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Abstract. The basic Krull relations of Going Up and Going Down theorems for prime

kernel functors of a group graded ring R and its identity component R1 are proved

herein.

1. Introduction

Let R be a k-algebra with 1, over a commutative ring k with 1 and G be a finite
group, whose identity is also denoted by 1 such that the order of G is a unit in
R.

Throughout this paper R is assumed to be a right seminoetherian ring (c.f.
Definition 2.11) graded by G, that is, R =

∑

g∈G ⊕Rg where Rg’s are k-subspaces
of R and RgRh ⊆ Rgh for all g, h ∈ G. For any k-algebra R graded by a finite
group G, we can construct the smash product R#k[G]∗ [1]. The smash product
R#k[G]∗ and the identity component R1 play the same role for graded rings that
the skew group ring R ∗ G and the G-fixed subring RG play for group actions.
The most interesting application of skew ring methods to Galois theory is the
correspondence obtained between the prime ideals of R and of RG. A similar
correspondence was derived by Cohen and Montgomery [1] for the prime ideals
of a group graded ring R and of R1. The aim of the present paper is to obtain a
similar correspondence in the context of the prime kernel functors of R and R1.

In [2], we proved that if R is right seminoetherian, then so is R#k[G]∗.
Further, we studied the prime kernel functors of R and R#k[G]∗ under the as-
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sumption that R is right seminoetherian. In view of the right seminoetherian
restriction on R, the primeness of a kernel functor (torsion theory) of R is the
same as lattice theoretic primeness (c.f. Lemma 2.12). This enabled us to estab-
lish certain relationships between prime kernel functors of R and prime kernel
functors of R#k[G]∗.

Keeping in view the foregoing facts, first, we prove that if R is right semi-
noetherian, then R1 is right seminoetherian and therefore, using the results of
[2], derive a correspondence between the prime kernel functors of R and of R1.
Finally, we prove Going Up and Going Down theorems for prime kernel functors
of R and R1.

2. Preliminaries

Let R be graded by G and R#k[G]∗ be the smash product defined in [1]. For
a, b ∈ R and pg1

, pg2
basis elements of k[G]∗, the product is given by

(apg1
)(bpg2

) = abg1g
−1

2

pg2
.

We shall use the following formulae given in [1, Proposition 1.4].

(i) For a ∈ R, pg1
a =

∑

g2∈G ag1g
−1

2

pg2
.

(ii) For ag1
∈ Rg1

, pg2
ag1

= ag1
pg1g

−1

2

.

(iii) Each pg centralizes R1.

An action of the group G on R#k[G]∗ is given by (apg1
)g = apg1g, apg1

∈
R#k[G]∗, g ∈ G [1, 3.3]. For convenience, throughout this paper we write S =
R#k[G]∗. Let J be any right ideal of S. Then Jg = {xg|x ∈ J} and JG =

⋂

g∈G

Jg

is the largest G-invariant right ideal of S contained in J . More precisely J is
G-invariant if and only if J = JG.

For the familiar notations, definitions and results we mainly follow [1 - 4].
However, before proceeding further, we recall some definitions and record some
simple facts for convenience of future reference.

Definition 2.1. [4] Let τ ∈ tors-S. Then τ g is a torsion theory given by

τ g(S) = {Jg | J ∈ τ (S)},

τ (S) denotes the Gabriel filter (Gabriel topology) of the torsion theory τ .

Definition 2.2. [4] For τ ∈ tors-S, τG =
⋂

g∈G

τ g is a G-invariant torsion theory

and τG ≤ τ . The equality holds if and only if τ is G-invariant.

Definition 2.3. [4] Γ ∈ tors-S is said to be G-prime if Γ is G-invariant and

for any G-invariant Γ1, Γ2 ∈ tors-S, Γ ≥ Γ1 ∧ Γ2 implies that either Γ ≥ Γ1 or

Γ ≥ Γ2.

Note. If Γ ∈ tors-S is prime, then ΓG is G-prime.



