Copolyform Σ-Lifting Modules

Y. Talebi and N. Vanaja

1 Dept., of Math. Faculty of Science, Mazandaran University, Babolsar, Iran
2 Row Bungalow 146, Sector 3, Kandivli (West), Mumbai 400 067, India

Received October 20, 2002

Abstract. A module M is called copolyform if every coessential submodule of M is corational in M. It is known that every polyform Σ-extending module is a direct sum of indecomposable self-injective modules. In this paper we study some properties of copolyform Σ-lifting modules. We show that a copolyform Σ-lifting module is a direct sum of indecomposable self-projective modules whose M-annihilator submodules are linearly ordered and satisfy ACC. We also prove that every copolyform Σ-lifting module M is non-M-cosingular module. Consequently, for M finitely generated, $\operatorname{End}(M)$ is a left and right serial artinian hereditary ring. We then consider Σ-lifting injective modules in terms of $\mathcal{Z}_M(N)$ and show that for any indecomposable direct summand N of M, $\operatorname{Hom}(\mathcal{Z}_M(N), \mathcal{Z}_M(M))$ is a uniserial S-module of finite length where $S = \operatorname{End}(\mathcal{Z}_M(M))$.

1. Preliminaries

Let R be an associative ring with identity. All modules we consider are unitary right R-modules. Suppose M is an R-module. A submodule A of M is said to be a small submodule of M (denoted by $A \ll M$) if for any $B \subseteq M$, $A + B = M$ implies $B = M$. A module M is called a hollow module if every proper submodule of M is small in M. A module is called a local module if it has a unique maximal submodule containing all its proper submodules. It is easy to see that a module is a local module if and only if it is a cyclic hollow module.

For $A \subseteq B \subseteq M$, A is said to be a coessential submodule of B in M (denoted by $A \llce B$ in M) if $B/A \ll M/A$. In this case we also say B is a coessential extension of A in M. Instead of coessential extension the term lying above was used in Wisbauer [13]. For example, if $R = \mathbb{Z} = M$ and $A = 2\mathbb{Z}$, then for any $k \in \mathbb{N}$, $2^k\mathbb{Z}$ is a coessential submodule of A in M.
A is said to be coclosed in \(M \) (denoted by \(A \preceq M \)) if \(A \) has no proper coessential submodule in \(M \). The following lemma regarding hollow submodules of a module has been proved by Inoue \[6, \text{Proposition 6}\].

Lemma 1.1. \[6\] Let \(M \) be an \(R \)-module and \(N \) a hollow submodule of \(M \). Then \(N \ll M \) or \(N \preceq M \).

We recall the definition of an amply supplemented module. If \(N \) and \(L \) are submodules of the module \(M \), then \(N \) is called a *supplement* (resp. *weak supplement*) of \(L \), if \(N + L = M \) and \(N \cap L \ll N \) (resp. \(N \cap L \ll M \)). \(M \) is called *supplemented* (resp. *weakly supplemented*) if each of its submodules has a supplement (resp. weak supplement) in \(M \). A module \(M \) is called *\(\Sigma \)-weakly supplemented*, if any direct sum of copies of \(M \) is weakly supplemented. \(M \) is called *amply supplemented*, if for all submodules \(N \) and \(L \) of \(M \) with \(N + L = M \), \(N \) contains a supplement of \(L \) in \(M \).

A module \(M \) is called *lifting* if every submodule \(A \subseteq M \) contains a direct summand \(B \) of \(M \) such that \(A/B \ll M/B \). \(M \) is said to be (finitely) \(\Sigma \)-lifting if every (finite) direct sum of copies of \(M \) is lifting. The following lemma has been proved by Mohamed and Müller [9, 4.8].

Lemma 1.2. \[9\] A module is lifting if and only if it is amply supplemented and its coclosed submodules are direct summand.

Suppose \(M \) is an \(R \)-module. We recall the definitions of \(M \)-projective, self-projective and almost \(M \)-projective modules. An \(R \)-module \(N \) is called *\(M \)-projective* if for every epimorphism \(f : M \rightarrow K \) and every homomorphism \(g : N \rightarrow M \) with \(fh = g \), \(N \) is called *self-projective* (resp. *projective*) if it is \(N \)-projective (resp. \(L \)-projective for any \(R \)-module \(L \)). \(N \) is called almost \(M \)-projective, if for every epimorphism \(f : M \rightarrow K \) and every homomorphism \(g : N \rightarrow K \), either there exists \(h : N \rightarrow M \) with \(fh = g \) or there exists a nonzero direct summand \(M_1 \) of \(M \) and \(h : M_1 \rightarrow N \) with \(gh = f|_{M_1} \).

A family \(\{M_i\}_{i \in I} \) of modules is called (locally) *semi-\(T \)-nilpotent*, if for any countable family \(\{f_n : M_{i_n} \rightarrow M_{i_{n+1}}\}_N \) of non-isomorphisms with \(i_n \in I \) all distinct, (and for any element \(x \in M_{i_k} \)), there exists \(k \in \mathbb{N} \) (\(k \) depending on \(x \)) such that \(f_k \ldots f_1 = 0 \) (\(f_k \ldots f_1(x) = 0 \)). It is obvious that if each \(M_i \) is a local module, then the family \(\{M_i\}_I \) of modules is locally semi-\(T \)-nilpotent if and only if it is semi-\(T \)-nilpotent.

Regarding lifting modules with local endomorphism ring the following results have been proved by Baba and Harada [2].

Theorem 1.3. \[2, \text{Theorem 1}\] Let \(\{M_i\}_{i=1}^n \) be a set of hollow modules with local endomorphism ring. Then the following are equivalent.

1. \(\bigoplus_{i=1}^n M_i \) is lifting;
2. \(M_i \) is almost \(M_j \)-projective for any \(i \neq j \);
3. for any subset \(J \) of \(I = \{1, 2, \ldots, n\} \), \(\bigoplus_{i \in J} M_i \) is almost \(\bigoplus_{i \in I \setminus J} M_i \)-projective.
Lemma 1.4. [2, Lemma 3] Let \(\{M_i\}_I \) be a family of modules with local endomorphism ring. If \(\bigoplus_{i \in I} M_i \) is lifting, then \(\{M_i\}_I \) is locally semi-T-nilpotent.

Theorem 1.5. [2, Theorem 2] Let \(\{M_i\}_I \) be a family of local modules with local endomorphism ring. Then the following are equivalent.

1. \(\bigoplus_{i \in I} M_i \) is lifting;
2. \(M_i \) is almost \(M_j \)-projective for any \(i \neq j \) and \(\{M_i\}_I \) is locally semi-T-nilpotent;
3. for any subset \(J \) of \(I \), \(\bigoplus_{i \in J} M_i \) is almost \(\bigoplus_{i \in I \setminus J} M_i \)-projective and \(\{M_i\}_I \) is locally semi-T-nilpotent.

Lemma 1.6. [2, Lemma 4] Let \(M \) be a hollow module with local endomorphism ring. If any direct sum of copies of \(M \) is lifting, then \(M \) is cyclic.

