Vietnam Journal of MATHEMATICS © VAST 2004

Copolyform Σ -Lifting Modules

Y. Talebi¹ and N. Vanaja²

¹Dept., of Math. Faculty of Science, Mazandaran University, Babolsar, Iran ²Row Bungalow 146, Sector 3, Kandivli (West), Mumbai 400 067, India

Received October 20, 2002

Abstract. A module M is called copolyform if every coessential submodule of M is corational in M. It is known that every polyform Σ -extending module is a direct sum of indecomposable self-injective modules. In this paper we study some properties of copolyform Σ -lifting modules. We show that a copolyform Σ -lifting module is a direct sum of indecomposable self-projective modules whose M-annihilator submodules are linearly ordered and satisfy ACC. We also prove that every copolyform Σ -lifting module M is non-M-cosingular module. Consequently, for M finitely generated, $\operatorname{End}(M)$ is a left and right serial artinian hereditary ring. We then consider Σ -lifting injective modules in terms of $\overline{Z}_M()$ and show that for any indecomposable direct summand N of M, $\operatorname{Hom}(\overline{Z}_M(N), \overline{Z}_M(M))$ is a uniserial \overline{S} -module of finite length where $\overline{S} = \operatorname{End}(\overline{Z}_M(M))$.

1. Preliminaries

Let R be an associative ring with identity. All modules we consider are unitary right R-modules. Suppose M is an R-module. A submodule A of M is said to be a *small submodule* of M (denoted by $A \ll M$) if for any $B \subseteq M$, A + B = M implies B = M. A module M is called a *hollow* module if every proper submodule of M is small in M. A module is called a *local* module if it has a unique maximal submodule containing all its proper submodules. It is easy to see that a module is a local module if and only if it is a cyclic hollow module.

For $A \subseteq B \subseteq M$, A is said to be a coessential submodule of B in M (denoted by $A \stackrel{ce}{\hookrightarrow} B$ in M) if $B/A \ll M/A$. In this case we also say B is a coessential extension of A in M. Instead of coessential extension the term lying above was used in Wisbauer [13]. For example, if $R = \mathbb{Z} = M$ and $A = 2\mathbb{Z}$, then for any $k \in \mathbb{N}$, $2^k \mathbb{Z}$ is a coessential submodule of A in M.

A is said to be *coclosed in M* (denoted by $A \stackrel{cc}{\hookrightarrow} M$) if A has no proper coessential submodule in M. The following lemma regarding hollow submodules of a module has been proved by Inoue [6, Proposition 6].

Lemma 1.1. [6] Let M be an R-module and N a hollow submodule of M. Then $N \ll M$ or $N \stackrel{cc}{\hookrightarrow} M$.

A module M is called *lifting* if every submodule $A \subseteq M$ contains a direct summand B of M such that $A/B \ll M/B$. M is said to be (finitely) Σ -lifting if every (finite) direct sum of copies of M is lifting. The following lemma has been proved by Mohamed and Müller [9, 4.8].

Lemma 1.2. [9] A module is lifting if and only if it is amply supplemented and its coclosed submodules are direct summand.

Suppose M is an R-module. We recall the definitions of M-projective, self-projective and almost M-projective modules. An R-module N is called M-projective if for every epimorphism $f: M \to K$ and every homomorphism $g: N \to K$, there exists $h: N \to M$ with fh = g. N is called self-projective (resp. projective) if it is N-projective (L-projective for any R-module L). N is called almost M-projective, if for every epimorphism $f: M \to K$ and every homomorphism $g: N \to K$, either there exists $h: N \to M$ with fh = g or there exists a nonzero direct summand M_1 of M and $\overline{h}: M_1 \to N$ with $g\overline{h} = f|_{M_1}$.

A family $\{M_i\}_I$ of modules is called (locally) semi-T-nilpotent, if for any countable family $\{f_n: M_{i_n} \to M_{i_{n+1}}\}_{\mathbb{N}}$ of non-isomorphisms with $i_n \in I$ all distinct, (and for any element $x \in M_{i_1}$), there exists $k \in \mathbb{N}$ (k depending on k) such that $k \in \mathbb{N}$ ($k \in \mathbb{N}$) ($k \in \mathbb{N}$) is a local module, then the family $\{M_i\}_I$ of modules is locally semi-k-nilpotent if and only if it is semi-k-nilpotent.

Regarding lifting modules with local endomorphism ring the following results have been proved by Baba and Harada [2].

Theorem 1.3. [2, Theorem 1] Let $\{M_i\}_{i=1}^n$ be a set of hollow modules with local endomorphism ring. Then the following are equivalent.

- (1) $\bigoplus_{i=1}^{n} M_i$ is lifting;
- (2) M_i is almost M_j -projective for any $i \neq j$;
- (3) for any subset J of $I = \{1, 2, ..., n\}$, $\bigoplus_{i \in J} M_i$ is almost $\bigoplus_{i \in I \setminus J} M_i$ -projective.

Lemma 1.4. [2, Lemma 3] Let $\{M_i\}_I$ be a family of modules with local endomorphism ring. If $\bigoplus_{i \in I} M_i$ is lifting, then $\{M_i\}_I$ is locally semi-T-nilpotent.

Theorem 1.5. [2, Theorem 2] Let $\{M_i\}_I$ be a family of local modules with local endomorphism ring. Then the following are equivalent.

- (1) $\bigoplus_{i \in I} M_i$ is lifting;
- (2) M_i is almost M_j -projective for any $i \neq j$ and $\{M_i\}_I$ is locally semi-T-nilpotent;
- (3) for any subset J of I, $\bigoplus_{i \in J} M_i$ is almost $\bigoplus_{i \in I \setminus J} M_i$ -projective and $\{M_i\}_I$ is locally semi-T-nilpotent.

Lemma 1.6. [2, Lemma 4] Let M be a hollow module with local endomorphism ring. If any direct sum of copies of M is lifting, then M is cyclic.

2. Σ -Lifting Modules

In this section we prove that a Σ -lifting module with local endomorphism ring is self-projective. Suppose M is a Σ -lifting module such that any indecomposable direct summand of M has local endomorphism ring. Let N be any indecomposable direct summand of M and $\mathcal{A} = \{\operatorname{Ker} f | f : N \to M, \operatorname{Im} f \not \leqslant M\}$. We prove that then N has ACC on \mathcal{A} and if M has only finitely many non-isomorphic indecomposable direct summands, then N has DCC on \mathcal{A} . Suppose M is a direct sum of modules with local endomorphism rings and is Σ -lifting. Let $S = \operatorname{End}(M)$ and N is any indecomposable direct summand of M. Then as a right S-module $A = \operatorname{Hom}(M, N)$ has a waist $B = \{f : M \to N \,|\, \operatorname{Im} f \ll N\}$ and A/B is a uniserial module.

Proposition 2.1. Let M be a nonzero Σ -lifting, indecomposable R-module with $\operatorname{End}(M)$ local. Then M is local and self-projective.

Proof. By Lemma 1.6, M is a local module. We claim that any surjective map from M to M is an isomorphism. Suppose not. Let $f:M\to M$ be surjective map which is not 1-1.

By 1.4, the family $\mathcal{F} = \{M_n\}, n \in \mathbb{N}$, where $M_n = M$, for all $n \in \mathbb{N}$, is locally semi-T-nilpotent. Since M is a local module the family \mathcal{F} is semi-T-nilpotent.

