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Abstract. This paper is concerned with the solvability and approximate solutions
of a class of quasi-linear implicit difference equations. Thanks to the index-1 ( quasi-
index-1) property of linear parts, an initial infinite system can be decoupled. Then
the Banach’s and Brouwer’s fixed point theorems are applied to ensure the unique
solvability (solvability) of the IVP for quasi linear implicit difference equations.

1. Introduction

In this paper we consider the following system of quasi-linear implicit difference
equation:

Anni1 = Bpxn + fo(@nt1,2n), (n=0,1,2,...), (1)
where A, and B, are given matrices of order m x m. In what follows we
assume that the matrices A,, are all singular, such that 1 < r, < m — 1 where
rn = rank A,,. Further, suppose that f,, € C*(R™ x R™, R™) and moreover

Ker A,, C Ker %iy"(y, x), (2)
for all n > 0 and z,y € R™. Obviuosly, under condition (2), each equation (1)
is implicit with respect to x,41.
Note that equation (1) may be regarded as a discrete analogue of quasi-
linear differetial-algebraic equations (DAEs) which have already attracted much
attention of researchers [2, 4].

Together with equation (1) we consider the corresponding system of linear
implicit difference equation (LIDE)
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Ananrl - ann + dn, (n Z 0) (3)

which has been investigated in our recent works [1, 3].

Let A, = U,%, V. 41 be an SVD of A,,, where U, (V,,41) are orthogonal
matrices, whose columns are left (right) singular vectors of A, respectively,
3, = diag (agn), aé"), e 0'7(«:), 0,...,0) are diagonal matrices with singular values
agn) > aé") > ... > o™ > 0 on their diagonals. We say that the LIDE (3)
is of quasi-index-1 if the matrices G, = A, + BnVnQ(")VnTH, where Q™ =
diag (O, , In—r, ), are nonsingular for all n > 0. Here Oy, I} stand for k x k
zero matrix and k x k identity matrix, respectively. For k = m we put simply
O := Op; 1 := I,,. If equation (3) is of quasi-index 1 and the rank A4,, are the
same for all n, i.e. r, = r(n > 0) then the LIDE (3) is said to be of index-1.
In this case, Q := Q™ = diag(O,, I,,_,). It has been shown in [3] that the
index-1 property of equation (3) does not depend on the choice of SVDs of A,,.
Furthermore, the solvability and the unique solvability of some IVPs, as well as
multipoint boundary value problems (MPBVPs) for index 1 LIDEs have been
established in [1, 3].

Let P .= T — QM;Q, = V,1QMWVL P, := I — Qu(n > 0). For
definiteness, we can set Vy := Vi;Q_1 = Qo; P-1 := Fy. Clearly, @, are
projections onto Ker A, (n > 0), i.e. Q2 = Qn; A,Qn = 0, and besides P,Q,, =
QnP,=0.

The aim of this paper is to establish some existence theorems for systems
of nonlinear difference equations involving linear index-1 or quasi-index-1 parts.
The paper is organized as follows. In Sec. 2 we study the unique solvability
and approximate solutions of IVPs for IDEs with linear index-1 parts. Section
3 deals with the solvability of implicit difference equations, whose linear parts
are of quasi-index-1. Finally, in the last section, some illustrative examples are
considered.

2. Unique Solvability of IVPs for IDEs Involving Linear Index-1 Parts

Suppose we want to find a solution of system (1), satisfying the initial condition
P(){EO =7 (4)
with a given vector 4y € R™. In what follows ||.|| denotes any norm in R™.