2. \(\Sigma \)-Lifting Modules

In this section we prove that a \(\Sigma \)-lifting module with local endomorphism ring is self-projective. Suppose \(M \) is a \(\Sigma \)-lifting module such that any indecomposable direct summand of \(M \) has local endomorphism ring. Let \(N \) be any indecomposable direct summand of \(M \) and \(A = \{ \text{Ker} f : f : N \to M, \text{Im} f \ll M \} \). We prove that then \(N \) has ACC on \(A \) and if \(M \) has only finitely many non-isomorphic indecomposable direct summands, then \(N \) has DCC on \(A \). Suppose \(M \) is a direct sum of modules with local endomorphism rings and is \(\Sigma \)-lifting. Let \(S = \text{End}(M) \) and \(N \) is any indecomposable direct summand of \(M \). Then as a right \(S \)-module \(A = \text{Hom}(M, N) \) has a waist \(B = \{ f : M \to N | \text{Im} f \ll N \} \) and \(A/B \) is a uniserial module.

Proposition 2.1. Let \(M \) be a nonzero \(\Sigma \)-lifting, indecomposable \(R \)-module with \(\text{End}(M) \) local. Then \(M \) is local and self-projective.

Proof. By Lemma 1.6, \(M \) is a local module. We claim that any surjective map from \(M \) to \(M \) is an isomorphism. Suppose not. Let \(f : M \to M \) be surjective map which is not 1-1.

By 1.4, the family \(F = \{ M_n \}, n \in \mathbb{N} \), where \(M_n = M \), for all \(n \in \mathbb{N} \), is locally semi-T-nilpotent. Since \(M \) is a local module the family \(F \) is semi-T-nilpotent. Consider \(f_n = f : M_n \to M_{n+1} \), for all \(n \in \mathbb{N} \). Since \(\{M_i\}_I \) is semi-T-nilpotent, there exists a positive number \(k \) such that \(f^k : M_1 \to M_k = M \) is a zero epimorphism, which is a contradiction.

As \(M \) is lifting and every nonzero epimorphism \(M \to M \) is 1-1, \(M \) is self-projective [12, Lemma 2.3].

Lemma 2.2. Let \(M \) be an indecomposable self-projective lifting \(R \)-module. If \(A \) and \(B \) are fully invariant submodules of \(M \) such that \(M/A \oplus M/B \) is lifting, then either \(A \subseteq B \) or \(B \subseteq A \).

Proof. We first show that if \(Y \) is a fully invariant submodule of a self-projective module \(X \) and if \(\phi : X/Y \to X/Z \) is an onto map, then \(Y \subseteq Z \). We can lift
Y. Talebi and N. Vanaja

φη′ to a map φ′ : X → X such that φη′φ′ = η where η′ : X → X/Y and η : X → X/Z are the natural maps.

Since φ′(Y) ⊆ Y, we get η(Y) = φ′φ′(Y) = 0. Hence Y ⊆ Z.

Since A and B are fully invariant submodules of a self-projective module M, M/A and M/B are self-projective [14, Proposition 2.1]. As M/A and M/B are hollow self-projective, End(M/A) and End(M/B) are local rings. Suppose f : M/A → M/(A+B) and g : M/B → M/(A+B) are the natural maps. Since M/A⊕M/B is lifting, M/A is almost M/B-projective Theorem 1.3. Also M/B is indecomposable. Hence we can get either a map h : M/A → M/B or a map h′ : M/B → M/A, such that gh = f or fh′ = g.

As f and g are small epimorphisms, the maps h and h′ (if they exist) will be epimorphisms. Hence there exists either an epimorphism h : M/A → M/B or an epimorphism h′ : M/B → M/A. Therefore either A ⊆ B or B ⊆ A.

Proposition 2.3. Suppose M is a Σ-lifting module such that the endomorphism ring of every indecomposable direct summand of M is a local ring. Suppose that N is an indecomposable direct summand of M, K = \{ f : N → M | Im f ≪ M \} and A = \{ Ker f | f ∈ K \}. Then

1. A is linearly ordered by inclusion;
2. N has ACC on A;
3. N has DCC on A, if M has only finitely many non-isomorphic indecomposable direct summands.

Proof. Suppose that L is an indecomposable direct summand of M. Since L is Σ-lifting with local endomorphism ring, then by Proposition 2.1, L is a self-projective local module.

1. Suppose that f ∈ K. As Im f is hollow, then by Lemma 1.1, Im f is coclosed in M. Since M is lifting, Im f is an indecomposable direct summand of M Lemma 1.2. Hence Im f is local and self-projective. Since Ker f ≪ N and N/Ker f is self-projective, Ker f is fully invariant in N [14, Proposition 2.2].

Suppose that f, g ∈ K; then Ker f and Ker g are fully invariant in N. N/Ker f ⊕ N/Ker g (as it is isomorphic to a direct summand of M ⊕ M) is a lifting module. By Lemma 2.2, either Ker f ⊆ Ker g or Ker g ⊆ Ker f. Hence A is linearly ordered by inclusion.

2. Now suppose that there exists a strictly ascending chain

X_1 ≪ X_2 ≪ \cdots ≪ X_i ≪ X_{i+1} ≪ \cdots

of elements in A. Then there exists f_i : N → M such that Ker f_i = X_i and Im f_i ≪ M for every i ∈ N. For each i ∈ N, N/X_i is isomorphic to a direct
summand of \(M \) and hence is a \(\Sigma \)-lifting, self-projective, local module with local endomorphism ring.

As \(M \) is \(\Sigma \)-lifting we have \(\bigoplus_{i=1}^{\infty} N/X_i \) is a lifting module with \(\text{End}(N/X_i) \) local, for all \(i \in \mathbb{N} \). Thus \(\{N/X_i\}_{i \in \mathbb{N}} \) is locally semi-\(T \)-nilpotent (1.4) and hence semi-\(T \)-nilpotent (as each \(N/X_i \) is local). By considering the natural maps \(\eta_i : N/X_i \to N/X_{i+1} \) for all \(i \in \mathbb{N} \), we get a contradiction. Hence \(N \) satisfies ACC on \(A \).

(3) Suppose that
\[
Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_i \supseteq Y_{i+1} \supseteq \cdots
\]
is a strictly descending chain of elements in \(A \). Each \(N/Y_i \) is isomorphic to some indecomposable direct summand of \(M \). As there are only finitely many non-isomorphic indecomposable direct summands of \(M \), we get \(N/Y_\ell \cong N/Y_k \) for some \(k \) and \(\ell \). Suppose \(k < \ell \). Then \(Y_\ell \nsubseteq Y_k \). Since \(N/Y_\ell \cong N/Y_k \) is self-projective, the natural map \(f : N/Y_\ell \to N/Y_k \) splits. Therefore \(Y_k/Y_\ell \) is a nonzero proper direct summand of the hollow module \(N/Y_\ell \), which is a contradiction. \(\blacksquare \)

Recall that a submodule \(B \) of a module \(A \) is called a \textit{waist} if for every submodule \(C \) of \(A \) either \(B \subseteq C \) or \(C \subseteq B \) holds.

Theorem 2.4. Let \(M = \bigoplus_i M_i \) be a \(\Sigma \)-lifting module, where each \(M_i \) has a local endomorphism ring. Suppose that \(N \) is a nonzero indecomposable direct summand of \(M \), \(A = \text{Hom}(M,N) \) and \(B = \{ f \in A \mid \text{Im} \ f \ll N \} \). Then \(B \) is a waist of \(A \) such that \(A/B \) is a uniserial right \(S \)-module, where \(S = \text{End}(M) \).

Proof. Since each \(M_i \) is indecomposable \(\Sigma \)-lifting, by Proposition 2.1, \(M_i \) is local and self-projective. We note that any nonzero \(f \in A \) such that \(f \notin B \) is an epimorphism. To prove that \(B \) is a waist of \(A \), it is enough to prove that for any onto map \(f \in A \) and \(g \in B \), \(gS \subseteq fS \).

