```
Vicenmammourmal
    0f
MATIHIEMATIICS
(c) VAST 2004
```


On Quasi-Linear Implicit Difference Equations

Pham Ky Anh, Ha Thi Ngoc Yen, and Tran Quoc Binh
Dept. of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
Received May 01, 2003
Revised July 24, 2003

Abstract

This paper is concerned with the solvability and approximate solutions of a class of quasi-linear implicit difference equations. Thanks to the index-1 (quasi-index-1) property of linear parts, an initial infinite system can be decoupled. Then the Banach's and Brouwer's fixed point theorems are applied to ensure the unique solvability (solvability) of the IVP for quasi linear implicit difference equations.

1. Introduction

In this paper we consider the following system of quasi-linear implicit difference equation:

$$
\begin{equation*}
A_{n} x_{n+1}=B_{n} x_{n}+f_{n}\left(x_{n+1}, x_{n}\right), \quad(n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

where A_{n} and B_{n} are given matrices of order $m \times m$. In what follows we assume that the matrices A_{n} are all singular, such that $1 \leq r_{n} \leq m-1$ where $r_{n}=\operatorname{rank} A_{n}$. Further, suppose that $f_{n} \in C^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$ and moreover

$$
\begin{equation*}
\operatorname{Ker} A_{n} \subset \operatorname{Ker} \frac{\partial f_{n}}{\partial y}(y, x) \tag{2}
\end{equation*}
$$

for all $n \geq 0$ and $x, y \in \mathbb{R}^{m}$. Obviuosly, under condition (2), each equation (1) is implicit with respect to x_{n+1}.

Note that equation (1) may be regarded as a discrete analogue of quasilinear differetial-algebraic equations (DAEs) which have already attracted much attention of researchers $[2,4]$.

Together with equation (1) we consider the corresponding system of linear implicit difference equation (LIDE)

$$
\begin{equation*}
A_{n} x_{n+1}=B_{n} x_{n}+q_{n}, \quad(n \geq 0) \tag{3}
\end{equation*}
$$

which has been investigated in our recent works [1, 3].
Let $A_{n}=U_{n} \Sigma_{n} V_{n+1}^{T}$ be an SVD of A_{n}, where $U_{n}\left(V_{n+1}\right)$ are orthogonal matrices, whose columns are left (right) singular vectors of A_{n} respectively, $\Sigma_{n}=\operatorname{diag}\left(\sigma_{1}^{(n)}, \sigma_{2}^{(n)}, \ldots, \sigma_{r_{n}}^{(n)}, 0, \ldots, 0\right)$ are diagonal matrices with singular values $\sigma_{1}^{(n)} \geq \sigma_{2}^{(n)} \geq \ldots \geq \sigma_{r_{n}}^{(n)}>0$ on their diagonals. We say that the LIDE (3) is of quasi-index-1 if the matrices $G_{n}=A_{n}+B_{n} V_{n} Q^{(n)} V_{n+1}^{T}$, where $Q^{(n)}=$ $\operatorname{diag}\left(O_{r_{n}}, I_{m-r_{n}}\right)$, are nonsingular for all $n \geq 0$. Here O_{k}, I_{k} stand for $k \times k$ zero matrix and $k \times k$ identity matrix, respectively. For $k=m$ we put simply $O:=O_{m} ; I:=I_{m}$. If equation (3) is of quasi-index 1 and the rank A_{n} are the same for all n, i.e. $r_{n} \equiv r(n \geq 0)$ then the LIDE (3) is said to be of index-1. In this case, $Q:=Q^{(n)}=\operatorname{diag}\left(O_{r}, I_{m-r}\right)$. It has been shown in [3] that the index-1 property of equation (3) does not depend on the choice of SVDs of A_{n}. Furthermore, the solvability and the unique solvability of some IVPs, as well as multipoint boundary value problems (MPBVPs) for index 1 LIDEs have been established in $[1,3]$.

Let $P^{(n)}:=I-Q^{(n)} ; Q_{n}:=V_{n+1} Q^{(n)} V_{n+1}^{T} ; P_{n}:=I-Q_{n}(n \geq 0)$. For definiteness, we can set $V_{0}:=V_{1} ; Q_{-1}:=Q_{0} ; P_{-1}:=P_{0}$. Clearly, Q_{n} are projections onto $\operatorname{Ker} A_{n}(n \geq 0)$, i.e. $Q_{n}^{2}=Q_{n} ; A_{n} Q_{n}=0$, and besides $P_{n} Q_{n}=$ $Q_{n} P_{n}=0$.

The aim of this paper is to establish some existence theorems for systems of nonlinear difference equations involving linear index-1 or quasi-index-1 parts. The paper is organized as follows. In Sec. 2 we study the unique solvability and approximate solutions of IVPs for IDEs with linear index-1 parts. Section 3 deals with the solvability of implicit difference equations, whose linear parts are of quasi-index-1. Finally, in the last section, some illustrative examples are considered.

2. Unique Solvability of IVPs for IDEs Involving Linear Index-1 Parts

Suppose we want to find a solution of system (1), satisfying the initial condition

$$
\begin{equation*}
P_{0} x_{0}=\gamma \tag{4}
\end{equation*}
$$

with a given vector $\gamma \in \mathbb{R}^{m}$. In what follows $\|$.$\| denotes any norm in \mathbb{R}^{m}$.
Theorem 1. Let the equation (3) be of index 1. Further assume that the nonlinear functions $f_{n}(y, x)$ satisfy condition (2) and the inequality

$$
\begin{equation*}
\left\|f_{n}(y, x)-f_{n}(\xi, \zeta)\right\| \leq \alpha_{n}\|y-\xi\|+\beta_{n}\|x-\zeta\| \tag{5}
\end{equation*}
$$

with nonnegative constants α_{n} and β_{n} for all $y, x, \xi, \zeta \in \mathbb{R}^{m}$. If

$$
\begin{equation*}
\omega_{n}:=\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|+\beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|<1 \tag{6}
\end{equation*}
$$

then the IVP (1), (4) has a unique solution.