Prime Kernel Functors of Group Graded Rings and Their Identity Components 67

Definition 2.4. Let σ ∈ tors-R. We recall from [5, II. 11.4] that σG is the graded

torsion theory given by

σG(R) = {I ∈ σ(R)|IG ∈ σ(R)},

for a right ideal I of R. Here IG denotes the largest graded right ideal of R
contained in I. σG ≤ σ and the equality holds if and only if σ is graded.

Definition 2.5. [2] σ ∈ tors-S is said to be graded-prime if σ is a graded torsion

theory and for any two graded torsion theories σ1, σ2 ∈ tors-R, σ ≥ σ1 ∧ σ2

implies that either σ ≥ σ1 or σ ≥ σ2.

We observed the following in [2].
Let γ : R → S be the inclusion map (a :→ a

∑

g∈G pg), then we get the
induced functors

γ∗ : mod-S → Mod-R (restriction of scalars)

and

γ∗ : mod-R → Mod-S (extension of scalars)

respectively defined on the objects by γ∗(NS) = NR and γ∗(MR) = M ⊕R S.
We get a function γ#: tors-R → tors-S which assigns to each σ ∈ tors-R, the
torsion theory γ#(σ) ∈ tors-S given by

=γ#(σ) = {N ∈ mod-S |NR ∈ =σ}.

Since S is flat as a right R-module (follows from [1, Proposition 1.4]), we also
get γ# : tors-S → tors-R which assigns to each τ ∈ tors-S, the torsion theory
γ#(τ ) ∈ tors-R given by

=#
γ (τ ) = {M ∈ mod-R |M ⊕R S ∈ =τ}.

We have the following lemma from [2].

Lemma 2.6. Let σ ∈ sp-R, where sp-R is the set of all prime members of

tors-R, [3, Sec. 19]. Then

(i) σG is graded prime.

(ii) γ#(σG) is G-prime.

Definition 2.7. [6] Let R and R′ be rings with unities. A Morita context

between the rings R and R′ is (R, R′, M, N) where M = R′MR and N = RNR′

are bimodules together with two bimodule homomorphisms

( , ) : N ⊗R′ M → R, [ , ] : M ⊗R N → R′, satisfying the associativity

conditions n[m, n′] = (n, m)n′ and m(n, m′) = [m, n]m′ for all m, m′ ∈ M and

n, n′ ∈ N.

The images of ( , ) and [ , ] which are denoted by TR and TR′ are called the
trace ideals of the Morita context.
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Proposition 2.8. [7] Let (R, R′, M, N) be a Morita context with the trace ideals

TR and TR′ . Then there exists a lattice structure preserving bijection between the

Gabriel topologies on R containing TR and Gabriel topologies on R′ containing

TR′ .

Remark 1. [6, 7] If TR and TR′ are idempotent, then the correspondence in the
above proposition are as follows:

If F (R) and F (R′) are the corresponding Gabriel topologies on R and R′

containing TR and TR′ respectively, then

F (R′) = {I ⊆ R′ | [I+ : m]R ∈ F (R) for all m ∈ M},

and

F (R) = {J ⊆ R | ((J (n))+ : n)R′ ∈ F (R′) for all n ∈ N};

where

[I+ : m]R = {r ∈ R |mr ∈ I+} and I+ = {m ∈ M | [m, n] ∈ I for all n ∈ N};

and

(

J (n)
)+

= {r′ ∈ R′ | r′M ⊆ J (n)} and J (n) = {m ∈ M | (n, m) ∈ J}.

Definition 2.9. [3] Let τ ∈ tors-R. A nonzero right R-module M is said to be

τ -cocritical if and only if M is τ -torsion free and every nonzero submodule of M
is τ -dense in M . For example, a simple right R-module M is χ(M)-cocritical,
where χ(M) is the torsion theory cogenerated by M .

Definition 2.10. [3] A torsion theory τ ∈ tors-R is said to be proper if and

only if τ 6= χ, where χ is the member of tors-R defined by =χ = mod-R. The

set of all proper torsion theories on mod-R is denoted by prop-R.

Definition 2.11. [3] If every τ ∈ Prop-R has a τ -cocritical right R-module,

then R is known as a right seminoetherian. This condition is equivalent to the

condition that R has right Gabriel dimension k for some ordinal k.