Consider $f_n = f: M_n \to M_{n+1}$, for all $n \in \mathbb{N}$. Since $\{M_i\}_I$ is semi-T-nilpotent, there exists a positive number k such that $f^k: M_1 = M \to M_k = M$ is a zero epimorphism, which is a contradiction.

As $M \oplus M$ is lifting and every nonzero epimorphism $M \to M$ is 1-1, M is self-projective [12, Lemma 2.3].

Lemma 2.2. Let M be an indecomposable self-projective lifting R-module. If A and B are fully invariant submodules of M such that $M/A \oplus M/B$ is lifting, then either $A \subseteq B$ or $B \subseteq A$.

Proof. We first show that if Y is a fully invariant submodule of a self-projective module X and if $\phi: X/Y \to X/Z$ is an onto map, then $Y \subseteq Z$. We can lift

 $\phi \eta'$ to a map $\phi': X \to X$ such that $\phi \eta' \phi' = \eta$ where $\eta': X \to X/Y$ and $\eta: X \to X/Z$ are the natural maps.

Since $\phi'(Y) \subseteq Y$, we get $\eta(Y) = \phi \eta' \phi'(Y) = 0$. Hence $Y \subseteq Z$.

Since A and B are fully invariant submodules of a self-projective module M, M/A and M/B are self-projective [14, Proposition 2.1]. As M/A and M/B are hollow self-projective, $\operatorname{End}(M/A)$ and $\operatorname{End}(M/B)$ are local rings. Suppose $f: M/A \to M/(A+B)$ and $g: M/B \to M/(A+B)$ are the natural maps. Since $M/A \oplus M/B$ is lifting, M/A is almost M/B-projective Theorem 1.3. Also M/B is indecomposable. Hence we can get either a map $h: M/A \to M/B$ or a map $h': M/B \to M/A$, such that gh = f or fh' = g.

As f and g are small epimorphisms, the maps h and h' (if they exist) will be epimorphisms. Hence there exists either an epimorphism $h: M/A \to M/B$ or an epimorphism $h': M/B \to M/A$. Therefore either $A \subseteq B$ or $B \subseteq A$.

Proposition 2.3. Suppose M is a Σ -lifting module such that the endomorphism ring of every indecomposable direct summand of M is a local ring. Suppose that N is an indecomposable direct summand of M, $\mathcal{K} = \{f : N \to M \mid \operatorname{Im} f \not \leqslant M \}$ and $\mathcal{A} = \{\operatorname{Ker} f \mid f \in \mathcal{K} \}$. Then

- (1) A is linearly ordered by inclusion;
- (2) N has ACC on A;
- (3) N has DCC on A, if M has only finitely many non-isomorphic indecomposable direct summands.

Proof. Suppose that L is an indecomposable direct summand of M. Since L is Σ -lifting with local endomorphism ring, then by Proposition 2.1, L is a self-projective local module.

(1) Suppose that $f \in \mathcal{K}$. As Im f is hollow, them by Lemma 1.1, Im f is coclosed in M. Since M is lifting, Im f is an indecomposable direct summand of M Lemma 1.2. Hence Im f is local and self-projective. Since $\operatorname{Ker} f \ll N$ and $N/\operatorname{Ker} f$ is self-projective, $\operatorname{Ker} f$ is fully invariant in N [14, Proposition 2.2].

Suppose that $f,g \in \mathcal{K}$; then $\operatorname{Ker} f$ and $\operatorname{Ker} g$ are fully invariant in N. $N/\operatorname{Ker} f \oplus N/\operatorname{Ker} g$ (as it is isomorphic to a direct summand of $M \oplus M$) is a lifting module. By Lemma 2.2, either $\operatorname{Ker} f \subseteq \operatorname{Ker} g$ or $\operatorname{Ker} g \subseteq \operatorname{Ker} f$. Hence $\mathcal A$ is linearly ordered by inclusion.

(2) Now suppose that there exists a strictly ascending chain

$$X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_i \subsetneq X_{i+1} \subsetneq \cdots$$

of elements in \mathcal{A} . Then there exists $f_i: N \to M$ such that $\operatorname{Ker} f_i = X_i$ and $\operatorname{Im} f_i \not\ll M$ for every $i \in \mathbb{N}$. For each $i \in \mathbb{N}$, N/X_i is isomorphic to a direct

summand of M and hence is a Σ -lifting, self-projective, local module with local endomorphism ring.

As M is Σ -lifting we have $\bigoplus_{i=1}^{\infty} N/X_i$ is a lifting module with $\operatorname{End}(N/X_i)$ local, for all $i \in \mathbb{N}$. Thus $\{N/X_i\}_{\mathbb{N}}$ is locally semi-T-nilpotent (1.4) and hence semi-T-nilpotent (as each N/X_i is local). By considering the natural maps $\eta_i: N/X_i \to N/X_{i+1}$ for all $i \in \mathbb{N}$, we get a contradiction. Hence N satisfies ACC on A.

(3) Suppose that

$$Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_i \supseteq Y_{i+1} \supseteq \cdots$$

is a strictly descending chain of elements in \mathcal{A} . Each N/Y_i is isomorphic to some indecomposable direct summand of M. As there are only finitely many non-isomorphic indecomposable direct summands of M, we get $N/Y_\ell \simeq N/Y_k$ for some k and ℓ . Suppose $k < \ell$. Then $Y_\ell \subsetneq Y_k$. Since $N/Y_\ell \simeq N/Y_k$ is self-projective, the natural map $f: N/Y_\ell \to N/Y_k$ splits. Therefore Y_k/Y_ℓ is a nonzero proper direct summand of the hollow module N/Y_ℓ , which is a contradiction.

Recall that a submodule B of a module A is called a *waist* if for every submodule C of A either $B \subseteq C$ or $C \subseteq B$ holds.

Theorem 2.4. Let $M = \bigoplus_I M_i$ be a Σ -lifting module, where each M_i has a local endomorphism ring. Suppose that N is a nonzero indecomposable direct summand of M, $A = \operatorname{Hom}(M, N)$ and $B = \{f \in A \mid \operatorname{Im} f \ll N\}$. Then B is a waist of A such that A/B is a uniserial right S-module, where $S = \operatorname{End}(M)$.

Proof. Since each M_i is indecomposable Σ -lifting, by Proposition 2.1, M_i is local and self-projective. We note that any nonzero $f \in A$ such that $f \notin B$ is an epimorphism. To prove that B is a waist of A, it is enough to prove that for any onto map $f \in A$ and $g \in B$, $gS \subseteq fS$.

Now consider an epimorphism $f: M \to N$ and $g: M \to N$ with $\operatorname{Im} g \ll N$. There exists $i_0 \in I$ such that $f_{i_0}: M_{i_0} \to N$ is onto (for N is a local module), where f_{i_0} is the restriction of f to M_{i_0} .

For every $i \in I$, consider $g_i : M_i \to N$, the restriction of g to M_i . As $M_i \oplus M_{i_0}$ is lifting M_i and M_{i_0} are relatively almost-projective modules. Hence for every $i \in I$, there exists $\phi_i : M_i \to M_{i_0}$ such that $f_{i_0} \phi_i = g_i$.

Define $\phi: M \to M$ by $\phi|_{M_i} = \phi_i$, for every $i \in I$. It is obvious that $f\phi = g$. Hence $gS \subseteq fS$. Therefore B is a waist of A.