Now consider an epimorphism \(f : M \to N \) and \(g : M \to N \) with \(\text{Im} \ g \ll N \). There exists \(i_0 \in I \) such that \(f_{i_0} : M_{i_0} \to N \) is onto (for \(N \) is a local module), where \(f_{i_0} \) is the restriction of \(f \) to \(M_{i_0} \).

For every \(i \in I \), consider \(g_i : M_i \to N \), the restriction of \(g \) to \(M_i \). As \(M_i \oplus M_{i_0} \) is lifting \(M_i \) and \(M_{i_0} \) are relatively almost-projective modules. Hence for every \(i \in I \), there exists \(\phi_i : M_i \to M_{i_0} \) such that \(f_{i_0} \phi_i = g_i \).

Define \(\phi : M \to M \) by \(\phi_{M_i} = \phi_i \), for every \(i \in I \). It is obvious that \(f\phi = g \).

Hence \(gS \subseteq fS \). Therefore \(B \) is a waist of \(A \).

To prove that \(A/B \) is a uniserial right \(S \)-module, it is enough to show that whenever \(f, g : M \to N \) are surjective maps, either \(fS \subseteq gS \) or \(gS \subseteq fS \).

For every \(i \in I \) put \([i] = \{ j \in I \mid M_i \cong M_j \} \) and \(\mathcal{F} = \{ [i] \mid i \in I \} \). Define an order on \(\mathcal{F} \) by \([i] \leq [j] \) if and only if there exists a surjective map \(M_i \to M_j \). We claim that \((\mathcal{F}, \leq) \) is a partially ordered set. Assume that \([i] \leq [j] \) and \([j] \leq [i] \) for some \(i, j \in I \). Then there exist surjective maps \(\theta : M_i \to M_j \) and \(\psi : M_j \to M_i \). Since \(M_i \) is self-projective, the map \(\psi \theta : M_i \to M_i \) splits. Therefore \(M_i \cong M_j \) and hence \([i] = [j] \). Now it is easy to see that \((\mathcal{F}, \leq) \) is a partially ordered set.
As each M_i is local, by Lemma 1.4 the family $\{M_i\}_I$ is semi-T-nilpotent. Therefore every nonempty subset G of F has a maximal element.

Suppose that

\[I_f = \{i \in I \mid f_i = f\mid_{M_i} \text{ is onto}\} \quad \text{and} \quad I_g = \{j \in I \mid g_j = g\mid_{M_j} \text{ is onto}\}. \]

Since N is local, $I_f \neq \emptyset$ and $I_g \neq \emptyset$. Define

\[\tilde{T}_f := \{[i]i \in I_f\} \quad \text{and} \quad \tilde{T}_g := \{[i]i \in I_g\}. \]

Suppose $[i_0]$ is a maximal element of $\tilde{T}_f \cup \tilde{T}_g$ and that $i_o \in I_f$. We claim that $gS \subseteq fS$.

Let $f_{i_0} : M_{i_0} \to N$ be the restriction of f to M_{i_0} and $g_i : M_i \to N$ be the restriction of g to M_i, for every $i \in I$. As before M_i and M_{i_0} are relatively almost-projective modules for every $i \in I$. Hence if g_i is not onto, there exists $\phi_i : M_i \to M_{i_0}$ such that $f_{i_0}\phi_i = g_i$. If g_i is onto, then either there exists a surjective map $\phi_i : M_i \to M_{i_0}$ such that $f_{i_0}\phi_i = g_i$ or a surjective map $\psi_i : M_{i_0} \to M_i$ such that $g_i\psi_i = f_{i_0}$.

By the choice of i_0, the existence of the surjective map ψ_i from M_{i_0} to M_i will imply that $M_i \simeq M_{i_0}$. Since M_i is self-projective, the map ψ_i is an isomorphism. Hence we always get a map $\phi_i : M_i \to M_{i_0}$ such that $f_{i_0}\phi_i = g_i$.

Define $\phi : M \to M$ by $\phi|_{M_i} = \phi_i$, for every $i \in I$. It is obvious that $f\phi = g$. Hence $gS \subseteq fS$.

3. Copolyform Σ-Lifting Modules

Clark and Wisbauer [3] have proved that a polyform Σ-extending module M is a direct sum of self-injective modules. In this section dually we show that every copolyform Σ-lifting module is a direct sum of self-projective modules whose M-annihilator submodules are linearly ordered.

Suppose M is an R-module. By $\sigma[M]$ we mean the full subcategory of Mod-R whose objects are submodules of M-generated modules. The injective hull of $N \in \sigma[M]$ is denoted by \tilde{N}. $N \in \sigma[M]$ is said to be an M-small module if N is small in \tilde{N}. It is easy to see that N is an M-small module if and only if there exists a module $L \in \sigma[M]$ such that $N \ll L$. We define $\mathcal{Z}_M(N)$, as follows:

\[\mathcal{Z}_M(N) = \text{Re}(N, S) = \bigcap \{\text{Ker}(g) \mid g \in \text{Hom}(N, L), L \in S\}, \]

where S denotes the class of all M-small modules. We call N an M-cosingular (non-M-cosingular) module if $\mathcal{Z}_M(N) = 0$ ($\mathcal{Z}_M(N) = N$). It is easy to see that a module $N \in \sigma[M]$ is non-M-small if and only if every nonzero factor module of N is non-M-small.

Corational extension and copolyform module which are dual concepts of rational extension and polyform module are defined and studied in [11]. We give the definitions.

Suppose that $A \subseteq B \subseteq M$. We say that A is a coessential submodule of B in M (denoted by $A \leftrightarrow B$ in M), if $B/A \ll M/A$. We call A a corational submodule of B in M, if $\text{Hom}(M/A, B/X) = 0$, for any submodule X such that
A \subseteq X \subseteq B. We denote this by \(A \overset{cr}{\subseteq} B \) in \(M \). In this case we also say that \(B \) is a corational extension of \(A \) in \(M \).

We call a module \(M \) a copolyform module if \(A \overset{cr}{\subseteq} B \) in \(M \) implies \(A \overset{cr}{\subseteq} B \) in \(M \). Equivalently a module \(M \) is a copolyform module if whenever \(B/A \ll M/A \), \(\hom(M/A, B/X) = 0 \), for \(A \subseteq X \subseteq B \). A module \(M \) is \(\Sigma \)-copolyform, if any direct sum of copies of \(M \) is copolyform.

Suppose \(M \) is an \(R \)-module and \(A \subseteq M \). Consider the set \(\mathcal{A} \) of all coessential submodules of \(A \) in \(M \). Minimal elements of \(\mathcal{A} \) under set inclusion, if they exist, are called coclosures of \(A \) in \(M \). If \(M \) is amply supplemented, then coclosures of every submodule of \(A \) in \(M \) exist. A module \(M \) is called a unique coclosure module (denoted by UCC module), if every submodule of \(M \) has a unique coclosure in \(M \) [5]. We call a module \(M \) a \(\Sigma \)-UCC module, if any direct sum of copies of \(M \) is a UCC module.

Suppose that \(M \) is an amply supplemented module. If \(M \) is copolyform, then \(M \) is a UCC module [5, 4.2]. The converse is not true. For example, consider \(\mathbb{Z}/8\mathbb{Z} \) as a \(\mathbb{Z} \)-module. But if \(M \oplus M \) is UCC, then \(M \) is copolyform [5, 4.6]. The following lemma is trivial.

Lemma 3.1. Suppose that \(M \) is a \(\Sigma \)-amply supplemented module. Then \(M \) is a \(\Sigma \)-UCC module if and only if it is a \(\Sigma \)-copolyform module.