Theorem 1. Let the equation (3) be of index 1. Further assume that the
nonlinear functions fn(y,x) satisfy condition (2) and the inequality

[fn(y, ) = (& Ol < amlly = &l + Bullz — <, ()

with nonnegative constants o, and By, for all y,z, &, € R™. If
Wi 1= | PaG | 4 Bl Va Vil QuGrt < 1, (6)

then the IVP (1), (4) has a unique solution.
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Proof. Taking into acount relation (2) and observing that

1
Ofn
fn(y, ) = fu(Pry, ) = / a_y(P"y + tQny, ©)Qnydt =0
0
for alln > 0,z,y € R™ we come to the equation
fn(y,x):fn(Pny,fE), Vy,JUGRm (7)

First, observing that A, P,, = A,,, we find that G, P, = A,,P,+ B, VnQVnTHP =
A, + BnVnVnTHQnPn = A,,, hence
Similarly, G,,Q,, = BnVnQVnTHQn = BnVnQVnTHVn“QVnTle = BnVnQVnTH,
hence @, = G,,'B,V,QV,L. | = G,;'B,Q,—1V,,V,l,,, therefore G, ' B,Qn—1 =
QnVyi1V,E. Thus

QnG;IBnanl = QnVnnLanT; PnGngnanl =0. (9)

Now applying P, G,,! and Q,,G,;! to both sides of equation (1) respectively
and using relations (7), we find

annqu == PnG;IBn(Pnflxn + anlxn) + PnGglfn(annqu; xn)a
(10)

0= QHG;IBH (Pnflxn + anlxn) + QnGglfn(annqu; xn)
(11)
Denoting u, := P,—1Zn; Uy := Qn_1Z»(n > 0) and using (9), from (10) we find
Un+1 = PnG;IBnun + PnGglfn(unﬂLla {En) (12)
Replacing Q,.G,, 'BnQn_11, with QnVnt1 VnTxn and taking into account the fact

that QnanLanTfEn = Vn+1QVg+1Vn+1VnT$n = Vn+1QVnT$n = Vn+1VnTanlxn
Vi1 V.F v, from (11) we get

Up = _VnVn,I;LIQnG;I{B"u" + f"(u"+1’ x")}
Since x,, = Uy, + v,, from the last relation we have
Ty = (I =V, VR QuG L Bo)uy — Vi ViR QuG ot fr (g, ). (13)

Now suppose that u,(n > 0) is found (ug is given, since ug = P_jz¢ =
Pyxg = ), we have to find x,, = up, + v, and u,4+1 from equations (12), (13).
For the sake of simplicity, we denote & := up41,( = xp, Ty = PnGngnun and
sn = (I =V, VI QnG By )uy,. Thus we come to the system

§ = PuGL f(6,0) + 7, (14)
(= _annﬁlQnG;Ifn(faO‘FSn- (15)

For establishing the unique solvability of system (14), (15) we can use an
iteration method, namely
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el = PG fu(€F,CF) + 1, (16)
¢ = — VoV QnG Lt (€8, CF) + s, (17)

where k > 0 and £°,¢% € R™ are arbitrarily chosen.
Clearly, for £ > 1 we have

€441 = €51 < IPAGL amllE" — €71+ Bl = ¢*) (18)

and

64 = ¢l < VAV QuGr lanlEh = €571+ Bullch = ¢ (19)

Denoting iy := a,||€F — €571 + B,||¢F — ¢FY| and multiplying both sides of
inequalities (18) and (19) by «, and (,, respectively, then taking the sum of
both sides of the obtained inequalities, we find

pis1 < (@l PaGL | 4 BullVa Vil QG i = wnpire < oo < whpnn.

Since €51 < | PuGi i < piall PaGiy k™%, I =A< i [Va V231 Qo
Gl ||wE=1, it follows that ¢ — ¢* and (¥ — ¢* when k — oco. Evidently,
(&*,¢*) is a solution of system (14), (15).