To prove that A/B is a uniserial right S-module, it is enough to show that whenever $f,g:M\to N$ are surjective maps, either $fS\subseteq gS$ or $gS\subseteq fS$.

For every $i \in I$ put $[i] = \{j \in I | M_i \simeq M_j\}$ and $\mathcal{F} = \{[i] | i \in I\}$. Define an order on \mathcal{F} by $[i] \leq [j]$ if and only if there exists a surjective map $M_i \to M_j$. We claim that (\mathcal{F}, \leq) is a partially ordered set. Assume that $[i] \leq [j]$ and $[j] \leq [i]$ for some $i, j \in I$. Then there exist surjective maps $\theta : M_i \to M_j$ and $\psi : M_j \to M_i$. Since M_i is self-projective, the map $\psi\theta : M_i \to M_i$ splits. Therefore $M_i \simeq M_j$ and hence [i] = [j]. Now it is easy to see that (\mathcal{F}, \leq) is a partially ordered set.

As each M_i is local, by Lemma 1.4 the family $\{M_i\}_I$ is semi-T-nilpotent. Therefore every nonempty subset \mathcal{G} of \mathcal{F} has a maximal element.

Suppose that

$$I_f = \{i \in I \mid f_i = f|_{M_i} \text{ is onto}\}\ \text{ and } I_g = \{j \in I|g_j = g|_{M_i} \text{ is onto}\}.$$

Since N is local, $I_f \neq \emptyset$ and $I_q \neq \emptyset$. Define

$$\overline{I}_f := \{[i]|i \in I_f\} \text{ and } \overline{I}_g := \{[i]|i \in I_g\}.$$

Suppose $[i_0]$ is a maximal element of $\overline{I}_f \cup \overline{I}_g$ and that $i_o \in I_f$. We claim that $qS \subset fS$.

Let $f_{i_0}: M_{i_0} \to N$ be the restriction of f to M_{i_0} and $g_i: M_i \to N$ be the restriction of g to M_i , for every $i \in I$. As before M_i and M_{i_0} are relatively almost-projective modules for every $i \in I$. Hence if g_i is not onto, there exists $\phi_i: M_i \to M_{i_0}$ such that $f_{i_0}\phi_i = g_i$. If g_i is onto, then either there exists a surjective map $\phi_i: M_i \to M_{i_0}$ such that $f_{i_0}\phi_i = g_i$ or a surjective map $\psi_i: M_{i_0} \to M_i$ such that $g_i\psi_i = f_{i_0}$.

By the choice of i_o , the existence of the surjective map ψ_i from M_{i_0} to M_i will imply that $M_i \simeq M_{i_0}$. Since M_i is self-projective, the map ψ_i is an isomorphism. Hence we always get a map $\phi_i: M_i \to M_{i_0}$ such that $f_{i_0}\phi_i = g_i$.

Define $\phi: M \to M$ by $\phi|_{M_i} = \phi_i$, for every $i \in I$. It is obvious that $f\phi = g$. Hence $gS \subseteq fS$.

3. Copolyform Σ -Lifting Modules

Clark and Wisbauer [3] have proved that a polyform Σ -extending module M is a direct sum of self-injective modules. In this section dually we show that every copolyform Σ -lifting module is a direct sum of self-projective modules whose M-annihilator submodules are linearly ordered.

Suppose M is an R-module. By $\sigma[M]$ we mean the full subcategory of Mod-R whose objects are submodules of M-generated modules. The injective hull of $N \in \sigma[M]$ is denoted by \widehat{N} . $N \in \sigma[M]$ is said to be an M-small module if N is small in \widehat{N} . It is easy to see that N is an M-small module if and only if there exists a module $L \in \sigma[M]$ such that $N \ll L$. We define $\overline{Z}_M(N)$, as follows:

$$\overline{Z}_M(N) = \operatorname{Re}(N, \mathcal{S}) = \bigcap \big\{ \operatorname{Ker}(g) | g \in \operatorname{Hom}(N, L), L \in \mathcal{S} \big\},\,$$

where \mathcal{S} denotes the class of all M-small modules. We call N an M-cosingular (non-M-cosingular) module if $\overline{Z}_M(N) = 0$ ($\overline{Z}_M(N) = N$). It is easy to see that a module $N \in \sigma[M]$ is non-M-small if and only if every nonzero factor module of N is non-M-small.

Corational extension and copolyform module which are dual concepts of rational extension and polyform module are defined and studied in [11]. We give the definitions.

Suppose that $A \subseteq B \subseteq M$. We say that A is a coessential submodule of B in M (denoted by $A \stackrel{ce}{\hookrightarrow} B$ in M), if $B/A \ll M/A$. We call A a corational submodule of B in M, if Hom(M/A, B/X) = 0, for any submodule X such that

 $A \subseteq X \subseteq B$. We denote this by $A \stackrel{cr}{\hookrightarrow} B$ in M. In this case we also say that B is a *corational extension* of A in M.

We call a module M a copolyform module if $A \stackrel{ce}{\hookrightarrow} B$ in M implies $A \stackrel{cr}{\hookrightarrow} B$ in M. Equivalently a module M is a copolyform module if whenever $B/A \ll M/A$, $\operatorname{Hom}(M/A, B/X) = 0$, for $A \subseteq X \subseteq B$. A module M is Σ -copolyform, if any direct sum of copies of M is copolyform.

Suppose M is an R-module and $A \subseteq M$. Consider the set \mathcal{A} of all coessential submodules of A in M. Minimal elements of \mathcal{A} under set inclusion, if they exists, are called *coclosures of* A in M. If M is amply supplemented, then coclosures of every submodule of A in M exist. A module M is called a *unique coclosure module* (denoted by UCC module), if every submodule of M has a unique coclosure in M [5]. We call a module M a Σ -UCC module, if any direct sum of copies of M is a UCC module.

Suppose that M is an amply supplemented module. If M is copolyform, then M is a UCC module [5, 4.2]. The converse is not true. For example, consider $\mathbb{Z}/8\mathbb{Z}$ as a \mathbb{Z} -module. But if $M \oplus M$ is UCC, then M is copolyform [5, 4.6]. The following lemma is trivial.

Lemma 3.1. Suppose that M is a Σ -amply supplemented module. Then M is a Σ -UCC module if and only if it is a Σ -copolyform module.

It is known that if M is a polyform module then M is non-M-singular. We do not know whether the dual is true; but it has been proved that if M is Σ -copolyform and Σ -weakly supplemented, then M is non-M-cosingular [11, 2.11]. We prove below that if M is copolyform and Σ -lifting, then M is non-M-cosingular.

Proposition 3.2. Let M be a copolyform Σ -lifting module. Define $N := \bigoplus_{i \in I} M_i$, where $M_i = M$ for every $i \in I$. If X is a direct summand of N and $f: N \to X$, then $f(A) \stackrel{cc}{\hookrightarrow} X$ whenever $A \stackrel{cc}{\hookrightarrow} N$.

Proof. Suppose $A \overset{cc}{\hookrightarrow} N$. Since N is a lifting module, A is a direct summand of N Lemma 1.2 and hence $N = A \oplus B$. Consider the homomorphism $g: N \to X$ such that g = f on A and g = 0 on B. Then g(A) = f(A) = g(N). Moreover, since X is a lifting module, there exists a direct summand $Y \subseteq g(A)$ such that $X = Y \oplus Z$ and $g(A) = Y \oplus (g(A) \cap Z)$ with $(g(A) \cap Z) \ll Z$. This gives a map $h := pg: N \to Z$, where $p: X \to Z$ is the projection map along Y. Now $\operatorname{Im} h = pg(N) = g(A) \cap Z \ll Z$.

