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Abstract. A module M is called copolyform if every coessential submodule of M is

corational in M . It is known that every polyform Σ-extending module is a direct sum

of indecomposable self-injective modules. In this paper we study some properties of

copolyform Σ-lifting modules. We show that a copolyform Σ-lifting module is a direct

sum of indecomposable self-projective modules whose M -annihilator submodules are

linearly ordered and satisfy ACC. We also prove that every copolyform Σ-lifting module

M is non-M -cosingular module. Consequently, for M finitely generated, End(M) is

a left and right serial artinian hereditary ring. We then consider Σ-lifting injective

modules in terms of ZM () and show that for any indecomposable direct summand

N of M , Hom(ZM (N), ZM (M)) is a uniserial S-module of finite length where S =
End(ZM (M)).

1. Preliminaries

Let R be an associative ring with identity. All modules we consider are unitary
right R-modules. Suppose M is an R-module. A submodule A of M is said to
be a small submodule of M (denoted by A�M) if for any B ⊆M , A+B = M
implies B = M . A moduleM is called a hollow module if every proper submodule
of M is small in M . A module is called a local module if it has a unique maximal
submodule containing all its proper submodules. It is easy to see that a module
is a local module if and only if it is a cyclic hollow module.

For A ⊆ B ⊆M , A is said to be a coessential submodule of B in M (denoted
by A

ce
↪→ B in M) if B/A � M/A. In this case we also say B is a coessential

extension of A in M . Instead of coessential extension the term lying above was
used in Wisbauer [13]. For example, if R = Z = M and A = 2Z, then for any
k ∈ N, 2kZ is a coessential submodule of A in M .
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A is said to be coclosed in M (denoted by A
cc
↪→ M) if A has no proper

coessential submodule in M . The following lemma regarding hollow submodules
of a module has been proved by Inoue [6, Proposition 6].

Lemma 1.1. [6] Let M be an R-module and N a hollow submodule of M . Then
N �M or N

cc
↪→ M .

We recall the definition of an amply supplemented module. If N and L are
submodules of the module M , then N is called a supplement (resp. weak sup-
plement) of L, if N + L = M and N ∩ L � N (resp. N ∩ L � M). M is
called supplemented (resp. weakly supplemented) if each of its submodules has
a supplement (resp. weak supplement) in M . A module M is called Σ-weakly
supplemented, if any direct sum of copies of M is weakly supplemented. M is
called amply supplemented, if for all submodules N and L of M with N+L = M ,
N contains a supplement of L in M.

A module M is called lifting if every submodule A ⊆ M contains a direct
summand B of M such that A/B �M/B. M is said to be (finitely) Σ-lifting if
every (finite) direct sum of copies of M is lifting. The following lemma has been
proved by Mohamed and Müller [9, 4.8].

Lemma 1.2. [9] A module is lifting if and only if it is amply supplemented and
its coclosed submodules are direct summand.

Suppose M is an R-module. We recall the definitions of M -projective,
self-projective and almost M -projective modules. An R-module N is called M -
projective if for every epimorphism f : M → K and every homomorphism
g : N → K, there exists h : N → M with fh = g. N is called self-projective
(resp. projective) if it is N -projective (L-projective for any R-module L). N is
called almost M -projective, if for every epimorphism f : M → K and every
homomorphism g : N → K, either there exists h : N →M with fh = g or there
exists a nonzero direct summand M1 of M and h : M1 → N with gh = f |M1 .

A family {Mi}I of modules is called (locally) semi-T-nilpotent, if for any
countable family {fn : Min → Min+1}N of non-isomorphisms with in ∈ I all
distinct, (and for any element x ∈ Mi1), there exists k ∈ N (k depending on
x) such that fk . . . f1 = 0 (fk . . . f1(x) = 0). It is obvious that if each Mi is a
local module, then the family {Mi}I of modules is locally semi-T -nilpotent if
and only if it is semi-T -nilpotent.

Regarding lifting modules with local endomorphism ring the following results
have been proved by Baba and Harada [2].

Theorem 1.3. [2, Theorem 1] Let {Mi}n
i=1 be a set of hollow modules with local

endomorphism ring. Then the following are equivalent.
(1) ⊕n

i=1Mi is lifting;
(2) Mi is almost Mj-projective for any i �= j;
(3) for any subset J of I = {1, 2, . . . , n}, ⊕i∈JMi is almost ⊕i∈I\JMi-projective.
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Lemma 1.4. [2, Lemma 3] Let {Mi}I be a family of modules with local endo-
morphism ring. If ⊕i∈IMi is lifting, then {Mi}I is locally semi-T-nilpotent.

Theorem 1.5. [2, Theorem 2] Let {Mi}I be a family of local modules with local
endomorphism ring. Then the following are equivalent.
(1) ⊕i∈IMi is lifting;
(2) Mi is almost Mj-projective for any i �= j and {Mi}I is locally semi-T-

nilpotent;
(3) for any subset J of I, ⊕i∈JMi is almost ⊕i∈I\JMi-projective and {Mi}I is

locally semi-T-nilpotent.

Lemma 1.6. [2, Lemma 4] Let M be a hollow module with local endomorphism
ring. If any direct sum of copies of M is lifting, then M is cyclic.