Lemma 2.12. [3] Let R be a right seminoetherian ring. Then the following

conditions are equivalent.

(1) τ ∈ sp-R.

(2) For τ1, τ2 ∈ tors-R, τ1 ∧ τ2 ≤ τ implies that either τ1 ≤ τ or τ2 ≤ τ .

Proof. It is clear from [3, 20.11, 20.12].

3. Prime Kernel Functors of RRR and RRR1

Let R be graded by a finite group G and let R1 be its identity component and
S = R#k[G]∗. We use the following notations:
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torsp1
-R =

{

σ ∈ tors-R | (Sp1S) ∩ R ∈ σ(R)
}

,

torsp1
-S =

{

Γ ∈ tors-S |Sp1S ∈ Γ(S)
}

.

We also use the notations spp1
-R and spp1

-S replacing tors by sp.
We study the relationships between kernel functors of the rings S and R1

with the help of Morita context between them.

Lemma 3.1. There exists a lattice structure preserving bijection between

torsp1
-S and tors-R1.

Proof. (S, p1Sp1 , Sp1, Sp1) is a Morita context and the trace ideals of S and
p1Sp1 are Sp1S and p1Sp1 respectively. Therefore, it follows from Proposition
2.8 that there exists a lattice structure preserving bijection between torsp1

-S and
tors-p1Sp1. Now the required result follows from the fact that p1Sp1 = R1p1

∼=
R1 [1].

Notations. The lattice structure preserving isomorphisms between torsp1
-S and

tors-p1Sp1 and tors-p1Sp1 and torsp1
-S, given by the above lemma which are

inverse of each other, will be denoted by

η# : torsp1
-S → tors-p1Sp1

and

η# : tors-p1Sp1 → torsp1
-S.

Lemma 3.2. Let P be a right ideal of p1Sp1. Then P = P1p1 for some right

ideal P1 of R1. Conversely, if P1 is a right ideal of R1, then P1p1 is a right ideal

of p1Sp1.

Proof. Define P1 = {r1 ∈ R1 | r1p1 ∈ P }, then P1 is a right ideal of R1 and
P = P1p1 since p1Sp1 = R1p1. The converse follows from the fact p1Sp1 =
R1p1

∼= R1.

Proposition 3.3. Let τ ∈ torsp1
-S and µ ∈ tors-p1Sp1. Then we have the

following characterizations:

(i) η#(τ )(p1Sp1) = {I1p1 ⊆ p1Sp1 | (I1p
+
1 : p1) ∈ τ (S), where (I1p

+
1 : p1) is as

in Remark 1.

(ii) η#(µ)(S) = {J ⊆ S) | (J : n) ∩ p1Sp1 ∈ µ(p1Sp1) for all n ∈ Sp1}.

Proof.

(i) Since (I1p
+
1 : p1s)S = ((I1p

+
1 : p1) : s)S for all s ∈ S, the required result

follows from Remark 1.
(ii) By Remark 1, we have

n#(µ)(S) =
{

J ⊆ S|(J (n))+ ∈ µ(p1Sp1) for all n ∈ Sp1

}

,

where

(J (n))+ =
{

r1p1 ∈ p1Sp1 | r1p1(p1S) ⊆ Jn
}

,

and
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Jn = {m ∈ p1S | (n, m) ∈ J}.

That is,

(J (n))+ =
{

r1p1 ∈ p1Sp1 | (n, r1p1s) ∈ J for all p1s ∈ p1S
}

,

=
{

r1p1 ∈ p1Sp1 |nr1p1s ∈ J for all p1s ∈ p1S
}

.

But nr1p1s ∈ J for all s ∈ S if and only if nr1p1 ∈ J . Thus

(J (n))+ = {r1p1 ∈ p1Sp1 |nr1p1 ∈ J}

= {r1p1 ∈ p1Sp1 | r1p1 ∈ (J : n)}

= (J : n) ∩ p1Sp1.

Hence

η#(µ)(S) =
{

J ⊆ S | (J : n) ∩ p1Sp1 ∈ µ(p1Sp1) for all n ∈ Sp1

}

.