Let $\pi_i: N \to M_i$ and $q_i: M_i \to N$ be the natural projection and inclusion maps for any $i \in I$. Let $p_i = \pi_i|_Z$; then we get a homomorphism $h_{ij} = p_i h q_j: M_j \to M_i$, for each $i, j \in I$.

Since M_i is copolyform for all $i, j \in I$ $h_{ij} = 0$ [11, 2.3]. Hence h = 0. Therefore $g(A) \cap Z = 0$. Thus f(A) = g(A) is a direct summand of X, and hence $f(A) \stackrel{cc}{\hookrightarrow} X$.

Proposition 3.3 Let M be a copolyform Σ -lifting R-module. Then M is a non-M-cosingular module.

Proof. We know that a Σ -copolyform Σ -weakly supplemented module M is non-M-cosingular [11, 2.11]. We want to prove that a copolyform Σ -lifting module is non-M-cosingular. As M is Σ -lifting, M is Σ -amply supplemented. Hence it is enough to prove that M is Σ -copolyform. By Lemma 3.1 it is enough to show that M is Σ -UCC.

Suppose I is any indexing set and $N = \bigoplus_{i \in I} M_i$, where $M_i = M$ for every $i \in I$. We want to show that N is a UCC module. For this we prove that, for all epimorphism $f: N \to N/K$, $A \stackrel{cc}{\hookrightarrow} N$ implies $f(A) \stackrel{cc}{\hookrightarrow} N/K$ [5, 3.16].

Suppose that $f: N \to N/K$ is an epimorphism and $A \stackrel{cc}{\hookrightarrow} N$. As N is a lifting module, $N = L \oplus L'$, where $L \subseteq K$ and $K = L \oplus (K \cap L')$ with $(K \cap L') \ll L'$. We have an isomorphism $\phi: N/K \to L'/(L' \cap K)$. Also $\phi f = \eta p$, where $p: N \to L'$ is the projection along L, and $\eta: L' \to L'/(L' \cap K)$ the natural map.

Our aim is to prove that if $A \stackrel{cc}{\hookrightarrow} N$, then $f(A) \stackrel{cc}{\hookrightarrow} N/K$. It is enough to show that $\phi f(A) = \eta p(A) \stackrel{cc}{\hookrightarrow} L'/(L' \cap K)$, as ϕ is an isomorphism. Now since $\operatorname{Ker} \eta \ll L'$, $\eta(B) \stackrel{cc}{\hookrightarrow} L'/(L' \cap K)$, whenever $B \stackrel{cc}{\hookrightarrow} L'$ [5, 2.6]. By Proposition 3.2, $p(A) \stackrel{cc}{\hookrightarrow} L'$. Therefore $\eta p(A) \stackrel{cc}{\hookrightarrow} L'/(L' \cap K)$ and hence $f(A) \stackrel{cc}{\hookrightarrow} N/K$. Thus N is UCC module.

We recall the definition of M-annihilator submodules. Let M be an R-module. For an R-module N and any subset $X \subseteq \operatorname{Hom}(N, M)$, We put

$$\operatorname{Ker}(X) = \bigcap \{ \operatorname{Ker} g \mid g \in X \}.$$

Any submodule of Ker(X) for some such X is called an M-annihilator submodule of N and we denote the set of M-annihilator submodules by K(N, M).

Proposition 3.4. Let M be a copolyform Σ -lifting module, and N an indecomposable direct summand of M. If $K(N,M) = \{ \operatorname{Ker}(I) \mid I \subseteq \operatorname{Hom}(N,M) \}$ is the set of all M-annihilator submodules of N. Then

- (1) $\operatorname{End}(N)$ is a division ring and N is local, self-projective;
- (2) K(N, M) is linearly ordered by inclusion and N has ACC on K(N, M);
- (3) N has DCC on K(N, M), if M has only finitely many non-isomorphic indecomposable direct summand submodules.

Proof. (1) Let N be an indecomposable direct summand of M. Then N is lifting and hence a hollow module. Suppose that $f:N\to N$ is a nonzero homomorphism. As N is non-M-cosingular module, f is an epimorphism Lemma 1.1. Let $L=\oplus_{\mathbb{N}}N_i$, for every $i\in\mathbb{N},\ N_i=N$. Then L is a UCC lifting module, and hence the sum of any family of coclosed submodules of L is coclosed in L [5, 3.16 (3)]. As L is also lifting, any locally direct submmand of L is a direct summand of L Lemma 1.2. Now consider $f_i=f:N_i\to N_{i+1}$ for every $i\in\mathbb{N}$. Then for every family $\{f_i:N_i\to N_{i+1}\}_{\mathbb{N}}$, there exists $r\in\mathbb{N}$ and a nonzero map $h_r:N_{r+1}\to N_r$ such that $f_{r-1}\dots f_1=h_rf_r\dots f_1$ [13, 43.3]. For any $i\in\mathbb{N},\ f_i$ is onto, and h_rf_r is the identity map on N_r . Hence f_r is 1-1. Therefore $\mathrm{End}(N)$ is a division ring. Now by Proposition 2.1, N is local and self-projective. (2) By Proposition 3.3, M is non-M-cosingular. Since every direct summand N of M is non-M-cosingular, so if $f\in\mathrm{Hom}(N,M)$ is a nonzero map then $\mathrm{Im}\ f\not\ll M$. Therefore if $A=\{\mathrm{Ker}\ f\mid \mathrm{Im}\ f\not\ll M\}$ then $A\cup N=K(N,M)$ and hence K(N,M) is linearly ordered Proposition 2.3. Suppose that $\mathrm{Ker}\ (I_1)\subsetneq \mathrm{Ker}\ (I_2)$,

of M is non-M-cosingular, so if $f \in \operatorname{Hom}(N,M)$ is a nonzero map then $\operatorname{Im} f \not \leqslant M$. Therefore if $\mathcal{A} = \{\operatorname{Ker} f \mid \operatorname{Im} f \not \leqslant M \}$ then $\mathcal{A} \cup \mathcal{N} = K(N,M)$ and hence K(N,M) is linearly ordered Proposition 2.3. Suppose that $\operatorname{Ker}(I_1) \subsetneq \operatorname{Ker}(I_2)$, where $I_1, I_2 \subsetneq \operatorname{Hom}(N,M)$. Then there exists $f \in I_1$, such that $\operatorname{Ker} f \subsetneq \operatorname{Ker} g$, for every $g \in I_2$; for if not, then for every $f_0 \in I_1$, there exists $g_0 \in I_2$, such that $\operatorname{Ker} f_0 \supsetneq \operatorname{Ker} g_0$, and hence $\operatorname{Ker} f_0 \supsetneq \operatorname{Ker}(I_2)$. Therefore $\operatorname{Ker}(I_1) \supsetneq \operatorname{Ker}(I_2)$ which is a contradiction.