It is known that if \(M \) is a polyform module then \(M \) is non-\(M \)-singular. We do not know whether the dual is true, but it has been proved that if \(M \) is \(\Sigma \)-copolyform and \(\Sigma \)-weakly supplemented, then \(M \) is non-\(M \)-cosingular [11, 2.11]. We prove below that if \(M \) is copolyform and \(\Sigma \)-lifting, then \(M \) is non-\(M \)-cosingular.

Proposition 3.2. Let \(M \) be a copolyform \(\Sigma \)-lifting module. Define \(N := \oplus_{i \in I} M_i \), where \(M_i = M \) for every \(i \in I \). If \(X \) is a direct summand of \(N \) and \(f : N \rightarrow X \), then \(f(A) \overset{cc}{\subseteq} X \) whenever \(A \overset{cc}{\subseteq} N \).

Proof. Suppose \(A \overset{cc}{\subseteq} N \). Since \(N \) is a lifting module, \(A \) is a direct summand of \(N \) Lemma 1.2 and hence \(N = A \oplus B \). Consider the homomorphism \(g : N \rightarrow X \) such that \(g = f \) on \(A \) and \(g = 0 \) on \(B \). Then \(g(A) = f(A) = g(N) \). Moreover, since \(X \) is a lifting module, there exists a direct summand \(Y \subseteq g(A) \) such that \(X = Y \oplus Z \) and \(g(A) = Y \oplus (g(A) \cap Z) \) with \((g(A) \cap Z) \ll Z \). This gives a map \(h := pg : N \rightarrow Z \), where \(p : X \rightarrow Z \) is the projection map along \(Y \). Now \(\im h = pg(N) = g(A) \cap Z \ll Z \).

Let \(\pi_i : N \rightarrow M_i \) and \(q_i : M_i \rightarrow N \) be the natural projection and inclusion maps for any \(i \in I \). Let \(p_i = \pi_i|Z \); then we get a homomorphism \(h_{ij} = p_iq_j : M_j \rightarrow M_i \), for each \(i, j \in I \).
Y. Talebi and N. Vanaja

\begin{equation}
M_i \xi M_j = 0 \quad [11, 2.3] \quad \therefore h = 0. \quad [\therefore f(A) \subseteq X, \text{ and hence } f(A) \subseteq X.]
\end{equation}

Proposition 3.3 Let \(M \) be a copolyform \(\Sigma \)-lifting \(R \)-module. Then \(M \) is a non-\(M \)-cosingular module.

Proof. We know that a \(\Sigma \)-copolyform \(\Sigma \)-weakly supplemented module \(M \) is non-

\(M \)-cosingular \([11, 2.11]\). We want to prove that a copolyform \(\Sigma \)-lifting module is non-

\(M \)-cosingular. As \(M \) is \(\Sigma \)-lifting, \(M \) is \(\Sigma \)-amply supplemented. Hence it

is enough to prove that \(M \) is \(\Sigma \)-copolyform. By Lemma 3.1 it is enough to show that \(M \) is \(\Sigma \)-UCC.

Suppose \(I \) is any indexing set and \(N = \bigoplus_{i \in I} M_i \), where \(M_i = M \) for every

\(i \in I \). We want to show that \(N \) is a UCC module. For this we prove that, for all epimorphism \(f : N \to N/K \), \(A \subseteq N \) implies \(f(A) \subseteq N/K \) \([5, 3.16]\).

Suppose that \(f : N \to N/K \) is an epimorphism and \(A \subseteq N \). As \(N \) is a lifting module, \(N = L \oplus L' \), where \(L \subseteq K \) and \(K = L \oplus (K \cap L') \) with \((K \cap L') \ll L' \). We

have an isomorphism \(\phi : N/K \to L'/((L' \cap K)) \). Also \(\phi f = \eta p \), where \(p : N \to L' \)

is the projection along \(L \), and \(\eta : L' \to L'/((L' \cap K)) \) the natural map.

\[\begin{array}{ccc}
N & \xrightarrow{f} & N/K \\
\downarrow \mu & & \downarrow \phi \\
L & \xrightarrow{\eta} & L'/((L' \cap K))
\end{array} \]

Our aim is to prove that if \(A \subseteq N \), then \(f(A) \subseteq N/K \). It is enough to show that \(f(A) = \eta p(A) \subseteq L'/((L' \cap K)) \), as \(\phi \) is an isomorphism. Now since \(\text{Ker} \eta \ll L' \), \(\eta(B) \subseteq L'/((L' \cap K)) \), whenever \(B \subseteq L' \) \([5, 2.6]\). By Proposition 3.2, \(p(A) \subseteq L' \). Therefore \(\eta p(A) \subseteq L'/((L' \cap K)) \) and hence \(f(A) \subseteq N/K \). Thus \(N \)

is UCC module.

We recall the definition of \(M \)-annihilator submodules. Let \(M \) be an \(R \)-module. For an \(R \)-module \(N \) and any subset \(X \subseteq \text{Hom}(N, M) \), We put

\begin{equation}
q_i : M_i \to Z \\
\phi : Z \to M_i
\end{equation}
\[\text{Ker}(X) = \bigcap \{ \text{Ker} g \mid g \in X \} \].

Any submodule of \(\text{Ker}(X) \) for some such \(X \) is called an \(M \)-annihilator submodule of \(N \) and we denote the set of \(M \)-annihilator submodules by \(K(N,M) \).

Proposition 3.4. Let \(M \) be a copolyform \(\Sigma \)-lifting module, and \(N \) an indecomposable direct summand of \(M \). If \(K(N,M) = \{ \text{Ker}(I) \mid I \subseteq \text{Hom}(N,M) \} \) is the set of all \(M \)-annihilator submodules of \(N \). Then

1. \(\text{End}(N) \) is a division ring and \(N \) is local, self-projective;
2. \(K(N,M) \) is linearly ordered by inclusion and \(N \) has ACC on \(K(N,M) \);
3. \(N \) has DCC on \(K(N,M) \), if \(M \) has only finitely many non-isomorphic indecomposable direct summand submodules.

Proof.

1. Let \(N \) be an indecomposable direct summand of \(M \). Then \(N \) is lifting and hence a hollow module. Suppose that \(f \) is a homomorphism. As \(N \) is non-M-cosingular, \(f \) is an epimorphism by Lemma 1.1. Let \(L = \bigoplus_{i \in \mathbb{N}} N_i \), for every \(i \in \mathbb{N} \), \(N_i = N \). Then \(L \) is a UCC lifting module, and hence the sum of any family of coclosed submodules of \(L \) is coclosed in \(L \) [5, 3.16 (3)]. As \(L \) is also lifting, any locally direct submodule of \(L \) is a direct summand of \(L \) Lemma 1.2. Now consider \(f_i = f : N_i \rightarrow N_{i+1} \) for every \(i \in \mathbb{N} \). Then for every family \(\{ f_i : N_i \rightarrow N_{i+1} \} \), there exists \(r \in \mathbb{N} \) and a nonzero map \(h_r : N_{r+1} \rightarrow N_r \) such that \(f_{r-1} \cdots f_1 = h_r f_r \cdots f_1 \) [13, 43.3]. For any \(i \in \mathbb{N} \), \(f_i \) is onto, and \(h_r f_r \) is the identity map on \(N_r \). Hence \(f_r \) is 1-1. Therefore \(\text{End}(N) \) is a division ring. Now by Proposition 2.1, \(N \) is local and self-projective.

