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Abstract. The basic Krull relations of Going Up and Going Down theorems for prime
kernel functors of a group graded ring R and its identity component R are proved
herein.

1. Introduction

Let R be a k-algebra with 1, over a commutative ring k£ with 1 and G be a finite
group, whose identity is also denoted by 1 such that the order of G is a unit in
R.

Throughout this paper R is assumed to be a right seminoetherian ring (c.f.
Definition 2.11) graded by G, that is, R = dec @© R, where R,’s are k-subspaces
of R and RyRy, C Ry, for all g, h € G. For any k-algebra R graded by a finite
group G, we can construct the smash product R#k[G]* [1]. The smash product
R#K[G]* and the identity component Ry play the same role for graded rings that
the skew group ring R * G and the G-fixed subring R“ play for group actions.
The most interesting application of skew ring methods to Galois theory is the
correspondence obtained between the prime ideals of R and of R%. A similar
correspondence was derived by Cohen and Montgomery [1] for the prime ideals
of a group graded ring R and of R;. The aim of the present paper is to obtain a
similar correspondence in the context of the prime kernel functors of R and R;.

In [2], we proved that if R is right seminoetherian, then so is R#Ek[G]*.
Further, we studied the prime kernel functors of R and R#k[G]* under the as-
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sumption that R is right seminoetherian. In view of the right seminoetherian
restriction on R, the primeness of a kernel functor (torsion theory) of R is the
same as lattice theoretic primeness (c.f. Lemma 2.12). This enabled us to estab-
lish certain relationships between prime kernel functors of R and prime kernel
functors of R#k[G]*.

Keeping in view the foregoing facts, first, we prove that if R is right semi-
noetherian, then R; is right seminoetherian and therefore, using the results of
[2], derive a correspondence between the prime kernel functors of R and of R;.
Finally, we prove Going Up and Going Down theorems for prime kernel functors
of R and R;.

2. Preliminaries

Let R be graded by G and R#k[G]* be the smash product defined in [1]. For
a,b € R and py, , pg, basis elements of k[G]*, the product is given by

(ap!h ) (bpgz ) = abglg;1p92 :

We shall use the following formulae given in [1, Proposition 1.4].
(i) Fora € R,pga=3_, (g, g1 Pgs-
(ii) For ag, € Ry,,pg,aq, = g1 Pg, gt
(iii) Each p, centralizes R;.
An action of the group G on R#kK[G]* is given by (apg,)? = apg. g, aPg €
R#K[G]*, g € G [1,3.3]. For convenience, throughout this paper we write S =

R#K[G]*. Let J be any right ideal of S. Then J9 = {z9|z € J} and J¢ = () JY
geG
is the largest G-invariant right ideal of S contained in J. More precisely J is

G-invariant if and only if J = J©.

For the familiar notations, definitions and results we mainly follow [1-4].
However, before proceeding further, we recall some definitions and record some
simple facts for convenience of future reference.

Definition 2.1. [4] Let 7 € tors-S. Then 79 is a torsion theory given by
T(8) ={J7[J e 7(9)},
7(S) denotes the Gabriel filter (Gabriel topology) of the torsion theory .

Definition 2.2. [4] For 1 € tors-S, 7% = (| 79 is a G-invariant torsion theory
geG

and 7¢ < 7. The equality holds if and only if T is G-invariant.

Definition 2.3. [4] T € tors-S is said to be G-prime if T’ is G-invariant and
for any G-invariant I'1, Ty € tors-S, I' > T'y AT’y implies that either I' > T'y or
r'>Ts.

Note. If T € tors-S is prime, then I'“ is G-prime.
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Definition 2.4. Let o € tors-R. We recall from [5,11.11.4] that o¢ is the graded
torsion theory given by

og(R) ={I € o(R)|Ig € 0(R)},

for a right ideal I of R. Here Ig denotes the largest graded right ideal of R
contained in I. og < o and the equality holds if and only if o is graded.

Definition 2.5. [2] o € tors-S is said to be graded-prime if o is a graded torsion
theory and for any two graded torsion theories 01,09 € tors-R, o > o1 N\ 09
implies that either o > o1 or o > 0s.