Consider

$$\operatorname{Ker}(I_1) \subsetneq \operatorname{Ker}(I_2) \subsetneq \cdots \subsetneq \operatorname{Ker}(I_r) \subsetneq \operatorname{Ker}(I_{r+1}) \subsetneq \cdots$$

a strictly ascending chain of M-annihilator submodules. Fix $r \in \mathbb{N}$. As $\operatorname{Ker}(I_r) \subsetneq \operatorname{Ker}(I_{r+1})$, there exists $f_r \in I_r$ such that for every $g \in I_{r+1}$, $\operatorname{Ker} f_r \subsetneq \operatorname{Ker} g$. Hence we get a strictly increasing chain

$$\operatorname{Ker} f_1 \subsetneq \operatorname{Ker} f_2 \subsetneq \cdots \subsetneq \operatorname{Ker} f_r \subsetneq \operatorname{Ker} f_{r+1} \subsetneq \cdots$$

which is a contradiction Proposition 2.3. So N satisfies ACC on K(N, M). (3) Suppose that

$$\operatorname{Ker}(I_1) \supseteq \operatorname{Ker}(I_2) \supseteq \cdots \supseteq \operatorname{Ker}(I_r) \supseteq \operatorname{Ker}(I_{r+1}) \supseteq \cdots$$

is a strictly descending chain of M-annihilator submodules of N. Then for each $r+1 \in \mathbb{N}$, there exists $f_{r+1} \in I_{r+1}$ such that for every $f_r \in I_r$, $\operatorname{Ker} f_{r+1} \subsetneq \operatorname{Ker} f_r$. So we get a strictly descending chain

$$\operatorname{Ker} f_1 \supseteq \operatorname{Ker} f_2 \supseteq \cdots \supseteq \operatorname{Ker} f_r \supseteq \operatorname{Ker} f_{r+1} \supseteq \cdots$$

which is a contradiction Proposition 2.3.

The following Lemma regarding copolyform modules has been proved in [11, 2.3].

Lemma 3.5. Suppose that M is an amply supplemented module. M is a copoly-form module if and only if for any nonzero map $f: M \to M/X$, $\operatorname{Im} f \not \ll M/X$.

Lemma 3.6. Suppose M is an R-module and $f: P \to M$ a projective cover of M. Then the following are equivalent.

- (1) P is copolyform;
- (2) M is copolyform and $0 \stackrel{cr}{\hookrightarrow} K$ in P, where K is the kernel of f.

Proof. (1) \Rightarrow (2). As P is copolyform, M is copolyform [11, 2.2]. Since $K \ll P$, $0 \stackrel{ce}{\hookrightarrow} K$ in P. Now P is coplyform implies that $0 \stackrel{cr}{\hookrightarrow} K$ in P.

(2) \Rightarrow (1). Suppose that $A \stackrel{ce}{\hookrightarrow} B$ in P. It is easy to see that $(A+K)/K \stackrel{ce}{\hookrightarrow} (B+K)/K$ in M. As M is copolyform, $(A+K)/K \stackrel{cr}{\hookrightarrow} (B+K)/K$ in M. Therefore by [11, 1.1(5)] $(A+K) \stackrel{cr}{\hookrightarrow} (B+K)$ in P. Since $0 \stackrel{cr}{\hookrightarrow} K$ in P and $A \stackrel{cr}{\hookrightarrow} A$ in P, $A \stackrel{cr}{\hookrightarrow} (A+K)$ in P [11, 1.1(4)]. Now $(A+K) \stackrel{cr}{\hookrightarrow} (B+K)$ in P implies $A \stackrel{cr}{\hookrightarrow} (B+K)$ [11, 1.1(2)]. Again by [11, 1.1(2)] $A \stackrel{cr}{\hookrightarrow} B$ in P. Thus P is a copolyform module.

It has been proved in [4] that, M is a polyform module if and only if $\operatorname{End}(\widehat{M})$ is a regular ring. We prove the dual of that result when M is a semiperfect module.

Theorem 3.7. Let M be a semiperfect module and $f: P \to M$ be the projective cover. Then the following statements are equivalent.

- (1) M is copolyform and $0 \stackrel{cr}{\hookrightarrow} \operatorname{Ker} f$ in P;
- (2) P is copolyform;
- (3) $\operatorname{End}(P)$ is regular.

Proof. $(1) \Leftrightarrow (2)$ follows from Lemma 3.6.

- $(2)\Rightarrow (3)$. Let P be a copolyform module and $S=\operatorname{End}(P)$. As P is a projective module, $f\in\operatorname{Rad}S$ implies that $\operatorname{Im}f\ll P$. Since P is copolyform $\operatorname{Rad}S=0$. As M is semiperfect P is semiperfect [8,5.6]. Then S is f-semiperfect [13,42.12] and therefore $S/\operatorname{Rad}S$ is a regular ring [13,42.11]. Now $\operatorname{Rad}S=0$ implies that S is a regular ring.
- $(3) \Rightarrow (2)$. Let $g: P \to P$ be a homomorphism with $\operatorname{Im} g \ll P$. Since $\operatorname{End}(P)$ is regular, $\operatorname{Im} g$ is a direct summand of P [13, 37.7]. Hence $\operatorname{Im} g = 0$ or g = 0. Now by Lemma 3.5 P is copolyform.

Recall that a ring R is a left PP-ring (principal projective) if every cyclic left ideal of R is projective. A ring R is a hereditary (semihereditary) ring if

every left (finitely generated) ideal is projective.

Harmanci has communicated the following lemma. We give here a proof for the sake of completeness.

Lemma 3.8. Let M be a copolyform module and S = End(M).

- (1) If M is lifting, then S is a left and right PP-ring.
- (2) If M is finitely Σ -lifting, then S is left and right semihereditary.
- Proof. (1) Let $f \in S$. Since M is lifting and copolyform, Im $f \stackrel{cc}{\hookrightarrow} M$ [11, 2.3]. Therefore Im f is a direct summand of M Lemma 1.2. Hence by [13, 39.11] S is right PP-ring. Now we show that Sf is projective for every $f \in S$. As above f(M) is a direct summand of M and hence f(M) = e(M) for some idempotent $e \in S$. It is enough to prove that the onto map $\phi : S \to Sf$ defined by $\phi(s) = sf$, where $s \in S$ splits. We have $S(1 e) \subseteq \operatorname{Ker} \phi$. Let $g \in \operatorname{Ker} \phi$. Then $\phi(g) = gf = 0$ and so gf(M) = ge(M) = 0. This implies ge = 0. Hence $g(1 e) = g \in S(1 e)$. Thus $\operatorname{Ker} \phi = S(1 e)$. Therefore S is a left PP-ring.
- (2) Since M is copolyform and finitely Σ -lifting, M^n is also copolyform and lifting [11, 2.9]. Therefore by (1), for every $n \in \mathbb{N}$, End $(M^n) \simeq S^{n \times n}$ is a left and right PP-ring. Hence S is left and right semihereditary [13, 39.13].

Theorem 3.9. Let M be a copolyform Σ -lifting module and $S = \operatorname{End}(M)$. Suppose that N is any indecomposable direct summand of M. Then we have the following.