Proof. Taking into acount relation (2) and observing that

$$
f_{n}(y, x)-f_{n}\left(P_{n} y, x\right)=\int_{0}^{1} \frac{\partial f_{n}}{\partial y}\left(P_{n} y+t Q_{n} y, x\right) Q_{n} y d t=0
$$

for all $n \geq 0, x, y \in \mathbb{R}^{m}$ we come to the equation

$$
\begin{equation*}
f_{n}(y, x)=f_{n}\left(P_{n} y, x\right), \quad \forall y, x \in \mathbb{R}^{m} \tag{7}
\end{equation*}
$$

First, observing that $A_{n} P_{n}=A_{n}$, we find that $G_{n} P_{n}=A_{n} P_{n}+B_{n} V_{n} Q V_{n+1}^{T} P_{n}=$ $A_{n}+B_{n} V_{n} V_{n+1}^{T} Q_{n} P_{n}=A_{n}$, hence

$$
\begin{equation*}
G_{n}^{-1} A_{n}=P_{n} \tag{8}
\end{equation*}
$$

Similarly, $G_{n} Q_{n}=B_{n} V_{n} Q V_{n+1}^{T} Q_{n}=B_{n} V_{n} Q V_{n+1}^{T} V_{n+1} Q V_{n+1}^{T}=B_{n} V_{n} Q V_{n+1}^{T}$, hence $Q_{n}=G_{n}^{-1} B_{n} V_{n} Q V_{n+1}^{T}=G_{n}^{-1} B_{n} Q_{n-1} V_{n} V_{n+1}^{T}$, therefore $G_{n}^{-1} B_{n} Q_{n-1}=$ $Q_{n} V_{n+1} V_{n}^{T}$. Thus

$$
\begin{equation*}
Q_{n} G_{n}^{-1} B_{n} Q_{n-1}=Q_{n} V_{n+1} V_{n}^{T} ; P_{n} G_{n}^{-1} B_{n} Q_{n-1}=0 \tag{9}
\end{equation*}
$$

Now applying $P_{n} G_{n}^{-1}$ and $Q_{n} G_{n}^{-1}$ to both sides of equation (1) respectively and using relations (7), we find

$$
\begin{align*}
P_{n} x_{n+1} & =P_{n} G_{n}^{-1} B_{n}\left(P_{n-1} x_{n}+Q_{n-1} x_{n}\right)+P_{n} G_{n}^{-1} f_{n}\left(P_{n} x_{n+1}, x_{n}\right) \tag{10}\\
0 & =Q_{n} G_{n}^{-1} B_{n}\left(P_{n-1} x_{n}+Q_{n-1} x_{n}\right)+Q_{n} G_{n}^{-1} f_{n}\left(P_{n} x_{n+1}, x_{n}\right) \tag{11}
\end{align*}
$$

Denoting $u_{n}:=P_{n-1} x_{n} ; v_{n}:=Q_{n-1} x_{n}(n \geq 0)$ and using (9), from (10) we find

$$
\begin{equation*}
u_{n+1}=P_{n} G_{n}^{-1} B_{n} u_{n}+P_{n} G_{n}^{-1} f_{n}\left(u_{n+1}, x_{n}\right) \tag{12}
\end{equation*}
$$

Replacing $Q_{n} G_{n}^{-1} B_{n} Q_{n-1} x_{n}$ with $Q_{n} V_{n+1} V_{n}^{T} x_{n}$ and taking into account the fact that $Q_{n} V_{n+1} V_{n}^{T} x_{n}=V_{n+1} Q V_{n+1}^{T} V_{n+1} V_{n}^{T} x_{n}=V_{n+1} Q V_{n}^{T} x_{n}=V_{n+1} V_{n}^{T} Q_{n-1} x_{n}=$ $V_{n+1} V_{n}^{T} v_{n}$, from (11) we get

$$
v_{n}=-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\left\{B_{n} u_{n}+f_{n}\left(u_{n+1}, x_{n}\right)\right\}
$$

Since $x_{n}=u_{n}+v_{n}$, from the last relation we have

$$
\begin{equation*}
x_{n}=\left(I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right) u_{n}-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} f_{n}\left(u_{n+1}, x_{n}\right) \tag{13}
\end{equation*}
$$

Now suppose that $u_{n}(n \geq 0)$ is found (u_{0} is given, since $u_{0}=P_{-1} x_{0}=$ $P_{0} x_{0}=\gamma$), we have to find $x_{n}=u_{n}+v_{n}$ and u_{n+1} from equations (12), (13). For the sake of simplicity, we denote $\xi:=u_{n+1}, \zeta:=x_{n}, r_{n}:=P_{n} G_{n}^{-1} B_{n} u_{n}$ and $s_{n}:=\left(I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right) u_{n}$. Thus we come to the system

$$
\begin{align*}
& \xi=P_{n} G_{n}^{-1} f_{n}(\xi, \zeta)+r_{n} \tag{14}\\
& \zeta=-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} f_{n}(\xi, \zeta)+s_{n} \tag{15}
\end{align*}
$$

For establishing the unique solvability of system (14), (15) we can use an iteration method, namely

$$
\begin{align*}
\xi^{k+1} & =P_{n} G_{n}^{-1} f_{n}\left(\xi^{k}, \zeta^{k}\right)+r_{n} \tag{16}\\
\zeta^{k+1} & =-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} f_{n}\left(\xi^{k}, \zeta^{k}\right)+s_{n} \tag{17}
\end{align*}
$$

where $k \geq 0$ and $\xi^{0}, \zeta^{0} \in \mathbb{R}^{m}$ are arbitrarily chosen.
Clearly, for $k \geq 1$ we have

$$
\begin{equation*}
\left\|\xi^{k+1}-\xi^{k}\right\| \leq\left\|P_{n} G_{n}^{-1}\right\|\left(\alpha_{n}\left\|\xi^{k}-\xi^{k-1}\right\|+\beta_{n}\left\|\zeta^{k}-\zeta^{k-1}\right\|\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\zeta^{k+1}-\zeta^{k}\right\| \leq\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\left(\alpha_{n}\left\|\xi^{k}-\xi^{k-1}\right\|+\beta_{n}\left\|\zeta^{k}-\zeta^{k-1}\right\|\right) \tag{19}
\end{equation*}
$$