2. ΣΣΣ-Lifting Modules

In this section we prove that a Σ-lifting module with local endomorphism ring is
self-projective. Suppose M is a Σ-lifting module such that any indecomposable
direct summand of M has local endomorphism ring. Let N be any indecompos-
able direct summand of M and A = {Kerf |f : N → M, Im f �� M}. We prove
that then N has ACC on A and if M has only finitely many non-isomorphic in-
decomposable direct summands, then N has DCC on A. Suppose M is a direct
sum of modules with local endomorphism rings and is Σ-lifting. Let S = End(M)
and N is any indecomposable direct summand of M . Then as a right S-module
A = Hom(M,N) has a waist B = {f : M → N | Im f � N} and A/B is a
uniserial module.

Proposition 2.1. Let M be a nonzero Σ-lifting, indecomposable R-module with
End(M) local. Then M is local and self-projective.

Proof. By Lemma 1.6, M is a local module. We claim that any surjective map
from M to M is an isomorphism. Suppose not. Let f : M → M be surjective
map which is not 1-1.

By 1.4, the family F = {Mn}, n ∈ N, where Mn = M , for all n ∈ N, is locally
semi-T -nilpotent. Since M is a local module the family F is semi-T -nilpotent.

Consider fn = f : Mn → Mn+1, for all n ∈ N. Since {Mi}I is semi-T -
nilpotent, there exists a positive number k such that fk : M1 = M → Mk = M
is a zero epimorphism, which is a contradiction.

As M ⊕M is lifting and every nonzero epimorphism M → M is 1-1, M is
self-projective [12, Lemma 2.3].

Lemma 2.2. Let M be an indecomposable self-projective lifting R-module. If
A and B are fully invariant submodules of M such that M/A⊕M/B is lifting,
then either A ⊆ B or B ⊆ A.

Proof. We first show that if Y is a fully invariant submodule of a self-projective
module X and if φ : X/Y → X/Z is an onto map, then Y ⊆ Z. We can lift
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φη′ to a map φ′ : X → X such that φη′φ′ = η where η′ : X → X/Y and
η : X → X/Z are the natural maps.

Since φ′(Y ) ⊆ Y , we get η(Y ) = φη′φ′(Y ) = 0. Hence Y ⊆ Z.
Since A and B are fully invariant submodules of a self-projective module

M , M/A and M/B are self-projective [14, Proposition 2.1]. As M/A and M/B
are hollow self-projective, End(M/A) and End(M/B) are local rings. Suppose
f : M/A→M/(A+B) and g : M/B →M/(A+B) are the natural maps. Since
M/A⊕M/B is lifting, M/A is almost M/B-projective Theorem 1.3. Also M/B
is indecomposable. Hence we can get either a map h : M/A → M/B or a map
h′ : M/B →M/A, such that gh = f or fh′ = g.

As f and g are small epimorphisms, the maps h and h′ (if they exist) will
be epimorphisms. Hence there exists either an epimorphism h : M/A → M/B
or an epimorphism h′ : M/B → M/A. Therefore either A ⊆ B or B ⊆ A. �

Proposition 2.3. Suppose M is a Σ-lifting module such that the endomorphism
ring of every indecomposable direct summand of M is a local ring. Suppose that
N is an indecomposable direct summand of M , K = {f : N → M | Im f �� M }
and A = {Kerf | f ∈ K }. Then
(1) A is linearly ordered by inclusion;
(2) N has ACC on A;
(3) N has DCC on A, if M has only finitely many non-isomorphic indecompos-

able direct summands.

Proof. Suppose that L is an indecomposable direct summand of M . Since L
is Σ-lifting with local endomorphism ring, then by Proposition 2.1, L is a self-
projective local module.
(1) Suppose that f ∈ K. As Im f is hollow, them by Lemma 1.1, Im f is
coclosed in M . Since M is lifting, Im f is an indecomposable direct summand
of M Lemma 1.2. Hence Im f is local and self-projective. Since Kerf � N and
N/Kerf is self-projective, Kerf is fully invariant in N [14, Proposition 2.2].

Suppose that f, g ∈ K; then Kerf and Kerg are fully invariant inN . N/Kerf⊕
N/Kerg (as it is isomorphic to a direct summand of M ⊕M) is a lifting module.
By Lemma 2.2, either Kerf ⊆ Kerg or Kerg ⊆ Kerf . Hence A is linearly ordered
by inclusion.
(2) Now suppose that there exists a strictly ascending chain

X1 � X2 � · · · � Xi � Xi+1 � · · ·
of elements in A. Then there exists fi : N → M such that Kerfi = Xi and
Im fi �� M for every i ∈ N. For each i ∈ N, N/Xi is isomorphic to a direct
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summand of M and hence is a Σ-lifting, self-projective, local module with local
endomorphism ring.

As M is Σ-lifting we have ⊕∞
i=1N/Xi is a lifting module with End(N/Xi)

local, for all i ∈ N. Thus {N/Xi}N is locally semi-T -nilpotent (1.4) and hence
semi-T -nilpotent (as each N/Xi is local). By considering the natural maps
ηi : N/Xi → N/Xi+1 for all i ∈ N, we get a contradiction. Hence N satisfies
ACC on A.
(3) Suppose that

Y1 � Y2 � · · · � Yi � Yi+1 � · · ·
is a strictly descending chain of elements in A. Each N/Yi is isomorphic to
some indecomposable direct summand of M . As there are only finitely many
non-isomorphic indecomposable direct summands of M , we get N/Y� 	 N/Yk

for some k and �. Suppose k < �. Then Y� � Yk. Since N/Y� 	 N/Yk is
self-projective, the natural map f : N/Y� → N/Yk splits. Therefore Yk/Y�

is a nonzero proper direct summand of the hollow module N/Y�, which is a
contradiction. �

Recall that a submodule B of a module A is called a waist if for every
submodule C of A either B ⊆ C or C ⊆ B holds.