Now assume that (£,¢) and (£, (') are two solutions of system (14), (15).
Then € — € = [PaGy {n(6,0) — Ful€ O < 11PaGot [{amllé — €] +
Bull¢ — - Similarly, € — ¢ = [VaViE,QuGr (€, C) — ful€ O <
IVaVZ 1 @nGr Hanll€ — €11 1 BallC — ¢} Acting a5 before, we get anl€ —
€+ BallC — ¢l < wnlanllé — €] + BullC — ¢} From the last inequality, it
follows a,||€ — &'|| + Bnll¢ — ¢'|] = 0 hence & = & and ¢ = ¢’. Thus the unique
solvability of the IVP (1), (4) is proved. ]

Remark 1. ' '

* Condition (5) holds if for all z, y € R™, || %2 (y, 2)[| < o, and || (y, )| < B,
* Condition (2) is satisfied if f,(y,2) = gn(An,y,x) where g, € CHR™ x
R™, R™).

Theorem 2. The conclusion of Theorem 1 remains valid if instead of condition
(5) we require

Im %ﬁ(y, x) C ImA,,Vz,y € R™, (20)
Y
max{an || PaGy |, Ba|Va Vi @uGL I < 1, (n > 0). (21)

Proof. First, observe that
1 1 [0S
0

1
= / QnGﬁl%(ty, x)ydt.
0 dy
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Taking into account relation (20) we can rewrite g—{;(ty, x)y as Apzn(y, z,t) for
some zy, (y, z,t) € R™. From (8) it follows Q,G,,*A, = 0, hence

1
/ QnGﬁl%(ty, z)ydt = 0.
0 Ay
Therefore
QnGglfn(y,x) = QnGglfn(O,x),Vx,yG R™. (22)
Thus instead of system (14), (15) we have

€= PGy ful€,C) + T, (23)
(= = VaVi 1 QnGy £ (0,€) + sn (24)

Obviously, the contractivity condition 3, ||V, V.1, QG| < 1 ensures the unique
solvability of equation (24). Substituting the unique solution ¢ of equation (24)
into equation (23) and using the assumption a,||P,G, || < 1 we can easily
deduce the unique solvability of equation (23). ]

Remark 2. Both conditions (2), (20) hold, for example, if

where g, € CH(R™,R™).
Next, we present an algorithm for finding an approximate solution of IVP

(1), (4).

Theorem 3. Let the LIDE (3) be of index-1 and the nonlinear functions f, sat-
isfy condition (2), (5). Moreover, suppose the following conditions are satisfied:
(i) the matricies I — VnV71T+1QnG;1Bn are uniformly bounded, i.e.

1 = VoV QnGL Bl < Cis (25)

(ii) the norm of the matrices P, G, 1B, are uniformly bounded by a constant
less than 1, i.e.

| PGB, < 60 < 1; (26)
iii) the coefficients oy, B, are small enough, such that
g
anl| PaGL | 4 BulVa Vi @n Gl < w < 1, (27)
(1 — w)71|‘PnG;1H(5001n + Clﬁn) <4 <1l-— 50, (28)
and
(1= @) VaV, QuGi [ (Botn + C1a) < Co. (29)

Then within a given tolerance € > 0, we can always find an approzimate solution
{Zn}(n > 0) via iterations, such that ||T, — x,| < e(n > 0), where {x,}(n > 0)
is a unique solution of IVP (1), (4).

Proof. Theorem 1 ensures the unique solvability of IVP (1), (4), therefore system
(14), (15) has the unique solution {upy1, Ty }(n > 0). Starting with @y = v and
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performing some iterations by formulae (16), (17) for n = 0, we can find Ty and
%y such that ||u; —uy|| < €/C and ||To — xo| < € where C = (C1 + Ca)(1 —6)7!
and 0 = 1 — 0y — d; > 0. Now suppose by induction that for k = 0,1,...,n—1
we have found approximate solution U1, Ty of system (14), (15), such that

k1 — urs1ll < €/Cs |[Th — 2| < 6 (k=0,1,...,n—1). (30)