2. By Proposition 3.3, \(M \) is non-M-cosingular. Since every direct summand \(N \) of \(M \) is non-M-cosingular, so if \(f \in \text{Hom}(N,M) \) is a nonzero map then \(\text{Im} f \not\subseteq M \). Therefore if \(\mathcal{A} = \{ \text{Ker} f \mid \text{Im} f \not\subseteq M \} \) then \(\mathcal{A} \cup N = K(N,M) \) and hence \(K(N,M) \) is linearly ordered by Proposition 2.3. Suppose that \(\text{Ker}(I_1) \not\supseteq \text{Ker}(I_2) \), where \(I_1, I_2 \subseteq \text{Hom}(N,M) \). Then there exists \(f \in I_1 \), such that \(\text{Ker} f \not\subseteq \text{Ker} g \), for every \(g \in I_2 \); for if not, then for every \(f_0 \in I_1 \), there exists \(g_0 \in I_2 \), such that \(\text{Ker} f_0 \not\supseteq \text{Ker} g_0 \), and hence \(\text{Ker} f_0 \not\supseteq \text{Ker}(I_2) \). Therefore \(\text{Ker}(I_1) \not\supseteq \text{Ker}(I_2) \) which is a contradiction.

Consider
\[\text{Ker}(I_1) \not\supseteq \text{Ker}(I_2) \not\supseteq \cdots \not\supseteq \text{Ker}(I_r) \not\supseteq \text{Ker}(I_{r+1}) \not\supseteq \cdots \]
a strictly ascending chain of \(M \)-annihilator submodules. Fix \(r \in \mathbb{N} \). As \(\text{Ker}(I_r) \not\subseteq \text{Ker}(I_{r+1}) \), there exists \(f_r \in I_r \) such that for every \(g \in I_{r+1} \), \(\text{Ker} f_r \not\supseteq \text{Ker} g \). Hence we get a strictly increasing chain
\[\text{Ker} f_1 \not\supseteq \text{Ker} f_2 \not\supseteq \cdots \not\supseteq \text{Ker} f_r \not\supseteq \text{Ker} f_{r+1} \not\supseteq \cdots \]
which is a contradiction Proposition 2.3. So \(N \) satisfies ACC on \(K(N,M) \).

3. Suppose that
\[\text{Ker}(I_1) \supseteq \text{Ker}(I_2) \supseteq \cdots \supseteq \text{Ker}(I_r) \supseteq \text{Ker}(I_{r+1}) \supseteq \cdots \]
is a strictly descending chain of \(M \)-annihilator submodules of \(N \). Then for each \(r+1 \in \mathbb{N} \), there exists \(f_{r+1} \in I_{r+1} \) such that for every \(f_r \in I_r \), \(\text{Ker} f_{r+1} \not\subseteq \text{Ker} f_r \). So we get a strictly descending chain

Ker \(f \).
$\text{Ker } f_1 \supsetneq \text{Ker } f_2 \supsetneq \cdots \supsetneq \text{Ker } f_r \supsetneq \text{Ker } f_{r+1} \supsetneq \cdots$,

which is a contradiction Proposition 2.3.

The following Lemma regarding copolyform modules has been proved in [11, 2.3].

Lemma 3.5. Suppose that M is an amply supplemented module. M is a copolyform module if and only if for any nonzero map $f : M \to M/X$, $\text{Im } f \not\subseteq M/X$.

Lemma 3.6. Suppose M is an R-module and $f : P \to M$ a projective cover of M. Then the following are equivalent.

1. P is copolyform;
2. M is copolyform and $0 \xrightarrow{cr} K$ in P, where K is the kernel of f.

Proof.

1. \Rightarrow (2). As P is copolyform, M is copolyform [11, 2.2]. Since $K \ll P$, $0 \xrightarrow{cr} K$ in P. Now P is copolyform implies that $0 \xrightarrow{cr} K$ in P.

2. \Rightarrow (1). Suppose that $A \xrightarrow{cr} B$ in P. It is easy to see that $(A + K)/K \xrightarrow{cr} (B + K)/K$ in M. As M is copolyform, $(A + K)/K \xrightarrow{cr} (B + K)/K$ in M. Therefore by [11, 1.1(5)] $(A + K) \xrightarrow{cr} (B + K)$ in P. Since $0 \xrightarrow{cr} K$ in P and $A \xrightarrow{cr} A$ in P, $A \xrightarrow{cr} (A + K)$ in P [11, 1.1(4)]. Now $(A + K) \xrightarrow{cr} (B + K)$ in P implies $A \xrightarrow{cr} (B + K)$ [11, 1.1(2)]. Again by [11, 1.1(2)] $A \xrightarrow{cr} B$ in P. Thus P is a copolyform module.

It has been proved in [4] that, M is a polyform module if and only if $\text{End}(\hat{M})$ is a regular ring. We prove the dual of that result when M is a semiperfect module.

Theorem 3.7. Let M be a semiperfect module and $f : P \to M$ be the projective cover. Then the following statements are equivalent.

1. M is copolyform and $0 \xrightarrow{cr} \text{Ker } f$ in P;
2. P is copolyform;
3. $\text{End}(P)$ is regular.

Proof.

1. \Leftrightarrow (2) follows from Lemma 3.6.

2. \Rightarrow (3). Let P be a copolyform module and $S = \text{End}(P)$. As P is a projective module, $f \in \text{Rad } S$ implies that $\text{Im } f \ll P$. Since P is copolyform $\text{Rad } S = 0$. As M is semiperfect P is semiperfect [8, 5.6]. Then S is f-semiperfect [13, 42.12] and therefore $S/\text{Rad } S$ is a regular ring [13, 42.11]. Now $\text{Rad } S = 0$ implies that S is a regular ring.

3. \Rightarrow (2). Let $g : P \to P$ be a homomorphism with $\text{Im } g \ll P$. Since $\text{End}(P)$ is regular, $\text{Im } g$ is a direct summand of P [13, 37.7]. Hence $\text{Im } g = 0$ or $g = 0$.

Now by Lemma 3.5 P is copolyform.

Recall that a ring R is a left PP-ring (principal projective) if every cyclic left ideal of R is projective. A ring R is a hereditary (semihereditary) ring if
every left (finitely generated) ideal is projective.

Harmaneci has communicated the following lemma. We give here a proof for the sake of completeness.

Lemma 3.8. Let M be a copolyform module and $S = \text{End}(M)$.

1. If M is lifting, then S is a left and right PP-ring.
2. If M is finitely Σ-lifting, then S is left and right semihereditary.

Proof. (1) Let $f \in S$. Since M is lifting and copolyform, $\text{Im} f \xhookrightarrow{\text{cc}} M$ [11, 2.3]. Therefore $\text{Im} f$ is a direct summand of M Lemma 1.2. Hence by [13, 39.11] S is right PP-ring. Now we show that Sf is projective for every $f \in S$. As above $f(M)$ is a direct summand of M and hence $f(M) = e(M)$ for some idempotent $e \in S$. It is enough to prove that the onto map $\phi : S \to Sf$ defined by $\phi(s) = sf$, where $s \in S$ splits. We have $S(1 - e) \subseteq \text{Ker} \phi$. Let $g \in \text{Ker} \phi$. Then $\phi(g) = gf = 0$ and so $gf(M) = ge(M) = 0$. This implies $ge = 0$. Hence $g(1 - e) = g \in S(1 - e)$. Thus $\text{Ker} \phi = S(1 - e)$. Therefore S is a left PP-ring.