Remark 2. Since p1Sp1 = R1p1
∼= R1 [1], therefore in the light of Lemma 3.2 a

Gabriel topology µ(p1Sp1) of p1Sp1 is identified with a Gabriel topology µ(R1)
of R1 as follows: Let I1 ⊆ R1.I1 ∈ µ(R1) if and only if I1p1 ∈ µ(p1Sp1).

To have a one-one correspondence between the torsion theories of spp1
-S and

sp-R1, we need the following.

Theorem 3.4. If R is right seminoetherian, then so is R1.

Proof. Since p1Sp1 = R1p1
∼= R1, it suffices to show that p1Sp1 is right semi-

noetlherian. Let µ ∈ prop-p1Sp1 . Then by Lemma 3.1, there exists τ ∈ torsp1
-S

such that η#(τ ) = µ. R is right seminoetherian, thus so is S (c.f. [2]) and
therefore there exists an S-module M which is τ -cocritical. We shall show that
p1Sp1-module Mp1 is µ-cocritical.

Let mp1 ∈ Mp1 and annp1Sp1
(mp1) ∈ µ(p1Sp1). Then annp1Sp1

(mp1)
+ :

p1)s ∈ τ (S), by Proposition 3.3. We claim that (annp1Sp1
(mp1)

+ : p1)s =
anns(mp1). For, let λ ∈ annp1Sp1

(mp1)
+ : p1)s. Then mp1λsp1 = 0 for all

sp1 ∈ Sp1 . Thus mp1λSp1S = 0. Since Sp1S ∈ τ (S) and M is τ -torsionfree,
mp1λ = 0, which implies that λ ∈ anns(mp1). Moreover, it is obvious that
anns(mp1) ⊆ (annp1Sp1

(mp1)
+ : P1)s, proving the claim. Thus anns(mp1) ∈

τ (S). Therefore mp1 = 0 because M is τ -torsionfree. This proves that Mp1 is
µ-torsionfree.

Let Np1 be a p1Sp1-submodule of Mp1, where N is an S-submodule of M .
Using Proposition 3.3 and the fact that M/N is τ -torsion, it is easy to see that
(Np1 : mp1) ∈ µ(p1Sp1) for all mp1 ∈ Mp1, which proves that Mp1/Np1 is
µ-torsion and Mp1 is µ-cocritical.

Using Theorem 3.4 and Remark 2, now, we are able to prove

Theorem 3.5. Let R be a right seminoetherian. Then there exists a lattice

structure preserving bijection between spp1
-S and sp-R1.
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Proof. Since R is right seminoetherian, by [2, Theorem 3.1] and Theorem 3.4,
S and R1 are right seminoetherian. Let Γ ∈ spp1

-S and µ1, µ2 ∈ tors-R1 such
that η#(Γ) ≥ µ1 ∧ µ2. Then Γ = η#((η#(Γ))) ≥ η#(µ1) ∧ η#(µ2). Now the
fact that Γ is prime gives that either Γ ≥ η#(µ1) or Γ ≥ η#(µ2) implying that
either η#(Γ) ≥ µ1 or η#(Γ) ≥ µ2. Therefore η#(Γ) ∈ sp-R1 (c.f. [3], 20.11 and
20.12). Similarly, we can prove that if µ ∈ sp-R1 then η#(µ) ∈ spp1

-S. Hence
the theorem follows because η# and η# are inclusion preserving maps which are
inverse of each other.

Now, we are able to prove a result analogous to ([1, 7.3]) proved by Cohen
and Montgomery.

Theorem 3.6. Let R be a right seminoetherian ring.

(i) Let σ ∈ spp1
-R. Then there are r primes r ≤ |G|)µ1, µ2, . . . , µr belonging

to sp-R1, which are minimal over η#(γ#(σG)) and η#(γ#(σG)) = µ1 ∧µ2∧
· · · ∧ µr. The set {µ1, µ2, . . . , µr} is uniquely determined by σ.