Denoting $\mu_{k}:=\alpha_{n}\left\|\xi^{k}-\xi^{k-1}\right\|+\beta_{n}\left\|\zeta^{k}-\zeta^{k-1}\right\|$ and multiplying both sides of inequalities (18) and (19) by α_{n} and β_{n}, respectively, then taking the sum of both sides of the obtained inequalities, we find

$$
\mu_{k+1} \leq\left(\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|+\beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\right) \mu_{k}=\omega_{n} \mu_{k} \leq \ldots \leq \omega_{n}^{k} \mu_{1}
$$

Since $\left\|\xi^{k+1}-\xi^{k}\right\| \leq\left\|P_{n} G_{n}^{-1}\right\| \mu_{k} \leq \mu_{1}\left\|P_{n} G_{n}^{-1}\right\| \omega_{n}^{k-1},\left\|\zeta^{k+1}-\zeta^{k}\right\| \leq \mu_{1} \| V_{n} V_{n+1}^{T} Q_{n}$ $G_{n}^{-1} \| \omega_{n}^{k-1}$, it follows that $\xi^{k} \longrightarrow \xi^{*}$ and $\zeta^{k} \longrightarrow \zeta^{*}$ when $k \longrightarrow \infty$. Evidently, $\left(\xi^{*}, \zeta^{*}\right)$ is a solution of system (14), (15).

Now assume that (ξ, ζ) and $\left(\xi^{\prime}, \zeta^{\prime}\right)$ are two solutions of system (14), (15). Then $\left\|\xi-\xi^{\prime}\right\|=\left\|P_{n} G_{n}^{-1}\left\{f_{n}(\xi, \zeta)-f_{n}\left(\xi^{\prime}, \zeta^{\prime}\right)\right\}\right\| \leq\left\|P_{n} G_{n}^{-1}\right\|\left\{\alpha_{n}\left\|\xi-\xi^{\prime}\right\|+\right.$ $\left.\beta_{n}\left\|\zeta-\zeta^{\prime}\right\|\right\}$. Similarly, $\left\|\zeta-\zeta^{\prime}\right\|=\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\left\{f_{n}(\xi, \zeta)-f_{n}\left(\xi^{\prime}, \zeta^{\prime}\right)\right\}\right\| \leq$ $\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\left\{\alpha_{n}\left\|\xi-\xi^{\prime}\right\|+\beta_{n}\left\|\zeta-\zeta^{\prime}\right\|\right\}$. Acting as before, we get $\alpha_{n} \| \xi-$ $\xi^{\prime}\left\|+\beta_{n}\right\| \zeta-\zeta^{\prime} \| \leq \omega_{n}\left(\alpha_{n}\left\|\xi-\xi^{\prime}\right\|+\beta_{n}\left\|\zeta-\zeta^{\prime}\right\|\right)$. From the last inequality, it follows $\alpha_{n}\left\|\xi-\xi^{\prime}\right\|+\beta_{n}\left\|\zeta-\zeta^{\prime}\right\|=0$ hence $\xi=\xi^{\prime}$ and $\zeta=\zeta^{\prime}$. Thus the unique solvability of the IVP (1), (4) is proved.

Remark 1.

* Condition (5) holds if for all $x, y \in \mathbb{R}^{m},\left\|\frac{\partial f_{n}}{\partial y}(y, x)\right\| \leq \alpha_{n}$ and $\left\|\frac{\partial f_{n}}{\partial x}(y, x)\right\| \leq \beta_{n}$
* Condition (2) is satisfied if $f_{n}(y, x)=g_{n}\left(A_{n} y, x\right)$ where $g_{n} \in C^{1}\left(\mathbb{R}^{m} \times\right.$ $\left.\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

Theorem 2. The conclusion of Theorem 1 remains valid if instead of condition (5) we require

$$
\begin{gather*}
\operatorname{Im} \frac{\partial f_{n}}{\partial y}(y, x) \subset \operatorname{Im} A_{n}, \forall x, y \in \mathbb{R}^{m} \tag{20}\\
\max \left\{\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|, \beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\right\}<1,(n \geq 0) \tag{21}
\end{gather*}
$$

Proof. First, observe that

$$
\begin{aligned}
Q_{n} G_{n}^{-1}\left[f_{n}(y, x)-f_{n}(0, x)\right] & =Q_{n} G_{n}^{-1} \int_{0}^{1} \frac{\partial f_{n}}{\partial y}(t y, x) y d t \\
& =\int_{0}^{1} Q_{n} G_{n}^{-1} \frac{\partial f_{n}}{\partial y}(t y, x) y d t
\end{aligned}
$$

Taking into account relation (20) we can rewrite $\frac{\partial f}{\partial y}(t y, x) y$ as $A_{n} z_{n}(y, x, t)$ for some $z_{n}(y, x, t) \in \mathbb{R}^{m}$. From (8) it follows $Q_{n} G_{n}^{-1} A_{n}=0$, hence

$$
\int_{0}^{1} Q_{n} G_{n}^{-1} \frac{\partial f_{n}}{\partial y}(t y, x) y d t=0
$$

Therefore

$$
\begin{equation*}
Q_{n} G_{n}^{-1} f_{n}(y, x)=Q_{n} G_{n}^{-1} f_{n}(0, x), \forall x, y \in \mathbb{R}^{m} \tag{22}
\end{equation*}
$$

Thus instead of system (14), (15) we have

$$
\begin{align*}
& \xi=P_{n} G_{n}^{-1} f_{n}(\xi, \zeta)+r_{n} \tag{23}\\
& \zeta=-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} f_{n}(0, \zeta)+s_{n} \tag{24}
\end{align*}
$$

Obviously, the contractivity condition $\beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|<1$ ensures the unique solvability of equation (24). Substituting the unique solution ζ of equation (24) into equation (23) and using the assumption $\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|<1$ we can easily deduce the unique solvability of equation (23).