Theorem 2.4. Let M = ⊕IMi be a Σ-lifting module, where each Mi has a
local endomorphism ring. Suppose that N is a nonzero indecomposable direct
summand of M , A = Hom(M,N) and B = {f ∈ A | Im f � N}. Then B is a
waist of A such that A/B is a uniserial right S-module, where S = End(M).

Proof. Since each Mi is indecomposable Σ-lifting, by Proposition 2.1, Mi is
local and self-projective. We note that any nonzero f ∈ A such that f �∈ B is
an epimorphism. To prove that B is a waist of A, it is enough to prove that for
any onto map f ∈ A and g ∈ B, gS ⊆ fS.

Now consider an epimorphism f : M → N and g : M → N with Im g � N .
There exists i0 ∈ I such that fi0 : Mio → N is onto (for N is a local module),
where fi0 is the restriction of f to Mi0 .

For every i ∈ I, consider gi : Mi → N , the restriction of g to Mi. As
Mi ⊕Mi0 is lifting Mi and Mi0 are relatively almost-projective modules. Hence
for every i ∈ I, there exists φi : Mi →Mi0 such that fi0φi = gi.

Define φ : M → M by φ|Mi = φi, for every i ∈ I. It is obvious that fφ = g.
Hence gS ⊆ fS. Therefore B is a waist of A.

To prove that A/B is a uniserial right S-module, it is enough to show that
whenever f, g : M → N are surjective maps, either fS ⊆ gS or gS ⊆ fS.

For every i ∈ I put [i] = {j ∈ I|Mi 	 Mj} and F = {[i]|i ∈ I}. Define an
order on F by [i] ≤ [j] if and only if there exists a surjective map Mi → Mj. We
claim that (F ,≤) is a partially ordered set. Assume that [i] ≤ [j] and [j] ≤ [i] for
some i, j ∈ I. Then there exist surjective maps θ : Mi →Mj and ψ : Mj →Mi.
Since Mi is self-projective, the map ψθ : Mi → Mi splits. Therefore Mi 	 Mj

and hence [i] = [j]. Now it is easy to see that (F ,≤) is a partially ordered set.
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As each Mi is local, by Lemma 1.4 the family {Mi}I is semi-T -nilpotent.
Therefore every nonempty subset G of F has a maximal element.

Suppose that

If = {i ∈ I | fi = f |Mi is onto} and Ig = {j ∈ I|gj = g|Mj is onto}.

Since N is local, If �= ∅ and Ig �= ∅. Define

If := {[i]|i ∈ If} and Ig := {[i]|i ∈ Ig}.
Suppose [i0] is a maximal element of If ∪ Ig and that io ∈ If . We claim that
gS ⊆ fS.

Let fi0 : Mi0 → N be the restriction of f to Mi0 and gi : Mi → N be the
restriction of g to Mi, for every i ∈ I. As before Mi and Mi0 are relatively
almost-projective modules for every i ∈ I. Hence if gi is not onto, there exists
φi : Mi → Mi0 such that fi0φi = gi. If gi is onto, then either there exists
a surjective map φi : Mi → Mi0 such that fi0φi = gi or a surjective map
ψi : Mi0 →Mi such that giψi = fi0 .

By the choice of io, the existence of the surjective map ψi fromMi0 to Mi will
imply that Mi 	Mi0 . Since Mi is self-projective, the map ψi is an isomorphism.
Hence we always get a map φi : Mi → Mi0 such that fi0φi = gi.

Define φ : M → M by φ|Mi = φi, for every i ∈ I. It is obvious that fφ = g.
Hence gS ⊆ fS. �

3. Copolyform ΣΣΣ-Lifting Modules

Clark and Wisbauer [3] have proved that a polyform Σ-extending module M is
a direct sum of self-injective modules. In this section dually we show that every
copolyform Σ-lifting module is a direct sum of self-projective modules whose
M -annihilator submodules are linearly ordered.

Suppose M is an R-module. By σ[M ] we mean the full subcategory of Mod-
R whose objects are submodules of M -generated modules. The injective hull of
N ∈ σ[M ] is denoted by N̂ . N ∈ σ[M ] is said to be an M -small module if N is
small in N̂ . It is easy to see that N is an M -small module if and only if there
exists a module L ∈ σ[M ] such that N � L. We define ZM (N), as follows:

ZM (N) = Re(N,S) =
⋂ {

Ker(g)|g ∈ Hom(N,L), L ∈ S}
,

where S denotes the class of all M -small modules. We call N an M -cosingular
(non-M -cosingular) module if ZM (N) = 0 (ZM (N) = N). It is easy to see that
a module N ∈ σ[M ] is non-M -small if and only if every nonzero factor module
of N is non-M -small.

Corational extension and copolyform module which are dual concepts of
rational extension and polyform module are defined and studied in [11]. We give
the definitions.