(ii) Let µ ∈ sp-R1. Then there are k primes (k ≤ |G|) σ1, σ2, . . . , σk belonging

to sp-R, minimal over (γ#(η#(µ)))G and (γ#(η#(µ)))G = σ1∧σ2∧ . . .∧σk.

They are precisely the primes satisfying (σi)G=(γ#(η#(µ)))G.

Proof. Since Sp1S is a two sided ideal of S, it follows from [1, Lemma 6.1]
that (Sp1S) ∩ R is a graded ideal of R. Thus (Sp1S) ∩ R ∈ σ(R) implies
that (Sp1S) ∩ R ∈ σG(R) (c.f. Definition 2.4). Therefore by [2, Theorem 2.5],
((Sp1S) ∩ R)#K[G]∗ ⊆ Sp1S ∈ γ#(σG)(S). Moreover, by [2, Theorem 3.3 (i)],
there exists τ ∈ sp-S such that

γ#(σG) =
∧

g∈G

τ g.

Since Sp1S ∈ γ#(σG)(S), Sp1S ∈ τ g(S) for all g ∈ G. Hence η#(γ#(σG)) =
∧

g∈G

η#(τ g), by definition of η#. Write µi = η#(τ g) and throw away which are

redundant. We have the desired set of r minimal primes over η#(γ#(σG)). The
uniqueness of the G-orbit {τ g} of τ determines the uniqueness of the set {µi}.

(ii) Let µ ∈ sp-R1. Then η#(µ) is prime so that (η#(µ))G is G-prime in tors-
S (c.f. Note after Definition 2.3). By [2, Lemma 3.4], γ#((η#(µ))G) is a
graded-prime torsion theory in tors-R. Now the required result follows from
[2, Theorem 3.4].

4. Going Up and Going Down Theorems

Let σ ∈ sp-R. Then by [2, Theorem 3.3], there exists τ ∈ sp-S such that
γ#(σG) =

∧

g∈G

τ g . To pass on to sp-R1 we need the following

Lemma 4.1. Let τ ∈ tors-S. Then Sp1S ∈ τ g(S) for some g ∈ G.
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Proof. We have

ξ = ξ(0) = ξ
(

S
/

∑

g∈G

SpgS
)

≤ τ.

Since SpgS are two sided ideals of S and G is a finite group, we have
∧

g∈G

ξ(S/SpgS) = ξ(
(

S
/

∑

g∈G

SpgS
)

≤ τ.

Now, the primeness of τ implies that ξ(S/SpgS) ≤ τ for some g ∈ G that is,
SpgS ∈ τ (S) for some g ∈ G and hence Sp1S ∈ τ g(S), proving the lemma.

Note. It follows from Lemma 4.1 that for σ ∈ sp-R, there exists µ ∈ sp-R1(µ =
η#(τ g−1)), where γ#(σG) =

∧

g∈G

τ g. Hence we give the following

Definition 4.2. Let s ∈ sp-R and µ ∈ sp-R1. We say that σ lies over µ if

η#(µ) is a minimal element of pgen(γ#(σG)).

Proposition 4.3.

(i) Let σ ∈ sp-R. Then there exists a prime µ ∈ sp-R1 such that σ lies over µ.

In particular, if σ ∈ spp1
-R, then σ lies over k-primes µ1, µ2, ..., µk(k ≤ |G|)

of tors-R1.

(ii) Let µ ∈ sp-R1. Then there exists a prime σ ∈ sp-R such that σ lies over µ,

more precisely, there exist k such primes (k ≤ |G|)σ1, σ2, . . . , σk lying over

µ and γ#((η#(µ))G =
k
∧

i=1

σi.

Proof.

(i) The first part follows from Lemma 4.1 and the second from Theorem 3.6.
(ii) Let µ ∈ sp-R1. Then Γ = η#(µ) ∈ sp-S. By [2, Theorem 3.3], there exists
σ ∈ sp-R such that γ#(ΓG) = σG and γ#(σG) =

∧

g∈G

Γg. Thus Γ = η#(µ) is a

minimal element of pgen(γ#(σG)), proving that σ lies over µ. Since σG is graded
prime (c.f. [2, Lemma 3.1, Theorem 3.4]) there exist k-primes σ1, σ2, . . . , σk (k ≤

|G|) such that σG =
k
∧

i=1

σi = (σi)G and hence γ#(σG) = γ#((σi)G). Therefore,

all these primes lie over µ, clearly, σG =
k
∧

i=1

σi implies that

γ#((η#(µ))G) =

k
∧

i=1

σi.

