1√
n

) =
1
2
.
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In case k = n + 1, let Xnk be defined by

P (Xnk = 2n) = P (Xnk = −2n) =
1
2
.

Note that µnk = 0,

σ2
nk =

{ 1
n

if k 6= n + 1

22n if k = n + 1

and
ln(q) =

{
n if 0 < q < 1 − 1

n2

n + 1 if 1 − 1
n2 ≤ q < 1

for every k ∈ N and n ≥ 2. It is easy to see that
Zn∑
k=1

σ2
nk

p→ 1. From Proposition

2.1 and the fact that

ln(q)∑

k=1

∫

|x|<ε

x2dFnk(x) =
n∑

k=1

ε∫

−ε

x2dFnk(x)

=
n∑

k=1

( ∫

{
− 1√

n

}
x2dFnk(x) +

∫

{ 1√
n
}

x2dFnk(x)
)

=
n∑

k=1

((1
2
− 0

)(
− 1√

n

)2

+
(
1 − 1

2

)( 1√
n

)2)

= 1,

we have (Xnk, Zn) satisfies (RL). Hence, by Theorem 1.4, the sequence of dis-
tribution functions of random sums SZn converges weakly to Φ.

Example 2. Let Zn be such that P (Zn = n + j) = 1/2j, j = 1, 2, 3, ... and
for each n, k ∈ N, let Xnk = Xk/

√
n where P (Xk = −1) = P (Xk = 1) = 1/2.

Then

sup
−∞<x<∞

|Fn(x) − Φ(x)| ≤ C

n
1
5

for some constant C.

5. Remarks

1. Theorem 1.1 is a corollary of Theorem 1.4 by using Proposition 2.1 and the
fact that ln(q) = kn for every q ∈ (0, 1).
2. In [13], Bethmann gave the conditions of convergence which are similar to

Theorem 1.4 but the assumption “
Zn∑
k=1

σ2
nk

p→ 1” is changed to “E(
Zn∑
k=1

σ2
nk) →

1”. We note that there exist sequences of random variables which satisfy our
assumption but do not satisfy the assumption of Bethmann and conversely.
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For examples, (Xnk, Zn) in Example 1 satisfy the condition
Zn∑
k=1

σ2
nk

p→ 1 but

E
( Zn∑

k=1

σ2
nk

)
→ ∞. Conversely, if we let Xnk = 0 for j 6= n + 1, P (Xn(n+1) =

√
2) = P (Xn(n+1) = −

√
2) = 1/2 and P (Zn = n) = P (Zn = n + 1) = 1/2 we

see that E
( Zn∑

k=1

σ2
nk

)
→ 1 but E

( Zn∑
k=1

σ2
nk

)
does not converge in probability to

1.
3. There are other authors (eg. [2, 19, 24, 26 - 28]) gave a bound of this estima-
tion. But the assumptions and results are different.
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