Suppose that A ⊆ B ⊆ M . We say that A is a coessential submodule of
B in M(denoted by A

ce
↪→ B in M), if B/A � M/A. We call A a corational

submodule of B in M , if Hom(M/A,B/X) = 0, for any submodule X such that
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A ⊆ X ⊆ B. We denote this by A
cr
↪→ B in M . In this case we also say that B

is a corational extension of A in M .
We call a module M a copolyform module if A

ce
↪→ B in M implies A

cr
↪→ B in

M . Equivalently a module M is a copolyform module if whenever B/A�M/A,
Hom(M/A,B/X) = 0, for A ⊆ X ⊆ B. A module M is Σ-copolyform, if any
direct sum of copies of M is copolyform.

Suppose M is an R-module and A ⊆M . Consider the set A of all coessential
submodules of A in M . Minimal elements of A under set inclusion, if they
exists, are called coclosures of A in M . If M is amply supplemented, then
coclosures of every submodule of A in M exist. A module M is called a unique
coclosure module (denoted by UCC module), if every submodule of M has a
unique coclosure in M [5]. We call a module M a Σ-UCC module, if any direct
sum of copies of M is a UCC module.

Suppose that M is an amply supplemented module. If M is copolyform, then
M is a UCC module [5, 4.2]. The converse is not true. For example, consider
Z/8Z as a Z-module. But if M ⊕M is UCC, then M is copolyform [5, 4.6]. The
following lemma is trivial.

Lemma 3.1. Suppose that M is a Σ-amply supplemented module. Then M is
a Σ-UCC module if and only if it is a Σ-copolyform module.

It is known that if M is a polyform module then M is non-M -singular.
We do not know whether the dual is true; but it has been proved that if
M is Σ-copolyform and Σ-weakly supplemented, then M is non-M -cosingular
[11, 2.11]. We prove below that if M is copolyform and Σ-lifting, then M is
non-M -cosingular.

Proposition 3.2. Let M be a copolyform Σ-lifting module. Define N :=
⊕i∈IMi, where Mi = M for every i ∈ I. If X is a direct summand of N
and f : N → X, then f(A)

cc
↪→ X whenever A

cc
↪→ N .

Proof. Suppose A
cc
↪→ N . Since N is a lifting module, A is a direct summand of

N Lemma 1.2 and hence N = A⊕ B. Consider the homomorphism g : N → X
such that g = f on A and g = 0 on B. Then g(A) = f(A) = g(N). Moreover,
since X is a lifting module, there exists a direct summand Y ⊆ g(A) such that
X = Y ⊕ Z and g(A) = Y ⊕ (g(A) ∩ Z) with (g(A) ∩ Z) � Z. This gives a
map h := pg : N → Z, where p : X → Z is the projection map along Y . Now
Imh = pg(N) = g(A) ∩ Z � Z.

Let πi : N → Mi and qi : Mi → N be the natural projection and inclusion
maps for any i ∈ I. Let pi = πi|Z ; then we get a homomorphism hij = pihqj :
Mj →Mi, for each i, j ∈ I.
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Since Mi is copolyform for all i, j ∈ I hij = 0 [11, 2.3]. Hence h = 0.
Therefore g(A) ∩ Z = 0. Thus f(A) = g(A) is a direct summand of X , and
hence f(A)

cc
↪→ X . �

Proposition 3.3 Let M be a copolyform Σ-lifting R-module. Then M is a
non-M -cosingular module.

Proof. We know that a Σ-copolyform Σ-weakly supplemented module M is non-
M -cosingular [11, 2.11]. We want to prove that a copolyform Σ-lifting module
is non-M -cosingular. As M is Σ-lifting, M is Σ-amply supplemented. Hence it
is enough to prove that M is Σ-copolyform. By Lemma 3.1 it is enough to show
that M is Σ-UCC.

Suppose I is any indexing set and N = ⊕i∈IMi, where Mi = M for every
i ∈ I. We want to show that N is a UCC module. For this we prove that, for
all epimorphism f : N → N/K, A

cc
↪→ N implies f(A)

cc
↪→ N/K [5, 3.16].

Suppose that f : N → N/K is an epimorphism and A
cc
↪→ N . As N is a lifting

module, N = L⊕L′, where L ⊆ K and K = L⊕(K∩L′) with (K∩L′) � L′. We
have an isomorphism φ : N/K → L′/(L′ ∩K). Also φf = ηp, where p : N → L′

is the projection along L, and η : L′ → L′/(L′ ∩K) the natural map.

Our aim is to prove that if A
cc
↪→ N , then f(A)

cc
↪→ N/K. It is enough to

show that φf(A) = ηp(A)
cc
↪→ L′/(L′ ∩K), as φ is an isomorphism. Now since

Kerη � L′, η(B)
cc
↪→ L′/(L′∩K), whenever B

cc
↪→ L′ [5, 2.6]. By Proposition 3.2,

p(A)
cc
↪→ L′. Therefore ηp(A)

cc
↪→ L′/(L′ ∩K) and hence f(A)

cc
↪→ N/K. Thus N

is UCC module. �

We recall the definition of M -annihilator submodules. Let M be an
R-module. For an R-module N and any subset X ⊆ Hom(N,M), We put
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Ker (X) =
⋂

{Ker g | g ∈ X}.
Any submodule of Ker(X) for some suchX is called anM -annihilator submodule
of N and we denote the set of M -annihilator submodules by K(N,M).

Proposition 3.4. Let M be a copolyform Σ-lifting module, and N an indecom-
posable direct summand of M . If K(N,M) = {Ker (I) | I ⊆ Hom(N,M)} is the
set of all M -annihilator submodules of N . Then
(1) End(N) is a division ring and N is local, self-projective;
(2) K(N,M) is linearly ordered by inclusion and N has ACC on K(N,M);
(3) N has DCC on K(N,M), if M has only finitely many non-isomorphic in-

decomposable direct summand submodules.