We define an equivalence relation on sp-R1 as follows:

Definition 4.4. µ, µ′ ∈ sp-R1 are said to be equivalent if and only if there exists

a prime σ ∈ sp-R such that σ lies over both µ and µ′.

With the foregoing machinery at our disposal, we, now, prove Going Up and
Going Down theorems.
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Theorem 4.5.

(i) Let R be graded by a finite group G.

Let σ1 <
+

σ2 be prime kernel functors of tors-R and µ2 ∈ sp-R1 such that σ2

lies over µ2. If σ1 ∈ spp1
-R, then there exists a prime µ1 of tors-R1 such

that σ1 lies over µ1 and µ1 <
+

µ2.

(ii) Let σ1 <
+

σ2 be prime kernel functors of tors-R and µ1 ∈ sp-R1 such that σ1

lies over µ1. If σ2 ∈ spp1
-R, then there exists a prime µ2 of tors-R1 such

that σ2 lies over µ2 and µ1 <
+

µ2.

Proof. Since σ2 lies over µ2, we have γ#((σ2)G) =
∧

g∈G

Γg
2, for some Γ2 ∈ sp-S

and η#(µ2) = Γg
2 for some g ∈ G. For σ1 ∈ sp-R, there exists µ ∈ sp-R1

such that σ1 lies over µ that is, γ#((σ1)G) =
∧

g∈G

Γg
1, for some Γ1 ∈ sp-S and

Γh
1 = η#(µ) for some h ∈ G. Now, σ1 <

+
σ2 implies that

∧

g∈G

Γg
1 ≤

∧

g∈G

Γg
2 ≤ Γg

2.

The prime character of Γg
2 implies that Γg′

1 ≤ Γg
2 for some g′ ∈ G. Since (Sp1S)∩

R ∈ σ1(R) implies that, the ideal Sp1S is in γ#((σ1)G)(S) =
(

∧

g∈G

Γg
)

(S) (as

observed in Theorem 3.6 (i)). This proves that Sp1S ∈ Γg
1(S) for all g ∈ G and

hence Sp1S ∈ Γg′

1 (S).

Taking µ1 = η#(Γg′

1 ), we have σ1 lies over µ1 and µ1 ≤ µ2.
Finally, we show that µ1 = µ2 does not enable. Suppose that µ1 = µ2 then

reversing the steps we get (σ1)
G = (σ2)

G. Using [2, Theorem 3.4(ii)] we get that
σ2 is a minimal prime over (σ1)G. But this is a contradiction to (σ1)G ≤ σ1 <

+
σ2

and σ1 ∈ sp-R. Thus, µ1 <
+

µ2.

(ii) This also follows in a manner similar to (i). �

Finally, we prove a Going Down Theorem.

Theorem 4.6. Let µ1 <
+

µ2 (µ1 not equivalent to µ2) be primes of tors-R1 and

σ2 ∈ sp-R such that σ2 lies over µ2. Then there exists a prime σ1 of tors-R such

that σ1 lies over µ1 and σ1 <
+

σ2.

Proof. Clearly, µ1 <
+

µ2 and σ2 lying over µ2 give that

γ#((η#(µ1))
G ≤ γ#((η#(µ2))

G) = (σ2)G ≤ σ2. (1)

By Proposition 4.3 (ii), there exist k primes Γ1, Γ2, . . . , Γk of tors-R lying over
µ1 such that

γ#((η#(µ1))
G) =

k
∧

i=1

Γi. (2)
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Now, the prime character of σ2 together with (1) and (2) implies that Γi ≤ σ2 for
some i, 1 ≤ i ≤ k. Taking σ1 = Γi, we get the required result because σ1 = σ2

does not enable as µ1 is not equivalent to µ2.
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