We observed the following in [2].
Let v : R — S be the inclusion map (a :— adeG Dg), then we get the
induced functors

Y : mod-S — Mod-R (restriction of scalars)

and

~v* :mod-R — Mod-S (extension of scalars)

respectively defined on the objects by v.(Ng) = Ng and v*(Mg) = M ®r S.
We get a function yx: tors-R — tors-S which assigns to each o € tors-R, the
torsion theory v4 (o) € tors-S given by

C\\Y»Y#(O') ={N € mod-S|Ngr € S,}.

Since S is flat as a right R-module (follows from [1, Proposition 1.4]), we also
get v# : tors-S — tors-R which assigns to each 7 € tors-S, the torsion theory
7v#(7) € tors-R given by

S#(r)={M € mod-R| M @r S € 3 }.

We have the following lemma from [2].

Lemma 2.6. Let 0 € sp-R, where sp-R is the set of all prime members of
tors-R, [3, Sec. 19]. Then

(i) og is graded prime.

(i) v#(og) is G-prime.

Definition 2.7. [6] Let R and R’ be rings with unities. A Morita context
between the rings R and R' is (R, R', M, N) where M = p'Mp and N = rNp
are bimodules together with two bimodule homomorphisms

(,): Nep M — R, [,] : M ®r N — R/, satisfying the associativity
conditions n[m,n'] = (n,m)n’ and m(n,m’) = [m,n|m’ for all m,m’ € M and
n,n’ € N.

The images of (, ) and [, ] which are denoted by Tr and Tr' are called the
trace ideals of the Morita context.
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Proposition 2.8. [7] Let (R, R', M, N) be a Morita context with the trace ideals
Tr and Tr/. Then there exists a lattice structure preserving bijection between the
Gabriel topologies on R containing Tr and Gabriel topologies on R’ containing
Tgr.

Remark 1. [6, 7] If T and Tg/ are idempotent, then the correspondence in the
above proposition are as follows:

If F(R) and F(R') are the corresponding Gabriel topologies on R and R’
containing Tr and T respectively, then

F(R')={I C R'|[I* : m]g € F(R) forall m € M},

and
F(R)={JCR|((J™)* :n)gp € F(R') for all n € N};

where
(It :mlp={reR|mrelt} and I ={me M|[m,n]€l foralln € N};
and

(JNT = e R [#'M C J™} and J™ = {m e M|(n,m) € J}.

Definition 2.9. [3] Let 7 € tors-R. A nonzero right R-module M is said to be
T-cocritical if and only if M is T-torsion free and every nonzero submodule of M
is T-dense in M. For example, a simple right R-module M is x(M)-cocritical,
where x(M) is the torsion theory cogenerated by M.

Definition 2.10. [3] A torsion theory T € tors-R is said to be proper if and
only if T # x, where x is the member of tors-R defined by 3y, = mod-R. The
set of all proper torsion theories on mod-R is denoted by prop-R.

Definition 2.11. [3] If every T € Prop-R has a 7-cocritical right R-module,
then R is known as a right seminoetherian. This condition is equivalent to the
condition that R has right Gabriel dimension k for some ordinal k.

Lemma 2.12. [3] Let R be a right seminoetherian ring. Then the following
conditions are equivalent.

(1) 7 € sp-R.

(2) For 11,79 € tors-R, 71 A 1o < 7 implies that either 11 <7 or 7o < 7.

Proof. 1t is clear from [3, 20.11, 20.12].

3. Prime Kernel Functors of R and R;

Let R be graded by a finite group G and let R; be its identity component and
S = R#k[G]*. We use the following notations:
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tors,,-R = {o € tors-R|(Sp1S)N R € o(R)},
tors,,-S = {T' € tors-S|Sp1S € T'(S)}.

We also use the notations sp,,-R and sp,, -S replacing tors by sp.
We study the relationships between kernel functors of the rings S and R,
with the help of Morita context between them.

Lemma 3.1. There exists a lattice structure preserving bijection between
torsp,-S and tors-R;.