Let &, 41 be the unique solution of the system

anJrl - PnG;Ifn(ﬁnqu; -in) + Fn; (31)
Fn = = VaVil1QuGy i, @n) + S, (32)

where 7, = P,G,,' B4, and 5, = (I — V,,V,I'\ Q.G ' B,)u,. The unique solv-
ability of system (31), (32) is established by the same manner as in Theorem
1. Using relations (14), (15), (31), (32) and taking into account assumptions
(25), (26), (30), we get [[dnt1 — uns1]l < [ PuGyt [{omlltinr1 — un1 [l + BnllZn —
Toll} + | PaG L Byl|l[@n — un| or

1 — sl < ol PaG | + ¢/ C. (33)

where p,, denotes the quantity oy, ||Gn+1 — Un+1l| + BnllZn — zn||. Analogously,
[Zn — @n|| < HVanquQnG;ln{anHﬁnnLl — Un1l| + BullZrn — znl I+
T VaVE 1 QuG BT — tall, e

[Zn — 2n| < /LnHVnVnI;LlQnG;lH + Cre/C. (34)

Multiplying both sides of inequalities (33) and (34) by «,, and 3,, respectively
and then taking the sum of both sides of the obtained inequalities we have
Hn < (O‘nHPnG;lH + 6n||Van+1QnG;1H)/Ln + (o, + C1Pn)e/C < wpn +
(doaun, + C10n)e/C. Thus,

(500471 + Clﬂn)e

n 35
S oA =0 (35)
From relations (33) and (35) it follows
N (50an+016n)||PnG;1||6 do€
— < —.
||u7l+1 un+1|| = C(l — w) =+ C
Using estimate (28), from the last relation we find
_ 01 + 0 1—0)e
i1 — n g < 2200 - =9 (36)

C c
Similarly, from inequalities (34), (35), using assumption (29), we get

lEn—all < {(1=w) " ViV QuGi | (Boctn+CaBa) +Cr e/ C < (C1+C)e/C,

hence
[[Zn — zn < (1= 9)e (37)
Now performing some iterations by the formulae

= PG fu(€F,CF) + T (38)
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¢ = VoV QuGy  fa (€8, CF) + 50, (39)

we can find w, 1 = &1, 7, = ¢¥! such that ||[Upy1 — Gnei|| < 6¢/C and
|Zrn, — Zn|| < Je. From relations (36), (37) and the last estimates, we come to
the disired inequality ||@p+1 — tnt1|| < €/C and ||ZT,, — || < €. The proof of
Theorem 3 is complete. ]

3. Solvability of IVPs in Quasi-Index-1 Cases

Suppose the LIDE (3) is of quasi-index-1. Moreover, assume that
Trnt1 > rp(n > 0). (40)

Clearly, equation (1) can be reduced to the form

2nynJrl - Bnyn + gn(ynJrl; yn); (41)

where y, = V.l z,, B, = UIB,V, and g,(y,z) = UL f,(Vui1y, V). The fol-
lowing lemma collects some obvious facts needed for our further consideration.

Lemma. The following 3 assertions hold:

1. The matrices G,, = An—|—BnVnQ(")VnTJrl and Gy, = Zn—FBnQ(") are singular
or nonsingular simultaneously.

2. Condition (2) is equivalent to the inclusion

Kery, C Ker%ﬂ(y, x). (42)
Y

9nly, ) = g(P"My, 2) (43)
forallm >0 and y,x € R™.

In the following theorem, for simplicity, we use the Euclid norm.

Theorem 4. Suppose the LIDE (3) is of quasi-index 1 and condition (40) holds.
Further, assume that the nonlinear functions f,(y,x) satisfy condition (2) and
the following growth condition:

1/ (&, OIF < anll€l”™ + bnl[C][*" + cn (44)

with nonegative constants an, by, Cn, Vn, fin, where 0, := max{vy, un}t < 1. Ad-
ditionally, we suppose that if 0, = 1 then (an + by)||G, Y| < 1. Then the IVP
(1), (4) possesses a solution.