- (1) $M = \bigoplus_I M_i$ where each M_i is self-projective, local and End (M_i) a division ring;
- (2) $\operatorname{Hom}(N, M)$ is a uniserial, artinian left S-module;
- (3) $\operatorname{Hom}(N, M)$ is a uniserial left S-module of finite length, if M has only finitely many non-isomorphic indecomposable direct summands;
- (4) $\operatorname{Hom}(M, N)$ is a uniserial right S-module;
- (5) if M is finitely generated, then S is left and right serial, right artinian and left and right hereditary ring;
- (6) if M is finitely generated, then M has a projective cover P in $\sigma[M]$ and $\operatorname{End}(P)$ is a semisimple ring.
- *Proof.* (1). Since in a UCC lifting module M, every local direct summand of M is a direct summand [5], M is a direct sum of indecomposable modules [9, 2.17]. Now (1) follows from Proposion 3.4.
- (2) By Proposition 3.3, M is non-M-cosingular. Hence N is non-M-cosingular. Thus for every nonzero $f \in \text{Hom}(N, M)$, Im f is a hollow module which is not small in M. Therefore by Lemma 1.1 $\text{Im } f \stackrel{cc}{\hookrightarrow} M$ and hence a direct summand of M. As $\text{End}(M_i)$ is local, $\text{Im } f \simeq M_i$, for some $i \in I$ [1].

Suppose $f, g: N \to M$ with $\operatorname{Ker} f \subseteq \operatorname{Ker} g$. We claim that $Sg \subseteq Sf$. For there exists an onto map $\psi: \operatorname{Im} f \to \operatorname{Im} g$ such that $\psi f = g$.

Since Im f is a direct summand of M, we can extend ψ to $\phi: M \to M$ such that $\phi f = g$. Therefore $Sg \subseteq Sf$.

Consider any two nonzero $f, g \in \text{Hom}(N, M)$. Then $\text{Im } f \simeq N/\text{Ker} f \simeq M_i$ and $\text{Im } g \simeq N/\text{Ker} g \simeq M_j$ for some $i, j \in I$. By Proposition 2.3 (1), either $\text{Ker } f \subseteq \text{Ker } g$ or $\text{Ker } g \subseteq \text{Ker } f$. Hence either $Sg \subseteq Sf$ or $Sf \subseteq Sg$. Therefore Hom(N, M) is a uniserial left S-module.

Let $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a strictly descending chain of S-submodules of $\operatorname{Hom}(N,M)$. For each $n \in \mathbb{N}$ choose $f_n : N \to M$ such that $f_n \in I_n$ and $f_n \not\in I_{n+1}$. We have either $Sf_n \subseteq Sf_{n+1}$ or $Sf_{n+1} \subseteq Sf_n$ and $f_n \notin I_{n+1}$ implies that $Sf_{n+1} \subsetneq Sf_n$. This along with either $\operatorname{Ker} f_{n+1} \subseteq \operatorname{Ker} f_n$ or $\operatorname{Ker} f_n \subseteq \operatorname{Ker} f_{n+1}$ (2.3 (1)) gives us $\operatorname{Ker} f_n \subsetneq \operatorname{Ker} f_{n+1}$. Thus we get a strictly ascending chain

$$\operatorname{Ker} f_1 \subsetneq \operatorname{Ker} f_2 \subsetneq \cdots \subsetneq \operatorname{Ker} f_n \subsetneq \operatorname{Ker} f_{n+1} \subsetneq \cdots,$$

which contradicts Proposition 2.3 (2). Therefore $\operatorname{Hom}(N,M)$ is an artinian left S-module.

(3) By (2) it is enough to prove that $\mathrm{Hom}(N,M)$ satisfies ACC on S-submodules. Suppose that

$$I_1 \subsetneq I_2 \subsetneq \cdots \subsetneq I_n \subsetneq \cdots$$

is a strictly ascending chain of S-submodules of $\operatorname{Hom}(N, M)$. For each n there exists $f_{n+1} \in I_{n+1}$ such that $f_{n+1} \notin I_n$. As in the proof of (2) we get a strictly descending chain

$$\operatorname{Ker} f_2 \supseteq \operatorname{Ker} f_3 \supseteq \cdots \supseteq \operatorname{Ker} f_n \supseteq \cdots,$$

which contradicts Proposition 2.3 (3). Thus $\operatorname{Hom}(N,M)$ is a uniserial left S-module of finite length.

- (4) Since for every $i \in I$, M_i is hollow and N is a local module, any nonzero map $M_i \to N$ is an epimorphism. Hence any nonzero $f \in \text{Hom}(M,N)$ is an epimorphism. Now (4) follows from Theorem 2.4.
- (5) Since M is finitely generated $M = \bigoplus_{i=1}^k M_i$, where each M_i is a local module with local endomorphism ring.

Since $S = \bigoplus_{i=1}^k \text{Hom}(M, M_i)$, S is a right serial ring by (4).

Also $S = \bigoplus_{i=1}^k \operatorname{Hom}(M_i, M)$ and for each $i = 1, \dots, k$, $\operatorname{Hom}(M_i, M)$ is left artinian and left uniserial (by (2) and (3)) imply that S is a left serial and left artinian ring.

We know that every left and right serial, left artinian ring is a right artinian ring [13, 55.16]. Thus S is a left and right artinian serial ring. By Lemma 3.8, S is left and right semihereditary and hence S is a left and right hereditary ring.

(6) As M is finitely generated $M = \bigoplus_{i=1}^k M_i$, where each M_i is a local module with local endomorphism ring. Define $I := \{1, 2, \dots, k\}$.

For every $i \in I$ put $[i] = \{j \in I | M_i \simeq M_j\}$ and $\mathcal{F} = \{[i] | i \in I\}$. Define an order on \mathcal{F} by $[i] \leq [j]$ if and only if there exists an onto map $M_i \to M_j$. Then (\mathcal{F}, \leq) is a partially ordered set (see the proof of Theorem 2.4). Suppose that

$$J = \{j \in I | [j] \text{ is a minimal elements of } \mathcal{F}\}.$$

Let $N = \bigoplus_{j \in J} M_j$. For $k, \ell \in J$ any epimorphism from M_k to M_ℓ is an isomorphism and N is lifting, N is self-projective [12, Lemma 2.3].

For any $i \in I$, there exists a $j \in J$ such that $[j] \leq [i]$ and hence there exists an epimorphism from M_j to M_i . Thus $\sigma[M] = \mathbb{N}$. Since N is finitely generated and self-projective, N is projective in \mathbb{N} and hence in $\sigma[M]$.

Given $i \in I$, there exists a $j \in J$ such that there exists an epimorphism from M_j to M_i and hence M_j is a projective cover of M_i . Thus M has a projective cover P which is a direct summand of $N^{(k)}$.

Since P is finitely generated and weakly supplemented, $P/\operatorname{Rad}(P)$ is a semisimple module and hence $\operatorname{End}(P/\operatorname{Rad}(P))$ is a semisimple ring. By [11, 2.9] $N^{(k)}$ is copolyform and hence P is copolyform. Therefore $\operatorname{Rad}(\operatorname{End}(P))=0$. By [13, 22.2] $\operatorname{End}(P)/\operatorname{Rad}(\operatorname{End}(P))\simeq \operatorname{End}(P/\operatorname{Rad}(P))$ and hence $\operatorname{End}(P)$ is a semisimple ring.

4. Endomorphism Rings of $\overline{Z}_M(M)$, When M is Σ -Lifting and Injective

In this section we show that if M is a Σ -lifting injective module and N is an indecomposable direct summand of M, then $\operatorname{Hom}(\overline{Z}_M(N), \overline{Z}_M(M))$ is a uniserial \overline{S} -module of finite length, where $\overline{S} = \operatorname{End}(\overline{Z}_M(M))$.