Remark 2. Both conditions (2), (20) hold, for example, if

$$
f_{n}(y, x)=\sum_{i=1}^{k_{n}} a_{i n} A_{n}^{i} y+g_{n}(x),
$$

where $g_{n} \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.
Next, we present an algorithm for finding an approximate solution of IVP (1), (4).

Theorem 3. Let the LIDE (3) be of index-1 and the nonlinear functions f_{n} satisfy condition (2), (5). Moreover, suppose the following conditions are satisfied:
(i) the matricies $I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}$ are uniformly bounded, i.e.

$$
\begin{equation*}
\left\|I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right\| \leq C_{1} \tag{25}
\end{equation*}
$$

(ii) the norm of the matrices $P_{n} G_{n}^{-1} B_{n}$ are uniformly bounded by a constant less than 1, i.e.

$$
\begin{equation*}
\left\|P_{n} G_{n}^{-1} B_{n}\right\| \leq \delta_{0}<1 \tag{26}
\end{equation*}
$$

(iii) the coefficients α_{n}, β_{n} are small enough, such that

$$
\begin{gather*}
\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|+\beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\| \leq \omega<1, \tag{27}\\
(1-\omega)^{-1}\left\|P_{n} G_{n}^{-1}\right\|\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right) \leq \delta_{1}<1-\delta_{0}, \tag{28}
\end{gather*}
$$

and

$$
\begin{equation*}
(1-\omega)^{-1}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right) \leq C_{2} \tag{29}
\end{equation*}
$$

Then within a given tolerance $\epsilon>0$, we can always find an approximate solution $\left\{\bar{x}_{n}\right\}(n \geq 0)$ via iterations, such that $\left\|\bar{x}_{n}-x_{n}\right\| \leq \epsilon(n \geq 0)$, where $\left\{x_{n}\right\}(n \geq 0)$ is a unique solution of IVP (1), (4).

Proof. Theorem 1 ensures the unique solvability of IVP (1), (4), therefore system (14), (15) has the unique solution $\left\{u_{n+1}, x_{n}\right\}(n \geq 0)$. Starting with $\bar{u}_{0}=\gamma$ and
performing some iterations by formulae (16), (17) for $n=0$, we can find \bar{x}_{0} and \bar{u}_{1} such that $\left\|\bar{u}_{1}-u_{1}\right\| \leq \epsilon / C$ and $\left\|\bar{x}_{0}-x_{0}\right\| \leq \epsilon$ where $C=\left(C_{1}+C_{2}\right)(1-\delta)^{-1}$ and $\delta=1-\delta_{0}-\delta_{1}>0$. Now suppose by induction that for $k=0,1, \ldots, n-1$ we have found approximate solution $\bar{u}_{k+1}, \bar{x}_{k}$ of system (14), (15), such that

$$
\begin{equation*}
\left\|\bar{u}_{k+1}-u_{k+1}\right\| \leq \epsilon / C ;\left\|\bar{x}_{k}-x_{k}\right\| \leq \epsilon ;(k=0,1, \ldots, n-1) \tag{30}
\end{equation*}
$$

Let $\tilde{x}_{n}, \tilde{u}_{n+1}$ be the unique solution of the system

$$
\begin{align*}
\tilde{u}_{n+1} & =P_{n} G_{n}^{-1} f_{n}\left(\tilde{u}_{n+1}, \tilde{x}_{n}\right)+\bar{r}_{n} \tag{31}\\
\tilde{x}_{n} & =-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} f_{n}\left(\tilde{u}_{n+1}, \tilde{x}_{n}\right)+\bar{s}_{n} \tag{32}
\end{align*}
$$

where $\bar{r}_{n}=P_{n} G_{n}^{-1} B_{n} \bar{u}_{n}$ and $\bar{s}_{n}=\left(I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right) \bar{u}_{n}$. The unique solvability of system (31), (32) is established by the same manner as in Theorem 1. Using relations $(14),(15),(31),(32)$ and taking into account assumptions (25), (26), (30), we get $\left\|\tilde{u}_{n+1}-u_{n+1}\right\| \leq\left\|P_{n} G_{n}^{-1}\right\|\left\{\alpha_{n}\left\|\tilde{u}_{n+1}-u_{n+1}\right\|+\beta_{n} \| \tilde{x}_{n}-\right.$ $\left.x_{n} \|\right\}+\left\|P_{n} G_{n}^{-1} B_{n}\right\|\left\|\bar{u}_{n}-u_{n}\right\|$ or

$$
\begin{equation*}
\left\|\tilde{u}_{n+1}-u_{n+1}\right\| \leq \mu_{n}\left\|P_{n} G_{n}^{-1}\right\|+\delta_{0} \epsilon / C \tag{33}
\end{equation*}
$$

where μ_{n} denotes the quantity $\alpha_{n}\left\|\tilde{u}_{n+1}-u_{n+1}\right\|+\beta_{n}\left\|\tilde{x}_{n}-x_{n}\right\|$. Analogously, $\left\|\tilde{x}_{n}-x_{n}\right\| \leq\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\left\{\alpha_{n}\left\|\tilde{u}_{n+1}-u_{n+1}\right\|+\beta_{n}\left\|\tilde{x}_{n}-x_{n}\right\|\right\}+$ $+\left\|I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right\|\left\|\bar{u}_{n}-u_{n}\right\|$, i.e.

$$
\begin{equation*}
\left\|\tilde{x}_{n}-x_{n}\right\| \leq \mu_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|+C_{1} \epsilon / C . \tag{34}
\end{equation*}
$$