Proof. Applying PWG-1 and QUG to both sides of equation (41) respec-
tively and using the relations P + Q") = T, G;anQ(") = Qm, Gy, =
P™) as well as taking into account the previous lemma, we get

P(n)ynJrl = P(n)églénp(n)yn + P(n)églgn(P(n)ynnLla Yn),
0= Q(H)G;IBHP(n)yn =+ Q(n)yn + Q(H)G;IQH(P(n)ynnLla yn)
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Putting &, = Py, and observing that P("y, ,; = PPty — pre
we come to the following system:

P(n)§n+1 = P(n)églén&l + P(n)églgn(P(n)gnnLla yn)a (45)
0= Q(n)églén&l + Q(n)yn + Q(n)églgn(P(n)gnnLla yn)

From the last equation, it follows

yn = (P + QMg = (I = QUG Bu)én — QMG gu(P™ i1, ym). (47)
On the other hand, equation (45) gives

§n+1 == égléngn + églgn(P(n)gnqu; yn) + Q(n)na (48)

where 7 € R™ is an arbitrary vector. Denoting p,(n) := G B, + QM™y and
¢n:=(I — QG B,)¢, and simplifying our notations by setting £=&,. 1, C=yn
we come to the final system that should be investigated.

€ =G gn(PU™E Q) +paln), (49)
¢= = QMG gn(P™E ) + gn. (50)
In R™ x R™ endowed with the norm [|(&,n)| = max{||{||, ||n||} we consider the
map
(&, €) 1= (G gn(P™E Q)+ pa(0), —QM G gn(PMVE, C) + an).
Since ||Upl| = |Vaiall = [[IP™] = [[Q™)]| = 1, from the growth condition (44)
it follows for ||(&,¢)|| > 1 that

g (P™E QI < anllEl”™ + ballCll*™ + e < (an +ba)1(E, QNI +ene (51

Clearly, relation (51) implies that

[T (€, Q)| = max{[|G;; g0 (P™E, C) + pa()], Q™G gn (P™E, C) + gull}

< NIG (@n + ba) (€, QNI + &,
where &, = max{|[p,(n)|, [|gn]|} + ca]|G; |- Observing that
G = Vi G Ul S NIG T = Vi G UL < 1G

we get |G| = ||G;Y. When [|(€,¢)|| is sufficiently large, there holds the
inequality

& Ol < (an +ba) 1GL I O + Enll(€ Ol (52)
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The estimate (52) implies that, in both cases, when 0, < 1 or 6, = 1 and

(an +b)[|GR || < 1, limye.c)—oo Hﬁ‘éi’fﬂ)n < 1. Thus T, (&, ¢) maps a closed ball
in R™ x R™ centered at (0,0) with a sufficiently large radius R in to itself. The
Brouwer fixed point theorem ensures the existence of solutions of the system (49),
(50). Starting with the given initial value ug = Poxg = 7 or ug = Vi POV zg =
v we get POV 'z = ViI'y, hence, & = POyy = POV zg = POV 2o = Vif'y
is known. From system (49), (50) we can find &3, yo and then &, y1, etc... Thus
Ty = Vpuyn can be found, which was to be proved. ]

4. Examples

4.1. Consider system (1) with the following data

1 e —t 0
A, = ( 51n(711+1) _4sm(1n+1) ) , B, = ( 17sui(11+1) X ) ,
cos(n+1) 4 cos(n+1) 34cos(n+1)  17cos(n+1)

o o [ ancos€®) 4 b, sin¢?
fo(y, @) = gn(Any, Anz) = gn(§,C) = (Cn oS C(l) +d, Sin§(2) )