Proposition 4.1. Let M be a Σ -lifting module which is injective in $\sigma[M]$. Then $M = \bigoplus_I M_i$, where each M_i is local, self-projective and indecomposable. Also we have the following.

- (1) For every $k \in I$, $\mathcal{A} = \{Ker(J) \mid J \subseteq \text{Hom}(\overline{Z}_M(M_k), M)\}$ is linearly ordered by set inclusion;
- (2) the family $\{\overline{Z}_M(M_i)\}_I$ is semi-T-nilpotent.

Proof. Since M is a lifting and injective module, $M = \bigoplus_I M_i$ where each M_i is indecomposable [10, 2.4, 2.5]. As M_i is injective and indecomposable, End (M_i) is local. Therefore by Proposition 2.1 each M_i is local and self-projective.

(1) Suppose that $0 \neq I_1$ and $0 \neq I_2 \subseteq \operatorname{Hom}(\overline{Z}_M(M_k), M)$ and $\operatorname{Ker}(I_1) \not\subseteq \operatorname{Ker}(I_2)$. Then for any nonzero $f \in I_1$, there exists a nonzero $g \in I_2$ such that $\operatorname{Ker} f \not\subseteq \operatorname{Ker} g$; for if not, then for every $g \in I_2$, $\operatorname{Ker} f \subseteq \operatorname{Ker} g$ implies $\operatorname{Ker} f \subseteq \operatorname{Ker}(I_2)$ and hence $\operatorname{Ker}(I_1) \subseteq \operatorname{Ker}(I_2)$ which is a contradiction.

As M is injective in $\sigma[M]$, homomorphisms f,g can be extended to $\overline{f},\overline{g}:M_k\to M$, respectively.

Then $\operatorname{Ker} f = \overline{Z}_M(M_k) \cap \operatorname{Ker} \overline{f}$ and $\operatorname{Ker} g = \overline{Z}_M(M_k) \cap \operatorname{Ker} \overline{g}$. If $\operatorname{Im} \overline{f}$ is small in M, then $\operatorname{Im} \overline{f}$ is an M-small module and hence is M-cosingular. Thus $M_k/\operatorname{Ker} \overline{f} \simeq \operatorname{Im} \overline{f}$ is M-cosingular and hence $\overline{Z}_M(M_k) \subseteq \operatorname{Ker} \overline{f}$. Therefore $\operatorname{Ker} f = \overline{Z}_M(M_k)$ which is contradiction. Hence $\operatorname{Im} \overline{f} \not \ll M$. Similarly $\operatorname{Im} \overline{g} \not \ll M$.

Since M_k is an indecomposable direct summand of M with local endomorphism ring, by Proposition 2.3 (1) either $\operatorname{Ker} \overline{f} \subseteq \operatorname{Ker} \overline{g}$ or $\operatorname{Ker} \overline{g} \subseteq \operatorname{Ker} \overline{f}$. As $\operatorname{Ker} \overline{f} \not\subseteq \operatorname{Ker} \overline{g}$, so $\operatorname{Ker} \overline{g} \subseteq \operatorname{Ker} f$ and hence $\operatorname{Ker} g \subseteq \operatorname{Ker} f$. Thus $\operatorname{Ker} (I_2) \subseteq \operatorname{Ker} f$. Since f is any nonzero element of I_1 , $\operatorname{Ker} (I_2) \subseteq \operatorname{Ker} (I_1)$.

(2) Suppose that $f: \overline{Z}_M(M_i) \to \overline{Z}_M(M_j)$ is a nonzero non-isomorphism. As M is injective in $\sigma[M]$, M_j is M_i -injective and hence f can be extended to an homomorphism $\overline{f}: M_i \to M_j$. We claim that \overline{f} is also a non-isomorphism.

If \overline{f} is not onto, then $\operatorname{Im} \overline{f}$ is an M-small module and hence is M-cosingular. Thus $M_i/\operatorname{Ker} \overline{f} \simeq \operatorname{Im} \overline{f}$ is M-cosingular. Therefore $\operatorname{Ker} \overline{f} \supseteq \overline{Z}_M(M_i)$ and hence f=0, a contradiction. Thus \overline{f} is an surjective map. Suppose $\operatorname{Ker} \overline{f}=0$. Then \overline{f} is an isomorphism. Hence $M_i \simeq M_j$ and so $\overline{Z}_M(M_i) \simeq \overline{Z}_M(M_j)$ and $\operatorname{Ker} f=0$. $\overline{Z}_M(M_i)$ is fully invariant in M_i and hence is self-injective. Thus $\operatorname{Im} f \simeq \overline{Z}_M(M_i)$ is $\overline{Z}_M(M_j)$ -injective implies that $\operatorname{Im} f$ is a direct summand of $\overline{Z}_M(M_j)$. As $\overline{Z}_M(M_j)$ is uniform $\operatorname{Im} f = \overline{Z}_M(M_j)$. Therefore f is an isomorphism, a contradiction. Thus $\operatorname{Ker} \overline{f} \neq 0$.

By Theorem 1.5 the family $\{M_i\}_I$ is semi-T-nilpotent. Since any nonzero non-isomorphism from $\overline{Z}_M(M_i) \to \overline{Z}_M(M_j)$ can be extended to a non-isomorphism from $M_i \to M_j$, the family $\{\overline{Z}_M(M_i)\}_I$ is also semi-T-nilpotent.

Proposition 4.2. Let M be a Σ -lifting module which is injective in $\sigma[M]$. Then $M = \bigoplus_I M_i$ where each M_i is a local and self-projective module. If $\overline{S} = \operatorname{End}(\overline{Z}_M(M))$, then we have

- (1) for any $k \in I$, $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ is a uniserial, artinian left \overline{S} -module;
- (2) if $\{\overline{Z}_M(M_i)\}_I$ contains only a finite number of non-isomorphic modules, then each $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ is a uniserial \overline{S} -module of finite length;
- (3) $\operatorname{Hom}(\overline{Z}_M(M), \overline{Z}_M(M_k))$ is a uniserial right \overline{S} -module.

Proof. The first assertion follows from Proposition 4.1.

(1) Let f, g be two nonzero homomorphisms in $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$. By the injectivity of M they can be extended to $\overline{f}, \overline{g}: M_k \to M$. As in the proof of Proposition 4.1(1), $\operatorname{Im} \overline{f}$ and $\operatorname{Im} \overline{g}$ are not small in M. By Proposition 2.3(1) either $\operatorname{Ker} \overline{f} \subseteq \operatorname{Ker} \overline{g}$ or $\operatorname{Ker} \overline{g} \subseteq \operatorname{Ker} \overline{f}$.

Suppose $\operatorname{Ker} \overline{f} \subseteq \operatorname{Ker} \overline{g}$. We claim that $S\overline{g} \subseteq S\overline{f}$, where $S = \operatorname{End}(M)$. For, there exists a surjective map $\psi : \operatorname{Im} \overline{f} \to \operatorname{Im} \overline{g}$ such that $\psi \overline{f} = \overline{g}$. Since $\operatorname{Im} \overline{f}$ is a direct summand of M, we can extend ψ to $\phi : M \to M$ such that $\phi \overline{f} = \overline{g}$. Therefore $S\overline{g} \subseteq S\overline{f}$. Hence either $S\overline{f} \subseteq S\overline{g}$ or $S\overline{g} \subseteq S\overline{f}$.