Multiplying both sides of inequalities (33) and (34) by α_{n} and β_{n} respectively and then taking the sum of both sides of the obtained inequalities we have $\mu_{n} \leq\left(\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|+\beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\right) \mu_{n}+\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right) \epsilon / C \leq \omega \mu_{n}+$ $\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right) \epsilon / C$. Thus,

$$
\begin{equation*}
\mu_{n} \leq \frac{\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right) \epsilon}{C(1-\omega)} \tag{35}
\end{equation*}
$$

From relations (33) and (35) it follows

$$
\left\|\tilde{u}_{n+1}-u_{n+1}\right\| \leq \frac{\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right)\left\|P_{n} G_{n}^{-1}\right\| \epsilon}{C(1-\omega)}+\frac{\delta_{0} \epsilon}{C}
$$

Using estimate (28), from the last relation we find

$$
\begin{equation*}
\left\|\tilde{u}_{n+1}-u_{n+1}\right\| \leq \frac{\delta_{1}+\delta_{0}}{C} \epsilon=\frac{(1-\delta) \epsilon}{C} . \tag{36}
\end{equation*}
$$

Similarly, from inequalities (34), (35), using assumption (29), we get
$\left\|\tilde{x}_{n}-x_{n}\right\| \leq\left\{(1-\omega)^{-1}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1}\right\|\left(\delta_{0} \alpha_{n}+C_{1} \beta_{n}\right)+C_{1}\right\} \epsilon / C \leq\left(C_{1}+C_{2}\right) \epsilon / C$,
hence

$$
\begin{equation*}
\left\|\tilde{x}_{n}-x_{n}\right\| \leq(1-\delta) \epsilon \tag{37}
\end{equation*}
$$

Now performing some iterations by the formulae

$$
\begin{equation*}
\xi^{k+1}=P_{n} G_{n}^{-1} f_{n}\left(\xi^{k}, \zeta^{k}\right)+\bar{r}_{n} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\zeta^{k+1}=-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} f_{n}\left(\xi^{k}, \zeta^{k}\right)+\bar{s}_{n} \tag{39}
\end{equation*}
$$

we can find $\bar{u}_{n+1}=\xi^{k+1}, \bar{x}_{n}=\zeta^{k+1}$ such that $\left\|\bar{u}_{n+1}-\tilde{u}_{n+1}\right\| \leq \delta \epsilon / C$ and $\left\|\bar{x}_{n}-\tilde{x}_{n}\right\| \leq \delta \epsilon$. From relations (36), (37) and the last estimates, we come to the disired inequality $\left\|\bar{u}_{n+1}-u_{n+1}\right\| \leq \epsilon / C$ and $\left\|\bar{x}_{n}-x_{n}\right\| \leq \epsilon$. The proof of Theorem 3 is complete.

3. Solvability of IVPs in Quasi-Index-1 Cases

Suppose the LIDE (3) is of quasi-index-1. Moreover, assume that

$$
\begin{equation*}
r_{n+1} \geq r_{n}(n \geq 0) \tag{40}
\end{equation*}
$$

Clearly, equation (1) can be reduced to the form

$$
\begin{equation*}
\Sigma_{n} y_{n+1}=\tilde{B}_{n} y_{n}+g_{n}\left(y_{n+1}, y_{n}\right) \tag{41}
\end{equation*}
$$

where $y_{n}=V_{n}^{T} x_{n}, \tilde{B}_{n}=U_{n}^{T} B_{n} V_{n}$ and $g_{n}(y, x)=U_{n}^{T} f_{n}\left(V_{n+1} y, V_{n} x\right)$. The following lemma collects some obvious facts needed for our further consideration.

Lemma. The following 3 assertions hold:

1. The matrices $G_{n}=A_{n}+B_{n} V_{n} Q^{(n)} V_{n+1}^{T}$ and $\tilde{G}_{n}:=\Sigma_{n}+\tilde{B}_{n} Q^{(n)}$ are singular or nonsingular simultaneously.
2. Condition (2) is equivalent to the inclusion

$$
\begin{equation*}
\operatorname{Ker} \Sigma_{n} \subset \operatorname{Ker} \frac{\partial g_{n}}{\partial y}(y, x) \tag{42}
\end{equation*}
$$

3.

$$
\begin{equation*}
g_{n}(y, x)=g_{n}\left(P^{(n)} y, x\right) \tag{43}
\end{equation*}
$$

for all $n \geq 0$ and $y, x \in \mathbb{R}^{m}$.
In the following theorem, for simplicity, we use the Euclid norm.
Theorem 4. Suppose the LIDE (3) is of quasi-index 1 and condition (40) holds. Further, assume that the nonlinear functions $f_{n}(y, x)$ satisfy condition (2) and the following growth condition:

$$
\begin{equation*}
\left\|f_{n}(\xi, \zeta)\right\| \leq a_{n}\|\xi\|^{\nu_{n}}+b_{n}\|\zeta\|^{\mu_{n}}+c_{n} \tag{44}
\end{equation*}
$$

with nonegative constants $a_{n}, b_{n}, c_{n}, \nu_{n}, \mu_{n}$, where $\theta_{n}:=\max \left\{\nu_{n}, \mu_{n}\right\} \leq 1$. Additionally, we suppose that if $\theta_{n}=1$ then $\left(a_{n}+b_{n}\right)\left\|G_{n}^{-1}\right\|<1$. Then the IVP (1), (4) possesses a solution.