(2) Since M is copolyform and finitely Σ-lifting, M^n is also copolyform and lifting [11, 2.9]. Therefore by (1), for every $n \in \mathbb{N}$, $\text{End}(M^n) \simeq S^n \times S^n$ is a left and right PP-ring. Hence S is left and right semihereditary [13, 39.13].

Theorem 3.9. Let M be a copolyform Σ-lifting module and $S = \text{End}(M)$. Suppose that N is any indecomposable direct summand of M. Then we have the following.

1. $M = \bigoplus_i M_i$ where each M_i is self-projective, local and $\text{End}(M_i)$ a division ring;
2. $\text{Hom}(N, M)$ is a uniserial, artinian left S-module;
3. $\text{Hom}(N, M)$ is a uniserial left S-module of finite length, if M has only finitely many non-isomorphic indecomposable direct summands;
4. $\text{Hom}(M, N)$ is a uniserial right S-module;
5. if M is finitely generated, then S is left and right serial, right artinian and left and right hereditary ring;
6. if M is finitely generated, then M has a projective cover P in $\sigma[M]$ and $\text{End}(P)$ is a semisimple ring.

Proof. (1). Since in a UCC lifting module M, every local direct summand of M is a direct summand [5], M is a direct sum of indecomposable modules [9, 2.17]. Now (1) follows from Proposition 3.4.

(2) By Proposition 3.3, M is non-M-cosingular. Hence N is non-M-cosingular. Thus for every nonzero $f \in \text{Hom}(N, M)$, $\text{Im} f$ is a hollow module which is not small in M. Therefore by Lemma 1.1 $\text{Im} f \xhookrightarrow{\text{cc}} M$ and hence a direct summand of M. As $\text{End}(M_i)$ is local, $\text{Im} f \simeq M_i$, for some $i \in I$ [1].

Suppose $f, g : N \to M$ with $\text{Ker} f \subseteq \text{Ker} g$. We claim that $Sg \subseteq Sf$. For there exists an onto map $\psi : \text{Im} f \to \text{Im} g$ such that $\psi f = g$.

Since $\text{Im} f$ is a direct summand of M, we can extend ψ to $\phi : M \to M$ such that $\phi f = g$. Therefore $Sg \subseteq Sf$.

Copolyform Σ-Lifting Modules

59
Consider any two nonzero \(f, g \in \text{Hom}(N, M) \). Then \(\text{Im} f \cong N / \text{Ker} f \cong M_i \) and \(\text{Im} g \cong N / \text{Ker} g \cong M_j \) for some \(i, j \in I \). By Proposition 2.3 (1), either \(\text{Ker} f \subseteq \text{Ker} g \) or \(\text{Ker} g \subseteq \text{Ker} f \). Hence either \(Sg \subseteq Sf \) or \(Sf \subseteq Sg \). Therefore \(\text{Hom}(N, M) \) is a uniserial left \(S \)-module.

Let \(I_1 \supsetneq I_2 \supsetneq \cdots \supsetneq I_n \supsetneq \cdots \) be a strictly descending chain of \(S \)-submodules of \(\text{Hom}(N, M) \). For each \(n \in \mathbb{N} \) choose \(f_n : N \to M \) such that \(f_n \in I_n \) and \(f_n \notin I_{n+1} \). We have either \(Sf_n \subseteq Sf_{n+1} \) or \(Sf_{n+1} \subseteq Sf_n \) and \(f_n \notin I_{n+1} \) implies that \(Sf_{n+1} \not\subseteq Sf_n \). This along with either \(\text{Ker} f_{n+1} \subseteq \text{Ker} f_n \) or \(\text{Ker} f_n \subseteq \text{Ker} f_{n+1} \) (2.3 (1)) gives us \(\text{Ker} f_n \not\subseteq \text{Ker} f_{n+1} \). Thus we get a strictly ascending chain

\[
\text{Ker} f_1 \not\subseteq \text{Ker} f_2 \not\subseteq \cdots \not\subseteq \text{Ker} f_n \not\subseteq \text{Ker} f_{n+1} \not\subseteq \cdots,
\]

which contradicts Proposition 2.3 (3). Thus \(\text{Hom}(N, M) \) is a uniserial left \(S \)-module of finite length.

(3) By (2) it is enough to prove that \(\text{Hom}(N, M) \) satisfies ACC on \(S \)-submodules. Suppose that

\[
I_1 \not\subseteq I_2 \not\subseteq \cdots \not\subseteq I_n \not\subseteq \cdots
\]

is a strictly ascending chain of \(S \)-submodules of \(\text{Hom}(N, M) \). For each \(n \) there exists \(f_{n+1} \in I_{n+1} \) such that \(f_{n+1} \notin I_n \). As in the proof of (2) we get a strictly descending chain

\[
\text{Ker} f_2 \not\supsetneq \text{Ker} f_3 \not\supsetneq \cdots \not\supsetneq \text{Ker} f_n \not\supsetneq \text{Ker} f_{n+1} \not\supsetneq \cdots,
\]

which contradicts Proposition 2.3 (3). Thus \(\text{Hom}(N, M) \) is a uniserial left \(S \)-module of finite length.

(4) Since for every \(i \in I \), \(M_i \) is hollow and \(N \) is a local module, any nonzero map \(M_i \to N \) is an epimorphism. Hence any nonzero \(f \in \text{Hom}(M, N) \) is an epimorphism. Now (4) follows from Theorem 2.4.

(5) Since \(M \) is finitely generated \(M = \bigoplus_{i=1}^{k} M_i \), where each \(M_i \) is a local module with local endomorphism ring.

Since \(S = \bigoplus_{i=1}^{k} \text{Hom}(M_i, M_i) \), \(S \) is a right serial ring by (4).

Also \(S = \bigoplus_{i=1}^{k} \text{Hom}(M_i, M) \) and for each \(i = 1, \ldots, k \), \(\text{Hom}(M_i, M) \) is left artinian and left uniserial (by (2) and (3)) imply that \(S \) is a left serial and left artinian ring.

We know that every left and right serial, left artinian ring is a right artinian ring [13, 55, 16]. Thus \(S \) is a left and right artinian serial ring. By Lemma 3.8, \(S \) is left and right semihereditary and hence \(S \) is a left and right hereditary ring.

(6) As \(M \) is finitely generated \(M = \bigoplus_{i=1}^{k} M_i \), where each \(M_i \) is a local module with local endomorphism ring. Define \(I := \{1, 2, \ldots, k\} \).

For every \(i \in I \) put \([i] = \{j \in I | M_i \cong M_j\} \) and \(\mathcal{F} = \{[i] | i \in I\} \). Define an order on \(\mathcal{F} \) by \([i] \preceq [j] \) if and only if there exists an onto map \(M_i \to M_j \). Then \((\mathcal{F}, \preceq) \) is a partially ordered set (see the proof of Theorem 2.4). Suppose that

\[
J = \{j \in I | [j] \text{ is a minimal elements of } \mathcal{F}\}.
\]

Let \(N = \bigoplus_{j \in J} M_j \). For \(k, \ell \in J \) any epimorphism from \(M_k \) to \(M_\ell \) is an isomorphism and \(N \) is lifting, \(N \) is self-projective [12, Lemma 2.3].
For any \(i \in I \), there exists a \(j \in J \) such that \([j] \leq [i]\) and hence there exists an epimorphism from \(M_j \) to \(M_i \). Thus \(\sigma[M] = \mathbb{N} \). Since \(N \) is finitely generated and self-projective, \(N \) is projective in \(\mathbb{N} \) and hence in \(\sigma[M] \).