Proof. (1) Let N be an indecomposable direct summand of M . Then N is
lifting and hence a hollow module. Suppose that f : N → N is a nonzero
homomorphism. As N is non-M -cosingular module, f is an epimorphism Lemma
1.1. Let L = ⊕NNi, for every i ∈ N, Ni = N . Then L is a UCC lifting module,
and hence the sum of any family of coclosed submodules of L is coclosed in L
[5, 3.16 (3)]. As L is also lifting, any locally direct submmand of L is a direct
summand of L Lemma 1.2. Now consider fi = f : Ni → Ni+1 for every i ∈ N.
Then for every family {fi : Ni → Ni+1}N, there exists r ∈ N and a nonzero map
hr : Nr+1 → Nr such that fr−1 . . . f1 = hrfr . . . f1 [13, 43.3]. For any i ∈ N, fi

is onto, and hrfr is the identity map on Nr. Hence fr is 1-1. Therefore End(N)
is a division ring. Now by Proposition 2.1, N is local and self-projective.
(2) By Proposition 3.3, M is non-M -cosingular. Since every direct summand N
of M is non-M -cosingular, so if f ∈ Hom(N,M) is a nonzero map then Im f ��
M . Therefore if A = {Kerf | Im f �� M } then A ∪ N = K(N,M) and hence
K(N,M) is linearly ordered Proposition 2.3. Suppose that Ker (I1) � Ker (I2),
where I1, I2 � Hom(N,M). Then there exists f ∈ I1, such that Kerf � Kerg,
for every g ∈ I2; for if not, then for every f0 ∈ I1, there exists g0 ∈ I2, such
that Ker f0 � Kerg0, and hence Kerf0 � Ker (I2). Therefore Ker (I1) � Ker (I2)
which is a contradiction.

Consider
Ker (I1) � Ker (I2) � · · · � Ker (Ir) � Ker (Ir+1) � · · ·

a strictly ascending chain ofM -annihilator submodules. Fix r ∈ N. As Ker (Ir) �
Ker (Ir+1), there exists fr ∈ Ir such that for every g ∈ Ir+1, Kerfr � Kerg.
Hence we get a strictly increasing chain

Kerf1 � Kerf2 � · · · � Ker fr � Kerfr+1 � · · · ,
which is a contradiction Proposition 2.3. So N satisfies ACC on K(N,M).
(3) Suppose that

Ker (I1) � Ker (I2) � · · · � Ker (Ir) � Ker (Ir+1) � · · ·
is a strictly descending chain of M -annihilator submodules of N . Then for each
r+1 ∈ N, there exists fr+1 ∈ Ir+1 such that for every fr ∈ Ir , Ker fr+1 � Ker fr.
So we get a strictly descending chain
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Ker f1 � Ker f2 � · · · � Kerfr � Kerfr+1 � · · · ,
which is a contradiction Proposition 2.3. �

The following Lemma regarding copolyform modules has been proved in
[11, 2.3].

Lemma 3.5. Suppose that M is an amply supplemented module. M is a copoly-
form module if and only if for any nonzero map f : M →M/X, Im f ��M/X .

Lemma 3.6. Suppose M is an R-module and f : P → M a projective cover of
M . Then the following are equivalent.
(1) P is copolyform;
(2) M is copolyform and 0

cr
↪→ K in P , where K is the kernel of f .

Proof. (1) ⇒ (2). As P is copolyform, M is copolyform [11, 2.2]. Since K � P ,
0

ce
↪→ K in P . Now P is coplyform implies that 0

cr
↪→ K in P .

(2) ⇒ (1). Suppose that A
ce
↪→ B in P . It is easy to see that (A + K)/K

ce
↪→

(B + K)/K in M . As M is copolyform, (A + K)/K
cr
↪→ (B + K)/K in M .

Therefore by [11, 1.1 (5)] (A + K)
cr
↪→ (B + K) in P . Since 0

cr
↪→ K in P and

A
cr
↪→ A in P , A

cr
↪→ (A +K) in P [11, 1.1 (4)]. Now (A + K)

cr
↪→ (B + K) in P

implies A
cr
↪→ (B +K) [11, 1.1 (2)]. Again by [11, 1.1 (2)] A

cr
↪→ B in P . Thus P

is a copolyform module. �

It has been proved in [4] that, M is a polyform module if and only if End(M̂)
is a regular ring. We prove the dual of that result when M is a semiperfect
module.

Theorem 3.7. Let M be a semiperfect module and f : P →M be the projective
cover. Then the following statements are equivalent.
(1) M is copolyform and 0

cr
↪→ Kerf in P ;

(2) P is copolyform;
(3) End(P ) is regular.

Proof. (1) ⇔ (2) follows from Lemma 3.6.
(2) ⇒ (3). Let P be a copolyform module and S = End(P ). As P is a projective
module, f ∈ RadS implies that Im f � P . Since P is copolyform RadS = 0.
As M is semiperfect P is semiperfect [8, 5.6]. Then S is f -semiperfect [13, 42.12]
and therefore S/RadS is a regular ring [13, 42.11]. Now RadS = 0 implies that
S is a regular ring.
(3) ⇒ (2). Let g : P → P be a homomorphism with Im g � P . Since End(P )
is regular, Im g is a direct summand of P [13, 37.7]. Hence Im g = 0 or g = 0.
Now by Lemma 3.5 P is copolyform. �

Recall that a ring R is a left PP -ring (principal projective) if every cyclic
left ideal of R is projective. A ring R is a hereditary (semihereditary) ring if
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every left (finitely generated) ideal is projective.
Harmanci has communicated the following lemma. We give here a proof for

the sake of completeness.