Proof. Applying $P^{(n)} \tilde{G}_{n}^{-1}$ and $Q^{(n)} \tilde{G}_{n}^{-1}$ to both sides of equation (41) respectively and using the relations $P^{(n)}+Q^{(n)}=I, \tilde{G}_{n}^{-1} \tilde{B}_{n} Q^{(n)}=Q^{(n)}, \tilde{G}_{n}^{-1} \Sigma_{n}=$ $P^{(n)}$ as well as taking into account the previous lemma, we get

$$
\begin{aligned}
& P^{(n)} y_{n+1}=P^{(n)} \tilde{G}_{n}^{-1} \tilde{B}_{n} P^{(n)} y_{n}+P^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} y_{n+1}, y_{n}\right), \\
& 0=Q^{(n)} \tilde{G}_{n}^{-1} \tilde{B}_{n} P^{(n)} y_{n}+Q^{(n)} y_{n}+Q^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} y_{n+1}, y_{n}\right)
\end{aligned}
$$

Putting $\xi_{n}=P^{(n)} y_{n}$ and observing that $P^{(n)} y_{n+1}=P^{(n)} P^{(n+1)} y_{n+1}=P^{(n)} \xi_{n+1}$ we come to the following system:

$$
\begin{align*}
P^{(n)} \xi_{n+1} & =P^{(n)} \tilde{G}_{n}^{-1} \tilde{B}_{n} \xi_{n}+P^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi_{n+1}, y_{n}\right), \tag{45}\\
0 & =Q^{(n)} \tilde{G}_{n}^{-1} \tilde{B}_{n} \xi_{n}+Q^{(n)} y_{n}+Q^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi_{n+1}, y_{n}\right) \tag{46}
\end{align*}
$$

From the last equation, it follows

$$
\begin{equation*}
y_{n}=\left(P^{(n)}+Q^{(n)}\right) y_{n}=\left(I-Q^{(n)} \tilde{G}_{n}^{-1} \tilde{B}_{n}\right) \xi_{n}-Q^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi_{n+1}, y_{n}\right) \tag{47}
\end{equation*}
$$

On the other hand, equation (45) gives

$$
\begin{equation*}
\xi_{n+1}=\tilde{G}_{n}^{-1} \tilde{B}_{n} \xi_{n}+\tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi_{n+1}, y_{n}\right)+Q^{(n)} \eta \tag{48}
\end{equation*}
$$

where $\eta \in \mathbb{R}^{m}$ is an arbitrary vector. Denoting $p_{n}(\eta):=\tilde{G}_{n}^{-1} \tilde{B}_{n} \xi_{n}+Q^{(n)} \eta$ and $q_{n}:=\left(I-Q^{(n)} \tilde{G}_{n}^{-1} \tilde{B}_{n}\right) \xi_{n}$ and simplifying our notations by setting $\xi=\xi_{n+1}, \zeta=y_{n}$ we come to the final system that should be investigated.

$$
\begin{align*}
\xi & =\tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi, \zeta\right)+p_{n}(\eta) \tag{49}\\
\zeta & =-Q^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi, \zeta\right)+q_{n} \tag{50}
\end{align*}
$$

In $\mathbb{R}^{m} \times \mathbb{R}^{m}$ endowed with the norm $\|(\xi, \eta)\|=\max \{\|\xi\|,\|\eta\|\}$ we consider the map

$$
T_{n}(\xi, \zeta):=\left(\tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi, \zeta\right)+p_{n}(\eta),-Q^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi, \zeta\right)+q_{n}\right)
$$

Since $\left\|U_{n}\right\|=\left\|V_{n+1}\right\|=\left\|P^{(n)}\right\|=\left\|Q^{(n)}\right\|=1$, from the growth condition (44) it follows for $\|(\xi, \zeta)\| \geq 1$ that

$$
\begin{equation*}
\left\|g_{n}\left(P^{(n)} \xi, \zeta\right)\right\| \leq a_{n}\|\xi\|^{\nu_{n}}+b_{n}\|\zeta\|^{\mu_{n}}+c_{n} \leq\left(a_{n}+b_{n}\right)\|(\xi, \zeta)\|^{\theta_{n}}+c_{n} \tag{51}
\end{equation*}
$$

Clearly, relation (51) implies that

$$
\begin{gathered}
\left\|T_{n}(\xi, \zeta)\right\|=\max \left\{\left\|\tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi, \zeta\right)+p_{n}(\eta)\right\|,\left\|Q^{(n)} \tilde{G}_{n}^{-1} g_{n}\left(P^{(n)} \xi, \zeta\right)+q_{n}\right\|\right\} \\
\leq\left\|\tilde{G}_{n}^{-1}\right\|\left(a_{n}+b_{n}\right)\|(\xi, \zeta)\|^{\theta_{n}}+\tilde{c}_{n}
\end{gathered}
$$

where $\tilde{c}_{n}=\max \left\{\left\|p_{n}(\eta)\right\|,\left\|q_{n}\right\|\right\}+c_{n}\left\|\tilde{G}_{n}^{-1}\right\|$. Observing that

$$
\left\|\tilde{G}_{n}^{-1}\right\|=\left\|V_{n+1}^{T} G_{n}^{-1} U_{n}\right\| \leq\left\|G_{n}^{-1}\right\|=\left\|V_{n+1} \tilde{G}_{n}^{-1} U_{n}^{T}\right\| \leq\left\|\tilde{G}_{n}^{-1}\right\|
$$

we get $\left\|G_{n}^{-1}\right\|=\left\|\tilde{G}_{n}^{-1}\right\|$. When $\|(\xi, \zeta)\|$ is sufficiently large, there holds the inequality

$$
\begin{equation*}
\frac{\left\|T_{n}(\xi, \zeta)\right\|}{\|(\xi, \zeta)\|} \leq\left(a_{n}+b_{n}\right)\left\|G_{n}^{-1}\right\|\|(\xi, \zeta)\|^{\theta_{n}-1}+\tilde{c}_{n}\|(\xi, \zeta)\|^{-1} \tag{52}
\end{equation*}
$$

The estimate (52) implies that, in both cases, when $\theta_{n}<1$ or $\theta_{n}=1$ and $\left(a_{n}+b_{n}\right)\left\|G_{n}^{-1}\right\|<1, \varlimsup_{\|(\xi, \zeta)\| \rightarrow \infty} \frac{\left\|T_{n}(\xi, \zeta)\right\|}{\|(\xi, \zeta)\|}<1$. Thus $T_{n}(\xi, \zeta)$ maps a closed ball in $\mathbb{R}^{m} \times \mathbb{R}^{m}$ centered at $(0,0)$ with a sufficiently large radius R in to itself. The Brouwer fixed point theorem ensures the existence of solutions of the system (49), (50). Starting with the given initial value $u_{0}=P_{0} x_{0}=\gamma$ or $u_{0}=V_{1} P^{(0)} V_{1}^{T} x_{0}=$ γ we get $P^{(0)} V_{1}^{T} x_{0}=V_{1}^{T} \gamma$, hence, $\xi_{0}=P^{(0)} y_{0}=P^{(0)} V_{0}^{T} x_{0}=P^{(0)} V_{1}^{T} x_{0}=V_{1}^{T} \gamma$ is known. From system (49), (50) we can find ξ_{1}, y_{0} and then ξ_{2}, y_{1}, etc... Thus $x_{n}=V_{n} y_{n}$ can be found, which was to be proved.