Given \(i \in I \), there exists a \(j \in J \) such that there exists an epimorphism from \(M_j \) to \(M_i \) and hence \(M_j \) is a projective cover of \(M_i \). Thus \(M \) has a projective cover \(P \) which is a direct summand of \(N^{(k)} \).

Since \(P \) is finitely generated and weakly supplemented, \(P/\text{Rad}(P) \) is a semisimple module and hence \(\text{End}(P/\text{Rad}(P)) \) is a semisimple ring. By [11, 2.9] \(N^{(k)} \) is copolyform and hence \(P \) is copolyform. Therefore \(\text{Rad}(\text{End}(P)) = 0 \). By [13, 22.2] \(\text{End}(P)/\text{Rad}(\text{End}(P)) \cong \text{End}(P/\text{Rad}(P)) \) and hence \(\text{End}(P) \) is a semisimple ring.

4. Endomorphism Rings of \(\mathcal{Z}_M(M) \), When \(M \) is \(\Sigma \)-Lifting and Injective

In this section we show that if \(M \) is a \(\Sigma \)-lifting injective module and \(N \) is an indecomposable direct summand of \(M \), then \(\text{Hom}(\mathcal{Z}_M(N), \mathcal{Z}_M(M)) \) is a uniserial \(\mathcal{S} \)-module of finite length, where \(\mathcal{S} = \text{End}(\mathcal{Z}_M(M)) \).

Proposition 4.1. Let \(M \) be a \(\Sigma \)-lifting module which is injective in \(\sigma[M] \). Then \(M = \oplus_i M_i \), where each \(M_i \) is local, self-projective and indecomposable. Also we have the following.

1. For every \(k \in I \), \(\mathcal{A} = \{ \text{Ker}(J) \mid J \subseteq \text{Hom}(\mathcal{Z}_M(M_k), M) \} \) is linearly ordered by set inclusion;
2. the family \(\{ \mathcal{Z}_M(M_i) \}_{i} \) is semi-T-nilpotent.

Proof. Since \(M \) is a lifting and injective module, \(M = \oplus_i M_i \) where each \(M_i \) is indecomposable [10, 2.4, 2.5]. As \(M_i \) is injective and indecomposable, \(\text{End}(M_i) \) is local. Therefore by Proposition 2.1 each \(M_i \) is local and self-projective.

1. Suppose that \(0 \neq I_1 \) and \(0 \neq I_2 \subseteq \text{Hom}(\mathcal{Z}_M(M_k), M) \) and \(\text{Ker}(I_1) \not\subseteq \text{Ker}(I_2) \). Then for any nonzero \(f \in I_1 \), there exists a nonzero \(g \in I_2 \) such that \(\text{Ker} f \not\subseteq \text{Ker} g \); for if not, then for every \(g \in I_2 \), \(\text{Ker} f \subseteq \text{Ker} g \) implies \(\text{Ker} f \subseteq \text{Ker}(I_2) \) and hence \(\text{Ker}(I_1) \not\subseteq \text{Ker}(I_2) \) which is a contradiction.

As \(M \) is injective in \(\sigma[M] \), homomorphisms \(f, g \) can be extended to \(\overline{f}, \overline{g} : M_k \to M \), respectively.

Then \(\text{Ker} f = \mathcal{Z}_M(M_k) \cap \text{Ker} \overline{f} \) and \(\text{Ker} g = \mathcal{Z}_M(M_k) \cap \text{Ker} \overline{g} \). If \(\text{Im} \overline{f} \) is small in \(M \), then \(\text{Im} \overline{f} \) is an \(M \)-small module and hence is \(M \)-cosingular. Thus \(M_k/\text{Ker} \overline{f} \cong \text{Im} \overline{f} \) is \(M \)-cosingular and hence \(\mathcal{Z}_M(M_k) \subseteq \text{Ker} \overline{f} \). Therefore \(\text{Ker} f = \mathcal{Z}_M(M_k) \) which is contradiction. Hence \(\text{Im} \overline{f} \not\subseteq M \). Similarly \(\text{Im} \overline{g} \not\subseteq M \).

Since \(M_k \) is an indecomposable direct summand of \(M \) with local endomorphism ring, by Proposition 2.3 (1) either \(\text{Ker} \overline{f} \subseteq \text{Ker} \overline{g} \) or \(\text{Ker} \overline{g} \subseteq \text{Ker} \overline{f} \). As \(\text{Ker} \overline{f} \not\subseteq \text{Ker} \overline{g} \), so \(\text{Ker} \overline{g} \subseteq \text{Ker} \overline{f} \) and hence \(\text{Ker} g \subseteq \text{Ker} f \). Thus \(\text{Ker}(I_2) \subseteq \text{Ker} f \). Since \(f \) is any nonzero element of \(I_1 \), \(\text{Ker}(I_2) \subseteq \text{Ker}(I_1) \).

2. Suppose that \(f : \mathcal{Z}_M(M_i) \to \mathcal{Z}_M(M_j) \) is a nonzero non-isomorphism. As \(M \) is injective in \(\sigma[M] \), \(M_j \) is \(M_i \)-injective and hence \(f \) can be extended to an homomorphism \(\overline{f} : M_i \to M_j \). We claim that \(\overline{f} \) is also a non-isomorphism.
If \overline{f} is not onto, then $\text{Im} \overline{f}$ is an M-small module and hence is M-cosingular. Thus $M_i/Ker \overline{f} \simeq \text{Im} \overline{f}$ is M-cosingular. Therefore $\text{Ker} \overline{f} \supseteq \underline{Z}_M(M_i)$ and hence $f = 0$, a contradiction. Thus \overline{f} is an surjective map. Suppose $\text{Ker} \overline{f} = 0$. Then \overline{f} is an isomorphism. Hence $M_i \simeq M_j$ and so $\underline{Z}_M(M_i) \simeq \underline{Z}_M(M_j)$ and $\text{Ker} f = 0$. $\underline{Z}_M(M_i)$ is fully invariant in M_i and hence is self-injective. Thus $\text{Im} f \simeq \underline{Z}_M(M_i)$ is $\underline{Z}_M(M_j)$-injective implies that $\text{Im} f$ is a direct summand of $\underline{Z}_M(M_j)$. As $\underline{Z}_M(M_j)$ is uniform $\text{Im} f = \underline{Z}_M(M_j)$. Therefore f is an isomorphism, a contradiction. Thus $\text{Ker} \overline{f} \neq 0$.

By Theorem 1.5 the family $\{M_i\}_I$ is semi-T-nilpotent. Since any nonzero non-isomorphism from $\underline{Z}_M(M_i) \to \underline{Z}_M(M_j)$ can be extended to a non-isomorphism from $M_i \to M_j$, the family $\{\underline{Z}_M(M_i)\}_I$ is also semi-T-nilpotent.

Proposition 4.2. Let M be a Σ-lifting module which is injective in $\sigma[M]$. Then $M = \mathcal{O}_1 M$ where each M_i is a local and self-projective module. If $\Sigma = \text{End}(\underline{Z}_M(M))$, then we have

1. for any $k \in I$, Hom$(\underline{Z}_M(M_k), \underline{Z}_M(M))$ is a uniserial, artinian left Σ-module;
2. if $\{\underline{Z}_M(M_i)\}_I$ contains only a finite number of non-isomorphic modules, then each Hom$(\underline{Z}_M(M_k), \underline{Z}_M(M))$ is a uniserial Σ-module of finite length;
3. Hom$(\underline{Z}_M(M), \underline{Z}_M(M_k))$ is a uniserial right Σ-module.