Lemma 3.8. Let M be a copolyform module and S = End (M).
(1) If M is lifting, then S is a left and right PP -ring.
(2) If M is finitely Σ-lifting, then S is left and right semihereditary.

Proof. (1) Let f ∈ S. Since M is lifting and copolyform, Im f
cc
↪→ M

[11, 2.3]. Therefore Im f is a direct summand of M Lemma 1.2. Hence by
[13, 39.11] S is right PP -ring. Now we show that Sf is projective for every
f ∈ S. As above f(M) is a direct summand of M and hence f(M) = e(M) for
some idempotent e ∈ S. It is enough to prove that the onto map φ : S → Sf
defined by φ(s) = sf , where s ∈ S splits. We have S(1 − e) ⊆ Kerφ. Let
g ∈ Kerφ. Then φ(g) = gf = 0 and so gf(M) = ge(M) = 0. This implies
ge = 0. Hence g(1 − e) = g ∈ S(1 − e). Thus Kerφ = S(1 − e). Therefore S is
a left PP -ring.
(2) Since M is copolyform and finitely Σ-lifting, Mn is also copolyform and
lifting [11, 2.9]. Therefore by (1), for every n ∈ N, End (Mn) 	 Sn×n is a left
and right PP -ring. Hence S is left and right semihereditary [13, 39.13]. �

Theorem 3.9. Let M be a copolyform Σ-lifting module and S = End(M).
Suppose that N is any indecomposable direct summand of M . Then we have the
following.
(1) M = ⊕IMi where each Mi is self-projective, local and End (Mi) a division

ring;
(2) Hom(N,M) is a uniserial, artinian left S-module;
(3) Hom(N,M) is a uniserial left S-module of finite length, if M has only finitely

many non-isomorphic indecomposable direct summands;
(4) Hom(M,N) is a uniserial right S-module;
(5) if M is finitely generated, then S is left and right serial, right artinian and

left and right hereditary ring;
(6) if M is finitely generated, then M has a projective cover P in σ[M ] and

End(P ) is a semisimple ring.

Proof. (1). Since in a UCC lifting module M , every local direct summand of M
is a direct summand [5], M is a direct sum of indecomposable modules [9, 2.17].
Now (1) follows from Proposion 3.4.
(2) By Proposition 3.3, M is non-M -cosingular. Hence N is non-M -cosingular.
Thus for every nonzero f ∈ Hom(N,M), Im f is a hollow module which is not
small in M . Therefore by Lemma 1.1 Im f

cc
↪→ M and hence a direct summand

of M . As End(Mi) is local, Im f 	Mi, for some i ∈ I [1].
Suppose f, g : N → M with Kerf ⊆ Kerg. We claim that Sg ⊆ Sf . For

there exists an onto map ψ : Im f → Im g such that ψf = g.
Since Im f is a direct summand of M , we can extend ψ to φ : M → M such

that φf = g. Therefore Sg ⊆ Sf .
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Consider any two nonzero f, g ∈ Hom(N,M). Then Im f 	 N/Kerf 	 Mi

and Im g 	 N/Kerg 	 Mj for some i, j ∈ I. By Proposition 2.3 (1), either
Ker f ⊆ Ker g or Ker g ⊆ Ker f . Hence either Sg ⊆ Sf or Sf ⊆ Sg. Therefore
Hom(N,M) is a uniserial left S-module.

Let I1 � I2 � · · · � In � · · · be a strictly descending chain of S-submodules
of Hom(N,M). For each n ∈ N choose fn : N →M such that fn ∈ In and fn �∈
In+1. We have either Sfn ⊆ Sfn+1 or Sfn+1 ⊆ Sfn and fn �∈ In+1 implies that
Sfn+1 � Sfn. This along with either Ker fn+1 ⊆ Ker fn or Ker fn ⊆ Ker fn+1

(2.3 (1)) gives us Ker fn � Ker fn+1. Thus we get a strictly ascending chain

Kerf1 � Kerf2 � · · · � Ker fn � Ker fn+1 � · · · ,
which contradicts Proposition 2.3 (2). Therefore Hom (N,M) is an artinian left
S-module.
(3) By (2) it is enough to prove that Hom(N,M) satisfies ACC on S-submodules.
Suppose that

I1 � I2 � · · · � In � · · ·
is a strictly ascending chain of S-submodules of Hom(N,M). For each n there
exists fn+1 ∈ In+1 such that fn+1 �∈ In. As in the proof of (2) we get a strictly
descending chain

Ker f2 � Ker f3 � · · · � Ker fn � · · · ,
which contradicts Proposition 2.3 (3). Thus Hom(N,M) is a uniserial left S-
module of finite length.
(4) Since for every i ∈ I, Mi is hollow and N is a local module, any nonzero
map Mi → N is an epimorphism. Hence any nonzero f ∈ Hom(M,N) is an
epimorphism. Now (4) follows from Theorem 2.4.
(5) Since M is finitely generated M = ⊕k

i=1Mi, where each Mi is a local module
with local endomorphism ring.