4. Examples

4.1. Consider system (1) with the following data

$$
\begin{aligned}
A_{n} & =\left(\begin{array}{cc}
\frac{1}{\sin (n+1)} & -\frac{1}{4 \sin (n+1)} \\
\frac{1}{\cos (n+1)} & -\frac{1}{4 \cos (n+1)}
\end{array}\right), \quad B_{n}=\left(\begin{array}{cc}
\frac{1}{17 \sin (n+1)} & 0 \\
\frac{-1}{34 \cos (n+1)} & \frac{1}{17 \cos (n+1)}
\end{array}\right), \\
f_{n}(y, x) & =g_{n}\left(A_{n} y, A_{n} x\right)=g_{n}(\xi, \zeta)=\binom{a_{n} \cos \xi^{(1)}+b_{n} \sin \zeta^{(2)}}{c_{n} \cos \zeta^{(1)}+d_{n} \sin \xi^{(2)}},
\end{aligned}
$$

where

$$
a_{n}=c_{n}=\frac{1}{2^{10}}\left\|A_{n}\right\|^{-1} ; b_{n}=\frac{1}{2^{10+n}}\left\|A_{n}\right\|^{-1} ; d_{n}=\frac{1}{2^{10+n+1}}\left\|A_{n}\right\|^{-1} \quad \text { and }
$$

$\|$.$\| denotes the max-norm in \mathbb{R}^{m}$ or $R^{m \times m}$. Obviously,

$$
\operatorname{Ker} A_{n} \subset \operatorname{Ker} \frac{\partial f_{n}}{\partial y}(y, x)
$$

and

$$
\begin{aligned}
V_{n}^{T}= & \left(\begin{array}{cc}
\frac{-4}{\sqrt{17}} & \frac{1}{\sqrt{17}} \\
\frac{1}{\sqrt{17}} & \frac{4}{\sqrt{17}}
\end{array}\right), \quad G_{n}^{-1}=\left(\begin{array}{cc}
\frac{-466}{85 \sin (n+1)} & \frac{546}{85 \cos (n+1)} \\
\frac{-468}{17 \sin (n+1)} & \frac{-464}{17 \cos (n+1)}
\end{array}\right), \\
& \left\|f_{n}(y, x)-f_{n}(z, t)\right\| \leq \alpha_{n}\|y-z\|+\beta_{n}\|x-t\|
\end{aligned}
$$

where

$$
\alpha_{n}=\beta_{n}=\frac{1}{2^{10}}
$$

Further,

$$
\begin{gathered}
\left\|P_{n} G_{n}^{-1}\right\|=\frac{112}{85}|\sin (n+1)|+\frac{32}{85}|\cos (n+1)| \leq \frac{144}{85} \\
\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right\|=\frac{136}{5}(|\sin (n+1)|+|\cos (n+1)|) \leq \frac{272}{5} \\
\omega_{n}=\alpha_{n}\left\|P_{n} G_{n}^{-1}\right\|+\beta_{n}\left\|V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right\| \leq \frac{144}{85} \alpha_{n}+\frac{272}{5} \beta_{n}<1 .
\end{gathered}
$$

Thus, all conditions of theorem 1 are satisfied, hence the IVP (1), (4) has a unique solution.

Since
$\left\|P_{n} G_{n}^{-1} B_{n}\right\|=\frac{32}{289}=\delta_{0}<1,\left\|I-V_{n} V_{n+1}^{T} Q_{n} G_{n}^{-1} B_{n}\right\|=3=C_{1}, \omega_{n} \leq \frac{57}{1024}=\omega$,
the inequalities (28),(29) hold with the left sides $\frac{129456}{23754355}$ and $\frac{14384}{82195}$ respectively.

Let $\gamma=(1,1)^{T}$.
According to Theorem 3 we can find approximate solutions $\left\{\bar{x}_{n}\right\}, n \geq 0$ via interations such that $\left\|\bar{x}_{n}-x_{n}\right\| \leq 10^{-6}, n \geq 0$. (see table).

n	$x_{n}^{(1)}$	$x_{n}^{(2)}$	n	$x_{n}^{(1)}$	$x_{n}^{(2)}$
0	1.2040725	1.8162902	5	-0.0016114	-0.0070262
1	0.1175060	0.1792858	6	0.0001727	-0.0005747
2	0.0115993	0.0196851	7	0.0010052	0.0027487
3	0.0005366	0.0002837	8	0.0036480	0.0146555
4	-0.0020460	-0.0075569	\ldots	\ldots	\ldots