Proof. (S,p1Sp1,Sp1,Sp1) is a Morita context and the trace ideals of S and
p1Sp1 are Sp1.S and p1.Spy respectively. Therefore, it follows from Proposition
2.8 that there exists a lattice structure preserving bijection between tors,, -S and
tors-p1.Sp1. Now the required result follows from the fact that p;Sp; = Rip1 =
Ry [1].

Notations. The lattice structure preserving isomorphisms between tors,,-S and
tors-p1 Sp1 and tors-p;.Sp; and tors,,-S, given by the above lemma which are
inverse of each other, will be denoted by

77# : tors,,-S — tors-p1.Sp;

and
N @ tors-p1Sp1 — torsy,-S.

Lemma 3.2. Let P be a right ideal of p1Sp1. Then P = Pip; for some right
ideal Py of Ry. Conversely, if P1 is a right ideal of Ry, then Pip1 is a right ideal
of p1Sp1.

Proof. Define Py = {r; € Ry|rip1 € P}, then P; is a right ideal of R; and
P = Pip; since p1Spy = Rip1. The converse follows from the fact p;Sp; =
Rip1 = Ry.

Proposition 3.3. Let 7 € tors,, -S and p € tors-p1Spi. Then we have the
following characterizations:

(i) n#(7)(p1Sp1) = {Iip1 € p1Sp1 | (Iipy : p1) € 7(S), where (Iip] : p1) is as
in Remark 1.

(il) ng(pu)(S) ={J € 9)|(J :n) Np1Sp1 € pu(p1Sp1) for all n € Sp1}.

Proof.

(i) Since (Iipf : p1s)s = ((Iip] : p1) : s)s for all s € S, the required result
follows from Remark 1.

(ii) By Remark 1, we have

ng(1)(S) = {J C S|(J™)* € u(p1Spr) for all n € Spy},

where
(Jrh+ = {rip1 € p1Sp1|rip1(p1S) € J"},

and
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J"={mepS|(n,m)e J}.
That is,

(Jrht = {rip1 € p1Sm
= {rip1 € p1Sp1 | nrip1s € J for all pis € p1S}.

(n,rip1s) € J for all pys € plS},

But nripis € J for all s € S if and only if nryp; € J. Thus

(J"NF = {rip1 € p1Spy | nripy € J}
= {rip1 € ;1Sp1 |rp1 € (J : n)}
= (J :n)Np1Sp1.

Hence

n4(1)(S) = {J € S|(J:n)Np1Sp1 € u(p1Sp1) for all n € Sp }.

Remark 2. Since p1Sp; = Rip1 = Ry [1], therefore in the light of Lemma 3.2 a
Gabriel topology p(p1.Sp1) of p1.Sp1 is identified with a Gabriel topology u(R1)
of Ry as follows: Let I C Ry.I; € u(Ry) if and only if I1p1 € u(p1Sp1)-

To have a one-one correspondence between the torsion theories of sp,, -S and
sp-R1, we need the following.

Theorem 3.4. If R is right seminoetherian, then so is R;.

Proof. Since p1Sp1 = Rip1 =2 Ry, it suffices to show that p;Sp; is right semi-
noetlherian. Let u € prop-pi1Spi. Then by Lemma 3.1, there exists 7 € tors,,-S
such that (1) = p. R is right seminoetherian, thus so is S (c.f. [2]) and
therefore there exists an S-module M which is 7-cocritical. We shall show that
p1Spi1-module Mp; is p-cocritical.

Let mp1 € Mpy and anny, sp, (mp1) € p(p1Sp1). Then ann,, sp, (mp1)* :
p1)s € 7(5), by Proposition 3.3. We claim that (ann,,sp, (mp1)™ : p1)s =
anng(mpy). For, let X € anny, gp, (mp1)t @ p1)s. Then mpiAspy = 0 for all
sp1 € Sp1. Thus mp;ASp1S = 0. Since Sp1S € 7(S) and M is 7-torsionfree,
mp1 A = 0, which implies that A € anng(mp;). Moreover, it is obvious that
anng(mp1) C (anny, sp, (mp1)* 1 Pr)s, proving the claim. Thus anng(mp;) €
7(S). Therefore mp; = 0 because M is 7-torsionfree. This proves that Mp; is
u-torsionfree.