Since S = ⊕k
i=1Hom(M,Mi), S is a right serial ring by (4).

Also S = ⊕k
i=1Hom(Mi,M) and for each i = 1, · · · , k, Hom(Mi,M) is left

artinian and left uniserial (by (2) and (3)) imply that S is a left serial and left
artinian ring.

We know that every left and right serial, left artinian ring is a right artinian
ring [13, 55.16]. Thus S is a left and right artinian serial ring. By Lemma 3.8, S
is left and right semihereditary and hence S is a left and right hereditary ring.
(6) As M is finitely generated M = ⊕k

i=1Mi, where each Mi is a local module
with local endomorphism ring. Define I := {1, 2, . . . , k}.

For every i ∈ I put [i] = {j ∈ I|Mi 	 Mj} and F = {[i]|i ∈ I}. Define an
order on F by [i] ≤ [j] if and only if there exists an onto map Mi → Mj. Then
(F ,≤) is a partially ordered set (see the proof of Theorem 2.4). Suppose that

J = {j ∈ I| [j] is a minimal elements of F}.
Let N = ⊕j∈JMj . For k, � ∈ J any epimorphism from Mk to M� is an isomor-
phism and N is lifting, N is self-projective [12, Lemma 2.3].
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For any i ∈ I, there exists a j ∈ J such that [j] ≤ [i] and hence there exists
an epimorphism from Mj to Mi. Thus σ[M ] = N. Since N is finitely generated
and self-projective, N is projective in N and hence in σ[M ].

Given i ∈ I, there exists a j ∈ J such that there exists an epimorphism from
Mj to Mi and hence Mj is a projective cover of Mi. Thus M has a projective
cover P which is a direct summand of N (k).

Since P is finitely generated and weakly supplemented, P/Rad (P ) is a
semisimple module and hence End(P/Rad (P )) is a semisimple ring. By [11, 2.9]
N (k) is copolyform and hence P is copolyform. Therefore Rad (End(P )) = 0.
By [13, 22.2] End(P )/Rad (End(P )) 	 End(P/Rad (P )) and hence End(P ) is a
semisimple ring. �

4. Endomorphism Rings of ZM (M)ZM (M)ZM (M), WhenMMM is ΣΣΣ-Lifting and Injective

In this section we show that if M is a Σ-lifting injective module and N is an
indecomposable direct summand ofM , then Hom(ZM (N), ZM (M)) is a uniserial
S-module of finite length, where S = End(ZM (M)).

Proposition 4.1. Let M be a Σ-lifting module which is injective in σ[M ]. Then
M = ⊕IMi, where each Mi is local, self-projective and indecomposable. Also we
have the following.
(1) For every k ∈ I, A ={Ker(J) | J ⊆ Hom(ZM (Mk),M)} is linearly ordered

by set inclusion;
(2) the family {ZM (Mi)}I is semi-T-nilpotent.

Proof. Since M is a lifting and injective module, M = ⊕IMi where each Mi is
indecomposable [10, 2.4, 2.5]. As Mi is injective and indecomposable, End (Mi)
is local. Therefore by Proposition 2.1 each Mi is local and self-projective.
(1) Suppose that 0 �= I1 and 0 �= I2 ⊆ Hom(ZM (Mk),M) and Ker (I1) �⊆
Ker (I2). Then for any nonzero f ∈ I1, there exists a nonzero g ∈ I2 such
that Ker f �⊆ Ker g; for if not, then for every g ∈ I2, Ker f ⊆ Ker g implies
Ker f ⊆ Ker (I2) and hence Ker (I1) ⊆ Ker (I2) which is a contradiction.

As M is injective in σ[M ], homomorphisms f, g can be extended to f, g :
Mk →M , respectively.

Then Ker f = ZM (Mk) ∩ Ker f and Ker g = ZM (Mk) ∩ Ker g. If Im f is
small in M , then Im f is an M -small module and hence is M -cosingular. Thus
Mk/Ker f 	 Im f is M -cosingular and hence ZM (Mk) ⊆ Ker f . Therefore
Ker f = ZM (Mk) which is contradiction. Hence Im f �� M . Similarly Im g ��
M .

Since Mk is an indecomposable direct summand of M with local endomor-
phism ring, by Proposition 2.3 (1) either Ker f ⊆ Ker g or Ker g ⊆ Ker f . As
Ker f �⊆ Ker g, so Ker g ⊆ Ker f and hence Ker g ⊆ Ker f . Thus Ker (I2) ⊆
Ker f . Since f is any nonzero element of I1, Ker (I2) ⊆ Ker (I1).
(2) Suppose that f : ZM (Mi) → ZM (Mj) is a nonzero non-isomorphism. As
M is injective in σ[M ], Mj is Mi-injective and hence f can be extended to an
homomorphism f : Mi →Mj. We claim that f is also a non-isomorphism.
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If f is not onto, then Im f is an M -small module and hence is M -cosingular.
Thus Mi/Ker f 	 Im f is M -cosingular. Therefore Ker f ⊇ ZM (Mi) and hence
f = 0, a contradiction. Thus f is an surjective map. Suppose Ker f = 0. Then
f is an isomorphism. Hence Mi 	Mj and so ZM (Mi) 	 ZM (Mj) and Ker f =
0. ZM (Mi) is fully invariant in Mi and hence is self-injective. Thus Im f 	
ZM (Mi) is ZM (Mj)-injective implies that Im f is a direct summand of ZM (Mj).
As ZM (Mj) is uniform Im f = ZM (Mj). Therefore f is an isomorphism, a
contradiction. Thus Ker f �= 0.