Suppose that $S\overline{f} \subseteq S\overline{g}$. As any homomorphism $\overline{Z}_M(M) \to \overline{Z}_M(M)$ can be extended to a homomorphism from $M \to M$, and the restriction of any map from $M \to M$ to $\overline{Z}_M(M)$ can be considered as a map from $\overline{Z}_M(M) \to \overline{Z}_M(M)$, we get so $\overline{S}f \subseteq \overline{S}g$.

Similarly if $S\overline{g} \subseteq S\overline{f}$, then $\overline{S}g \subseteq \overline{S}f$. Hence $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ is a uniserial left \overline{S} -module.

We have to prove that $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ is an artinian left \overline{S} -module. Let

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_r \supseteq \cdots$$

be a strictly descending chain of \overline{S} -submodules of $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$.

For any $r \in \mathbb{N}$, there exists $f_r \in I_r$ such that $f_r \not\in I_{r+1}$. We have either $\overline{S}f_r \subseteq \overline{S}f_{r+1}$ or $\overline{S}f_{r+1} \subseteq \overline{S}f_r$. Since $f_r \not\in I_{r+1}$ we get $\overline{S}f_r \not\subseteq \overline{S}f_{r+1}$. Hence $\overline{S}f_{r+1} \subsetneq \overline{S}f_r$.

As $\overline{f}_{r+1} \in \overline{S}f_r$, there exists $\overline{\alpha} \in \overline{S}$ such that $f_{r+1} = \overline{\alpha}f_r$. Therefore $\operatorname{Ker} f_r \subseteq \overline{f}_r$ Ker f_{r+1} which implies that $\operatorname{Ker} \overline{f}_r \cap \overline{Z}_M(M_k) \subseteq \operatorname{Ker} \overline{f}_r \cap \overline{Z}_M(M_k)$, where \overline{f}_r and \overline{f}_{r+1} are extensions of f_r and f_{r+1} respectively from M_k to M.

Suppose $\operatorname{Ker} \overline{f}_r = \operatorname{Ker} \overline{f}_{r+1}$. As f_r and f_{r+1} are nonzero maps, the images of the maps \overline{f}_r and \overline{f}_{r+1} are not small in M and hence are isomorphic to direct summands of M. Hence we can define a map $\phi: M \to M$ such that $\overline{f}_r = \phi \overline{f}_{r+1}$. The restriction to $\overline{Z}_M(M_k)$ gives us $f_r = \phi|_{\overline{Z}_M(M_k)} f_{r+1}$. Since $\phi|_{\overline{Z}_M(M_k)}$ can be considered as an element of \overline{S} , we get $\overline{S}f_r \subseteq \overline{S}f_{r+1}$, a contradiction. Hence $\operatorname{Ker} \overline{f}_r \subsetneq \operatorname{Ker} \overline{f}_{r+1}$.

Hence we get a strictly ascending chain

$$\operatorname{Ker} \overline{f}_1 \subsetneq \operatorname{Ker} \overline{f}_2 \subsetneq \cdots \subsetneq \operatorname{Ker} \overline{f}_r \subsetneq \cdots$$
.

For all $r \in \mathbb{N}$, $\operatorname{Im} \overline{f}_r$ is not small in M. Hence by Proposition 2.3 (2) the above chain becomes stationary after finitely many steps and hence this is also true for the chain

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_r \supseteq \cdots$$

Therefore $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ is an artinian left \overline{S} -module.

(2) By (1) it is enough to prove that $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ satisfies ACC on \overline{S} -submodules. Suppose that

$$I_1 \subsetneq I_2 \subsetneq \cdots \subsetneq I_r \subsetneq \cdots$$

is a strictly ascending chain of \overline{S} -submodules of $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$.

As in the proof of (1) we get homomorphisms $\overline{f}_r:M_k\to M$ such that ${\rm Im}\,\overline{f}_r\not\ll M$ and

$$\operatorname{Ker} \overline{f}_1 \supseteq \operatorname{Ker} \overline{f}_2 \supseteq \cdots \supseteq \operatorname{Ker} \overline{f}_r \supseteq \cdots$$
.

By Proposition 2.3 (3) this chain stops. Therefore $\operatorname{Hom}(\overline{Z}_M(M_k), \overline{Z}_M(M))$ is a uniserial \overline{S} -module of finite length.

(3) Any two nonzero maps $\phi, \psi \in \operatorname{Hom}(\overline{Z}_M(M), \overline{Z}_M(M_k))$ can be extended to nonzero maps $\overline{\phi}, \overline{\psi} \in \operatorname{Hom}(M, M_k)$. Since $\operatorname{Im} \overline{\phi}$ and $\operatorname{Im} \overline{\psi}$ are not small in M_k (as in the proof of Proposition 4.1 (1)), $\overline{\phi}, \overline{\psi}$ are surjective maps. By Theorem 2.4, either $\overline{\phi}S \subseteq \overline{\psi}S$ or $\overline{\psi}S \subseteq \overline{\phi}S$ where $S = \operatorname{End}(M)$. Suppose that $\overline{\phi}S \subseteq \overline{\psi}S$.

As any homomorphism $\overline{Z}_M(M) \to \overline{Z}_M(M)$ can be extended to a homomorphism from $M \to M$, and the restriction of any map from $M \to M$ to $\overline{Z}_M(M)$ can be considered as a map from $\overline{Z}_M(M) \to \overline{Z}_M(M)$, $\phi \overline{S} \subseteq \psi \overline{S}$. Hence $\operatorname{Hom}(\overline{Z}_M(M), \overline{Z}_M(M_k))$ is a uniserial right S-module.

References

- 1. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Graduate Texts in Mathematics, Vol. 13, 2nd Edition, Springer-Verlag, New York, 1992.
- 2. Y. Baba and M. Harada, On almost M-projective and almost M-injective, Tsukuba J. Math. 14 (1990) 53–69.
- 3. J. Clark and R. Wisbauer, Polyform and projective Σ -extending modules, Algebra Colloquium 5 (1998) 391–408.
- 4. N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, *Extending Modules*, Pitman Research Notes in Mathematics series, Longman, Harlow, 1994.

- 5. L. Ganesan and N. Vanaja, Modules for which every submodule has a unique coclosure, *Comm. Algebra*. (to appear).
- 6. T. Inoue, Sum of hollow modules, Osaka J. Math. 20 (1983) 331-336.
- 7. D. Keskin, On lifting modules, Comm. Algebra 28 (2000) 3427–3440.
- 8. E. A. Mares, Semi-perfect modules, Math. Z. 82 (1963) 347–360.
- 9. S. M. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Notes Series 147, Cambridge, 1990.
- 10. K. Oshiro, Lifting modules, extending modules and their application to QF rings, Hokkaido Math. J. 13 (1984) 310–338.
- Y. Talebi and N. Vanaja, Copolyform modules, Comm. Algebra 30 (2002) 1461– 1473.
- N. Vanaja, Characterisations of rings using extending and lifting modules, Proceedings of the Biennial Ohio State-Denison Conference, 1992, S. K. Jain and S. T. Rizvi (Eds.), World Scientific, New Jersey, 1993.
- 13. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- 14. L.E.T. Wu and J.P. Jans, On quasi-projectives, *Illinios. J. Math.* 11 (1967) 439–448.