Let Np; be a p1.Spi-submodule of Mp;, where N is an S-submodule of M.
Using Proposition 3.3 and the fact that M/N is 7-torsion, it is easy to see that
(Np1 : mp1) € u(p1Sp1) for all mp; € Mpy, which proves that Mp,/Np; is
p-torsion and Mp; is p-cocritical.

Using Theorem 3.4 and Remark 2, now, we are able to prove

Theorem 3.5. Let R be a right seminoetherian. Then there exists a lattice
structure preserving bijection between spp, -S and sp-R;.
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Proof. Since R is right seminoetherian, by [2, Theorem 3.1] and Theorem 3.4,
S and R, are right seminoetherian. Let I' € sp,,-S and 1, po € tors-Ry such
that 7#(T) > p1 A pa. Then T = ng((n#(T))) > ng (1) A ng(pz). Now the
fact that I' is prime gives that either I' > ngu(p1) or I' > 14 (pe) implying that
either 77 (I') > py or n# (') > pa. Therefore 7 (T') € sp-Ry (c.f. [3], 20.11 and
20.12). Similarly, we can prove that if y € sp-Rq then ny(u) € spp,-S. Hence
the theorem follows because 74 and n# are inclusion preserving maps which are
inverse of each other.

Now, we are able to prove a result analogous to ([1, 7.3]) proved by Cohen
and Montgomery.

Theorem 3.6. Let R be a right seminoetherian ring.

(i) Let o € spp,-R. Then there are r primes r < |G|)u1, pi2, . . . , ity belonging
to sp-R1, which are minimal over n% (v4(0c)) and 0% (vx(0)) = p1 A pa A
<o A pp. The set {u1, o, ... , pir} is uniquely determined by o.

(i1) Let p € sp-Ry. Then there are k primes (k < |G|) 01,02, ... ,0k belonging
to sp-R, minimal over (v# (nu(1)))a and (v# (ng(1)))a = o1 Ao A. .. Aoy
They are precisely the primes satisfying (0;)c=(v" (ng(1)))c-

Proof. Since Sp1S is a two sided ideal of S, it follows from [1, Lemma 6.1]
that (Sp1S) N R is a graded ideal of R. Thus (Sp1S) N R € o(R) implies
that (Sp1.S) N R € og(R) (c.f. Definition 2.4). Therefore by [2, Theorem 2.5],
((Sp1S) N R)#K[G]* C Sp1S € vx(0g)(S). Moreover, by [2, Theorem 3.3 (i)],
there exists 7 € sp-S such that

v (og) = /\ 79,

geG

Since Sp1S € v4(0c)(S), Sp1S € 79(S) for all g € G. Hence n# (yx(og)) =

A\ 17 (79), by definition of . Write y; = n* (79) and throw away which are
geG

redundant. We have the desired set of r minimal primes over % (v4(c¢)). The
uniqueness of the G-orbit {79} of 7 determines the uniqueness of the set {u;}.
(ii) Let p € sp-R1. Then ng(p) is prime so that (ng(u))¢ is G-prime in tors-
S (c.f. Note after Definition 2.3). By [2, Lemma 3.4], v#((ng(n))) is a
graded-prime torsion theory in tors-R. Now the required result follows from
[2, Theorem 3.4].

4. Going Up and Going Down Theorems

Let 0 € sp-R. Then by [2, Theorem 3.3], there exists 7 € sp-S such that

v#(og) = A 79. To pass on to sp-R1 we need the following
geG

Lemma 4.1. Let 7 € tors-S. Then Sp1.S € 79(S) for some g € G.
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Proof. We have
§=(0)=&(S/ Y 5pyS) <.

geqG
Since SpyS are two sided ideals of S and G is a finite group, we have

N\ €05/Sp45) = (/3 SpS) <

geG geG

Now, the primeness of 7 implies that £(S/SpyS) < 7 for some g € G that is,
SpgS € 7(S) for some g € G and hence Sp1.S € 79(S), proving the lemma.

Note. It follows from Lemma 4.1 that for o € sp-R, there exists u € sp-R1(p =

n#*(7971)), where yx(0c) = A 79. Hence we give the following
geG

Definition 4.2. Let s € sp-R and p € sp-R1. We say that o lies over p if
Ny (1) is a minimal element of pgen(vx(og)).