By Theorem 1.5 the family {Mi}I is semi-T -nilpotent. Since any nonzero
non-isomorphism from ZM (Mi)→ZM (Mj) can be extended to a non-isomorphism
from Mi →Mj, the family {ZM (Mi)}I is also semi-T -nilpotent. �

Proposition 4.2. Let M be a Σ-lifting module which is injective in σ[M ].
Then M = ⊕IMi where each Mi is a local and self-projective module. If S =
End(ZM (M)), then we have
(1) for any k ∈ I, Hom(ZM (Mk), ZM (M)) is a uniserial, artinian left S-module;
(2) if {ZM (Mi)}I contains only a finite number of non-isomorphic modules, then

each Hom(ZM (Mk), ZM (M)) is a uniserial S-module of finite length;
(3) Hom(ZM (M), ZM (Mk)) is a uniserial right S-module.

Proof. The first assertion follows from Proposition 4.1.
(1) Let f, g be two nonzero homomorphisms in Hom(ZM (Mk), ZM (M)). By the
injectivity of M they can be extended to f, g : Mk → M . As in the proof of
Proposition 4.1 (1), Im f and Im g are not small in M . By Proposition 2.3 (1)
either Ker f ⊆ Ker g or Ker g ⊆ Ker f .

Suppose Kerf ⊆ Kerg. We claim that Sg ⊆ Sf , where S = End(M). For,
there exists a surjective map ψ : Im f → Im g such that ψf = g. Since Im f is
a direct summand of M , we can extend ψ to φ : M → M such that φf = g.
Therefore Sg ⊆ Sf . Hence either Sf ⊆ Sg or Sg ⊆ Sf .

Suppose that Sf ⊆ Sg. As any homomorphism ZM (M) → ZM (M) can be
extended to a homomorphism from M → M , and the restriction of any map
from M →M to ZM (M) can be considered as a map from ZM (M) → ZM (M),
we get so Sf ⊆ Sg.

Similarly if Sg ⊆ Sf , then Sg ⊆ Sf . Hence Hom(ZM (Mk), ZM (M)) is a
uniserial left S-module.

We have to prove that Hom(ZM (Mk), ZM (M)) is an artinian left S-module.
Let

I1 � I2 � · · · � Ir � · · ·
be a strictly descending chain of S-submodules of Hom(ZM (Mk), ZM (M)).

For any r ∈ N, there exists fr ∈ Ir such that fr �∈ Ir+1. We have either
Sfr ⊆ Sfr+1 or Sfr+1 ⊆ Sfr. Since fr �∈ Ir+1 we get Sfr �⊆ Sfr+1. Hence
Sfr+1 � Sfr.

As fr+1 ∈ Sfr, there exists α ∈ S such that fr+1 = αfr. Therefore Kerfr �
Ker fr+1 which implies that Kerfr ∩ ZM (Mk) � Ker f r ∩ ZM (Mk), where fr

and fr+1 are extensions of fr and fr+1 respectively from Mk to M .
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Suppose Ker f r = Ker f r+1. As fr and fr+1 are nonzero maps, the images
of the maps f r and fr+1 are not small in M and hence are isomorphic to direct
summands of M . Hence we can define a map φ : M →M such that f r = φf r+1.
The restriction to ZM (Mk) gives us fr = φ|ZM (Mk)fr+1. Since φ|ZM (Mk) can
be considered as an element of S, we get Sfr ⊆ Sfr+1, a contradiction. Hence
Ker f r � Ker fr+1.

Hence we get a strictly ascending chain

Kerf1 � Ker f2 � · · · � Kerf r � · · · .
For all r ∈ N, Im fr is not small in M . Hence by Proposition 2.3 (2) the above
chain becomes stationary after finitely many steps and hence this is also true for
the chain

I1 � I2 � · · · � Ir � · · · .
Therefore Hom(ZM (Mk), ZM (M)) is an artinian left S-module.
(2) By (1) it is enough to prove that Hom(ZM (Mk), ZM (M)) satisfies ACC on
S-submodules. Suppose that

I1 � I2 � · · · � Ir � · · ·
is a strictly ascending chain of S-submodules of Hom(ZM (Mk), ZM (M)).

As in the proof of (1) we get homomorphisms fr : Mk → M such that
Im f r ��M and

Kerf1 � Kerf2 � · · · � Kerf r � · · · .
By Proposition 2.3 (3) this chain stops. Therefore Hom(ZM (Mk), ZM (M)) is a
uniserial S-module of finite length.
(3) Any two nonzero maps φ, ψ ∈ Hom(ZM (M), ZM (Mk)) can be extended to
nonzero maps φ, ψ ∈ Hom(M,Mk). Since Imφ and Imψ are not small in Mk

(as in the proof of Proposition 4.1 (1)), φ, ψ are surjective maps. By Theorem
2.4, either φS ⊆ ψS or ψS ⊆ φS where S = End(M). Suppose that φS ⊆ ψS.

As any homomorphism ZM (M) → ZM (M) can be extended to a homo-
morphism from M → M , and the restriction of any map from M → M to
ZM (M) can be considered as a map from ZM (M) → ZM (M), φS ⊆ ψS. Hence
Hom(ZM (M), ZM (Mk)) is a uniserial right S-module. �
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