4.2. Consider system (1) with the data

$$
\begin{equation*}
A_{n} x_{n+1}=B_{n} x_{n}+f_{n}\left(x_{n+1}, x_{n}\right) \quad(n=0,1,2, \ldots) \tag{53}
\end{equation*}
$$

with

$$
\begin{gathered}
A_{n}=\left(\begin{array}{ccc}
0 & \frac{\sqrt{2} n(n+1)}{2 \sqrt{n^{2}+1}} & \frac{-\sqrt{2} n(n+1)}{2 \sqrt{\sqrt{2}^{2}+1}} \\
0 & \frac{\sqrt{2}(n+1)}{2 \sqrt{n^{2}+1}} & \frac{-\sqrt{2}(n+1)}{2 \sqrt{n^{2}+1}} \\
n & 0 & 0
\end{array}\right) \\
B_{n}=\left(\begin{array}{ccc}
\frac{3 n^{2}}{\sqrt{n^{2}+1}} & \frac{-\sqrt{2}}{2 \sqrt{n^{2}+1}} & \frac{\sqrt{2}(6 n-1)}{2 \sqrt{n^{2}+1}} \\
\frac{3 n}{\sqrt{n^{2}+1}} & \frac{3 \sqrt{2}}{2 \sqrt{n^{2}+1}} & \frac{5 \sqrt{2}}{2 \sqrt{n^{2}+1}} \\
n+1 & \frac{\sqrt{2} n\left(-2 \sqrt{n^{2}+1}+3 n+1\right)}{2 \sqrt{n^{2}+1}} & \left.\frac{-\sqrt{2} n\left(4 \sqrt{n^{2}+1}\right.}{2 \sqrt{n^{2}+1}}+n-1\right)
\end{array}\right)
\end{gathered}
$$

and $f_{n}(y, x)=U_{n} g_{n}\left(V_{n+1}^{T} y, V_{n}^{T} x\right)$, where

$$
U_{n}=\left(\begin{array}{ccc}
\frac{n}{\sqrt{n^{2}+1}} & 0 & \frac{-1}{\sqrt{n^{2}+1}} \\
\frac{1}{\sqrt{n^{2}+1}} & 0 & 0 \\
0 & 1 & \frac{n}{\sqrt{n^{2}+1}}
\end{array}\right) \text { and } V_{n+1}^{T}=\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

are orthogonal matrices, such as $A_{n}=U_{n} \Sigma_{n} V_{n+1}^{T}$ with $\Sigma_{n}=\operatorname{diag}(n+1, n, 0)$ and

$$
\begin{gathered}
g_{n}(\xi, \zeta)=\left(\begin{array}{c}
g_{n}^{(1)}(\xi, \zeta) \\
g_{n}^{(2)}(\xi, \zeta) \\
g_{n}^{(3)}(\xi, \zeta)
\end{array}\right) \\
=\left(\begin{array}{c}
a_{n} \cos \left(\xi^{(1)}+\xi^{(2)}\right)\left(\zeta^{(3)}\right)^{1 / 3} \\
b_{n} \sin \left(\zeta^{(1)}+\zeta^{(2)}\right)\left(\xi^{(1)}\right)^{1 / 5} \\
b_{n} \cos \left(\zeta^{(1)}+\zeta^{(2)}\right)\left(\xi^{(1)}\right)^{1 / 5}+a_{n} \sin \left(\xi^{(1)}+\xi^{(2)}\right)\left(\zeta^{(3)}\right)^{1 / 3}+c_{n}
\end{array}\right)
\end{gathered}
$$

Here we put

$$
\begin{aligned}
a_{n} & =\frac{\sqrt{2}\left[-4 n^{2}+(\pi / 4-7) n+\pi / 2-5\right]}{(n+1)^{1 / 3}}, \quad b_{n}=\frac{\sqrt{2}\left[4 n^{2}+(3-\pi / 4) n\right]}{(\pi / 4-n-1)^{1 / 5}}, \\
c_{n} & =n^{2}+\left(2-\frac{\pi}{2}\right) n+4-\frac{\pi}{2}
\end{aligned}
$$

Then system (1) is reduced to the system (41) with

$$
\tilde{B}_{n}=U_{n}^{T} B_{n} V_{n}=\left(\begin{array}{ccc}
-1 & 3 n & 4 \\
n & n+1 & -3 n \\
2 n & 0 & n+1
\end{array}\right)
$$

Since $\frac{\partial g_{n}}{\partial \xi} Q^{(n)}=(0,0,0)^{T}$, condition (2) is satisfied. Moreover, we have

$$
\begin{gathered}
\left\|f_{n}(y, x)\right\|=\left\|U_{n} g_{n}\left(V_{n+1}^{T} y, V_{n}^{T} x\right)\right\| \leq\left\|g_{n}(\xi, \zeta)\right\| \\
\leq \sqrt{3}\left\{\left|a_{n}\right|\|\xi\|^{1 / 5}+\left|b_{n}\right|\|\zeta\|^{1 / 3}+\left|c_{n}\right|\right\} \leq \sqrt{3}\left|a_{n}\right|\|x\|^{1 / 5}+\sqrt{3}\left|b_{n}\right|\|y\|^{1 / 3}+\sqrt{3}\left|c_{n}\right|
\end{gathered}
$$

Further, the matrices $\tilde{G}_{n}=\Sigma_{n}+\tilde{B}_{n} Q^{(n)}$ are nonsingular,

$$
\tilde{G}_{0}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \tilde{G}_{n}^{-1}=\left(\begin{array}{ccc}
\frac{1}{n+1} & 0 & \frac{-4}{(n+1)^{2}} \\
0 & \frac{1}{n} & \frac{3}{n+1} \\
0 & 0 & \frac{1}{n+1}
\end{array}\right)
$$

Thus all conditions of Theorem 4 are fulfilled. A short computation shows that

$$
x_{n}=V_{n} y_{n}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right) \quad\left(\begin{array}{c}
\pi / 4-n \\
n \\
n+1
\end{array}\right)=\left(\begin{array}{c}
n \\
\frac{1}{\sqrt{2}}(\pi / 4+1) \\
\frac{1}{\sqrt{2}}(\pi / 4+1)
\end{array}\right)
$$

References

1. P. K. Anh and L. C. Loi, On multipoint boundary-value problems for linear implicit non-autonomous systems of difference equations, Vietnam J. Math. 29 (2001) 281286.
2. V.F. C̆istjakov, Differential-Algebraic Operators with Finite Dimensional Kernels, Nauka, Moscow, 1996 (Russian).
3. L. C. Loi, N. H. Du, and P. K. Anh, On linear implicit non-autonomous system of difference equations, J. Differen. Eq. Appl. 8 (2002) 1085-1105.
4. R. März, On linear differential-algebraic equations and linearizations, Appl. Num. Math. 18 (1995) 267-292.