Proposition 4.3.
(i) Let o € sp-R. Then there exists a prime p € sp-Ry such that o lies over p.
In particular, if o € spp, -R, then o lies over k-primes p1, po, ..., ux(k < |G|)

of tors-R;.
(ii) Let p € sp-Ry. Then there exists a prime o € sp-R such that o lies over p,
more precisely, there exist k such primes (k < |G|)o1, 09, ..., 0k lying over

b and # (4 (1)° = A o

Proof.

(i) The first part follows from Lemma 4.1 and the second from Theorem 3.6.
(ii) Let p € sp-R1. Then I' = ngu(u) € sp-S. By [2, Theorem 3.3], there exists
o € sp-R such that v#(I'Y) = 0¢ and yx(og) = A T'9. Thus I' = ng(p) is a

geG
minimal element of pgen(v4 (o)), proving that o lies over p. Since o¢ is graded
prime (c.f. [2, Lemma 3.1, Theorem 3.4]) there exist k-primes o1, 02, ... ,0k (k <
k

|G|) such that o = A 0; = (0i)¢ and hence yx(oq) = v#((0:)c). Therefore,
i=1

k
all these primes lie over p, clearly, o = A o; implies that
i=1

k
V(g ()) = N\ os
i=1
We define an equivalence relation on sp-R; as follows:

Definition 4.4. u, u’ € sp-Ry are said to be equivalent if and only if there exists
a prime o € sp-R such that o lies over both u and p'.

With the foregoing machinery at our disposal, we, now, prove Going Up and
Going Down theorems.
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Theorem 4.5.
(i) Let R be graded by a finite group G.
Let 01 f o2 be prime kernel functors of tors-R and us € sp-Ry such that oo

lies over pa. If o1 € spp, -R, then there exists a prime ui of tors-Ry such
that o1 lies over py and py f 2.

(ii) Let o1 < o9 be prime kernel functors of tors-R and py € sp-Ry such that oq
+

lies over py. If oo € spp, -R, then there exists a prime uz of tors-Ry such
that oo lies over po and py f L.

Proof. Since o9 lies over pio, we have v4((02)G) = A T', for some I'y € sp-S
geG
and ng(pu2) = T'§ for some g € G. For o1 € sp-R, there exists u € sp-R;

such that oy lies over p that is, vx((o1)¢) = A T, for some I'y € sp-S and
geG

I = ng(u) for some h € G. Now, o1 < o3 implies that

Jr
A Ti< \1g<Ty.
geG geG

The prime character of I'J implies that F{ < T'§ for some ¢’ € G. Since (Sp15)N
R € o1(R) implies that, the ideal Sp1S is in v4((01)c)(S) = ( A T9)(S) (as
€G
observed in Theorem 3.6 (i)). This proves that Sp;.S € T'Y(S) forgall g € G and
hence Sp;, S € F{ (9).
Taking pq = 77#(1“{), we have o1 lies over p; and py < po.
Finally, we show that pu; = p2 does not enable. Suppose that p1 = po then

reversing the steps we get (01)¢ = (02)¢. Using [2, Theorem 3.4 (ii)] we get that
o9 is a minimal prime over (o1)g. But this is a contradiction to (01)g < 01 < 09
+

and o7 € sp-R. Thus, f 2.

(i) This also follows in a manner similar to (i). ]
Finally, we prove a Going Down Theorem.

Theorem 4.6. Let g i wo (p1 not equivalent to pg) be primes of tors-Ry and

02 € sp-R such that oo lies over uy. Then there exists a prime o1 of tors-R such
that oy lies over py and o i 3.

Proof. Clearly, p1 < po and og lying over uo give that
Jr

7 (1 (12)) <% (0 (12))%) = (02)c < 02 (1)

By Proposition 4.3 (ii), there exist k primes I'1, g, ..., T’y of tors-R lying over
w1 such that

Y (4 (11)9)

Il
=
=

(2)
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Now, the prime character of o5 together with (1) and (2) implies that I'; < o5 for
some i, 1 <14 < k. Taking o1 = I';, we get the required result because o1 = o9
does not enable as p1 is not equivalent to pa.
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