where
1 _ 1 _ 1 _
Gp = Cp = ﬁHAnH Lb, = 210ﬁHAnH Ld, = WHAnH L' and
Il denotes the max-norm in R™ or R™*™. Obviously,
ofn
Ker A,, C Ker =—(y, x),
er A, C Ker oy (y, )
and
-4 _1 —466 546
VT _ ( V17 \/1_7> G-l = ( 85sin(n+1)  85cos(n+1) )
n = | 1 4 |> n = —468 —464 ;
V17 V17 17sin(n+1) 17 cos(n+1)
I fr(ys ) = fulz 0| < anlly — 2| + Bullz — ],
where
o, 1
Further,
112 32 144
| PG Y| = g|sin(n+ D]+ g|cos (n+1)] < =
136 272
IVaViTa QG Bull = == ([ sin (n + 1)] + [ cos (n+ 1)) < ==,
144 272
Wn = O‘"HPHG;IH + BnHVnanjrlQnG;IBnH < gan + Tﬁn < L

Thus, all conditions of theorem 1 are satisfied, hence the IVP (1), (4) has a
unique solution.
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Since
32 57
Pn 7an - Aon — 1 I_nT nian: - n<—:
1PG Bl = 5 = 0 < 1, [T-VaV 1 QuGy ' Ball =3 = Croon < =,
the inequalities (28),(29) hold with the left sides 5222435 and 4384 regpec-
tively.
Let v = (1,1)T.

According to Theorem 3 we can find approximate solutions {Z,},n > 0 via
interations such that ||, — x,| <1075 n > 0. (see table).

n ) P n ) )
0 1.2040725 | 1.8162902 5 —0.0016114 | —0.0070262
1 0.1175060 | 0.1792858 6 0.0001727 | —0.0005747
2 | 0.0115993 | 0.0196851 7 0.0010052 | 0.0027487
3 | 0.0005366 | 0.0002837 8 0.0036480 | 0.0146555
4 | —0.0020460 | —0.0075569
4.2. Consider system (1) with the data
AnZpt1 = Bptn + fo(@ng1,2n) (n=0,1,2,...) (53)

with

0 V2n(n+1)  —v2n(n+1)

2v/n2+1 2v/n2+1
A, = 0 V2(n+1) —/2(n+1)
2v/n2+1 2v/n2+1
n
3n? -2 V2(6n—1)
vVn2+1 2v/n2+1 2v/n2+1
B — 3n 32 5v2
[ VR NE 2v/n2+1 2v/n2+1
\/in(72\/n2+1+3n+1) 7\/§n(4\/n2+1+n71)
n+1 W =
n<+1 2vV/n?*+1

and fn(ya 'r) = Ungn(Vngly, V,;TCC), where

n 0 —1 o0 L =L
niJrl n24+1 - V2 V2
Un = W 0 2 and VnJrl = (1) (1) (1)
0 1 7 Vi Vi

are orthogonal matrices, such as A, = UnEnVnTJrl with ¥, = diag(n + 1,n,0)
and
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gV (&, Q)
a6 = | ¢7(€,0

ay cos (€1 4+ £2))(¢BH1/3
= b sin (¢ 4 @) (eM)H1/5
b,, cos (C(l) + <(2))(§(1))1/5 + a,, sin (5(1) + 5(2))@(3))1/3 te,
Here we put

V2[4 + (7/A—T)n+7/2 - 5] ; V2[4n? + (3 — 7/4)n]

" CESVEE S 7 Ve
chn =n%+ (2— g)n+4— g
Then system (1) is reduced to the system (41) with
) -1 3 4
B,=U'B,V, = n n+1 -3n

2n 0 n+1

Since %Q(") = (0,0,0)%, condition (2) is satisfied. Moreover, we have

£ (s )| = [1Ungn(Vai1y: Vi @)l < Hlgn (€ O
< V3{lanl I€11M° + [Bal IS + leal} < VBlanl 2] + V/3[ballyllM* + V3lenl.

Further, the matrices én =3, + BHQ(") are nonsingular,

) 10 —4 ) 1 0 e
Go'=(0 1 0], G'=| 0 + 2
0 0 1 0 0 HLH

Thus all conditions of Theorem 4 are fulfilled. A short computation shows that

0L (e (o
;—% 0 — n+1 %(w/4—|—1)
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