Proof. The first assertion follows from Proposition 4.1. (1) Let f, g be two nonzero homomorphisms in Hom$(\underline{Z}_M(M_k), \underline{Z}_M(M))$. By the injectivity of M they can be extended to $\overline{f}, \overline{g}: M_k \to M$. As in the proof of Proposition 4.1(1), $\text{Im} \overline{f}$ and $\text{Im} \overline{g}$ are not small in M. By Proposition 2.3(1) either Ker $\overline{f} \subseteq \text{Ker} \overline{g}$ or Ker $\overline{g} \subseteq \text{Ker} \overline{f}$.

Suppose Ker $\overline{f} \subseteq \text{Ker} \overline{g}$. We claim that $S\overline{f} \subseteq S\overline{g}$, where $S = \text{End}(M)$. For, there exists a surjective map $\psi: \text{Im} \overline{f} \to \text{Im} \overline{g}$ such that $\psi \overline{f} = \overline{g}$. Since $\text{Im} \overline{f}$ is a direct summand of M, we can extend ψ to $\phi: M \to M$ such that $\phi \overline{f} = \overline{g}$. Therefore $S\overline{f} \subseteq S\overline{g}$. Hence either $S\overline{f} \subseteq S\overline{g}$ or $S\overline{g} \subseteq S\overline{f}$.

Suppose that $S\overline{f} \subseteq S\overline{g}$. As any homomorphism $\underline{Z}_M(M) \to \underline{Z}_M(M)$ can be extended to a homomorphism from $M \to M$, and the restriction of any map from $M \to M$ to $\underline{Z}_M(M)$ can be considered as a map from $\underline{Z}_M(M) \to \underline{Z}_M(M)$, we get so $S\overline{f} \subseteq S\overline{g}$.

Similarly if $S\overline{g} \subseteq S\overline{f}$, then $S\overline{g} \subseteq S\overline{f}$. Hence Hom$(\underline{Z}_M(M_k), \underline{Z}_M(M))$ is a uniserial left Σ-module.

We have to prove that Hom$(\underline{Z}_M(M_k), \underline{Z}_M(M))$ is an artinian left Σ-module. Let

\[
I_1 \supsetneq I_2 \supsetneq \cdots \supsetneq I_r \supsetneq \cdots
\]

be a strictly descending chain of Σ-submodules of Hom$(\underline{Z}_M(M_k), \underline{Z}_M(M))$.

For any $r \in \mathbb{N}$, there exists $f_r \in I_r$ such that $f_r \notin I_{r+1}$. We have either $Sf_r \subseteq Sf_{r+1}$ or $Sf_{r+1} \subseteq Sf_r$. Since $f_r \notin I_{r+1}$ we get $Sf_r \supsetneq Sf_{r+1}$. Hence $Sf_r \supsetneq Sf_{r+1}$.

As $f_{r+1} \in Sf_r$, there exists $\pi \in S$ such that $f_{r+1} = \pi f_r$. Therefore Ker $f_r \subseteq$ Ker f_{r+1} which implies that Ker $f_r \cap \underline{Z}_M(M_k) \subseteq$ Ker $f_{r+1} \cap \underline{Z}_M(M_k)$, where f_r and f_{r+1} are extensions of f_r and f_{r+1} respectively from M_k to M.
Suppose \(\text{Ker} \mathcal{f}_r = \text{Ker} \mathcal{f}_{r+1} \). As \(f_r \) and \(f_{r+1} \) are nonzero maps, the images of the maps \(\mathcal{f}_r \) and \(\mathcal{f}_{r+1} \) are not small in \(M \) and hence are isomorphic to direct summands of \(M \). Hence we can define a map \(\phi : M \rightarrow M \) such that \(\mathcal{f}_r = \phi \mathcal{f}_{r+1} \). The restriction to \(\mathcal{Z}_M(M_k) \) gives us \(f_r = \phi|_{\mathcal{Z}_M(M_k)} f_{r+1} \). Since \(\phi|_{\mathcal{Z}_M(M_k)} \) can be considered as an element of \(\mathcal{S} \), we get \(\mathcal{f}_r \subseteq \mathcal{S} f_{r+1} \), a contradiction. Hence \(\text{Ker} \mathcal{f}_r \subseteq \text{Ker} \mathcal{f}_{r+1} \).

Hence we get a strictly ascending chain

\[
\text{Ker} \mathcal{f}_1 \subseteq \text{Ker} \mathcal{f}_2 \subseteq \cdots \subseteq \text{Ker} \mathcal{f}_r \subseteq \cdots.
\]

For all \(r \in \mathbb{N} \), \(\text{Im} \mathcal{f}_r \) is not small in \(M \). Hence by Proposition 2.3 (2) the above chain becomes stationary after finitely many steps and hence this is also true for the chain

\[
I_1 \supsetneq I_2 \supsetneq \cdots \supsetneq I_r \supsetneq \cdots.
\]

Therefore \(\text{Hom}(\mathcal{Z}_M(M_k), \mathcal{Z}_M(M)) \) is an artinian left \(\mathcal{S} \)-module.

(2) By (1) it is enough to prove that \(\text{Hom}(\mathcal{Z}_M(M_k), \mathcal{Z}_M(M)) \) satisfies ACC on \(\mathcal{S} \)-submodules. Suppose that

\[
I_1 \subsetneq I_2 \subsetneq \cdots \subsetneq I_r \subsetneq \cdots
\]

is a strictly ascending chain of \(\mathcal{S} \)-submodules of \(\text{Hom}(\mathcal{Z}_M(M_k), \mathcal{Z}_M(M)) \).

As in the proof of (1) we get homomorphisms \(\mathcal{f}_r : M_k \rightarrow M \) such that \(\text{Im} \mathcal{f}_r \not\cong M \) and

\[
\text{Ker} \mathcal{f}_1 \subsetneq \text{Ker} \mathcal{f}_2 \subsetneq \cdots \subsetneq \text{Ker} \mathcal{f}_r \subsetneq \cdots.
\]

By Proposition 2.3 (3) this chain stops. Therefore \(\text{Hom}(\mathcal{Z}_M(M_k), \mathcal{Z}_M(M)) \) is a uniserial \(\mathcal{S} \)-module of finite length.

(3) Any two nonzero maps \(\phi, \psi \in \text{Hom}(\mathcal{Z}_M(M), \mathcal{Z}_M(M_k)) \) can be extended to nonzero maps \(\overline{\phi}, \overline{\psi} \in \text{Hom}(M, M_k) \). Since \(\text{Im} \overline{\phi} \) and \(\text{Im} \overline{\psi} \) are not small in \(M_k \) (as in the proof of Proposition 4.1 (1)), \(\overline{\phi}, \overline{\psi} \) are surjective maps. By Theorem 2.4, either \(\overline{\phi} S \subseteq \overline{\psi} S \) or \(\overline{\psi} S \subseteq \overline{\phi} S \) where \(S = \text{End}(M) \). Suppose that \(\overline{\phi} S \subseteq \overline{\psi} S \).

As any homomorphism \(\mathcal{Z}_M(M) \rightarrow \mathcal{Z}_M(M) \) can be extended to a homomorphism from \(M \rightarrow M \), and the restriction of any map from \(M \rightarrow M \) to \(\mathcal{Z}_M(M) \) can be considered as a map from \(\mathcal{Z}_M(M) \rightarrow \mathcal{Z}_M(M) \), \(\overline{\phi} S \subseteq \overline{\psi} S \). Hence \(\text{Hom}(\mathcal{Z}_M(M), \mathcal{Z}_M(M_k)) \) is a uniserial right \(\mathcal{S} \)-module.

References