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Abstract. This paper is concerned with the solvability and approximate solutions

of a class of quasi-linear implicit difference equations. Thanks to the index-1 ( quasi-

index-1) property of linear parts, an initial infinite system can be decoupled. Then

the Banach’s and Brouwer’s fixed point theorems are applied to ensure the unique

solvability (solvability) of the IVP for quasi linear implicit difference equations.

1. Introduction

In this paper we consider the following system of quasi-linear implicit difference
equation:

Anxn+1 = Bnxn + fn(xn+1, xn), (n = 0, 1, 2, ...), (1)

where An and Bn are given matrices of order m × m. In what follows we
assume that the matrices An are all singular, such that 1 ≤ rn ≤ m − 1 where
rn = rank An. Further, suppose that fn ∈ C1(Rm × R

m, Rm) and moreover

Ker An ⊂ Ker
∂fn

∂y
(y, x), (2)

for all n ≥ 0 and x, y ∈ R
m. Obviuosly, under condition (2), each equation (1)

is implicit with respect to xn+1.
Note that equation (1) may be regarded as a discrete analogue of quasi-

linear differetial-algebraic equations (DAEs) which have already attracted much
attention of researchers [2, 4].

Together with equation (1) we consider the corresponding system of linear
implicit difference equation (LIDE)
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Anxn+1 = Bnxn + qn, (n ≥ 0) (3)

which has been investigated in our recent works [1, 3].
Let An = UnΣnV T

n+1 be an SVD of An, where Un (Vn+1) are orthogonal
matrices, whose columns are left (right) singular vectors of An respectively,

Σn = diag (σ
(n)
1 , σ

(n)
2 , ..., σ

(n)
rn

, 0, ..., 0) are diagonal matrices with singular values

σ
(n)
1 ≥ σ

(n)
2 ≥ ... ≥ σ

(n)
rn

> 0 on their diagonals. We say that the LIDE (3)
is of quasi-index-1 if the matrices Gn = An + BnVnQ(n)V T

n+1, where Q(n) =
diag (Orn

, Im−rn
), are nonsingular for all n ≥ 0. Here Ok, Ik stand for k × k

zero matrix and k × k identity matrix, respectively. For k = m we put simply
O := Om; I := Im. If equation (3) is of quasi-index 1 and the rankAn are the
same for all n, i.e. rn ≡ r(n ≥ 0) then the LIDE (3) is said to be of index-1.
In this case, Q := Q(n) = diag (Or, Im−r). It has been shown in [3] that the
index-1 property of equation (3) does not depend on the choice of SVDs of An.
Furthermore, the solvability and the unique solvability of some IVPs, as well as
multipoint boundary value problems (MPBVPs) for index 1 LIDEs have been
established in [1, 3].

Let P (n) := I − Q(n); Qn := Vn+1Q
(n)V T

n+1; Pn := I − Qn(n ≥ 0). For
definiteness, we can set V0 := V1; Q−1 := Q0; P−1 := P0. Clearly, Qn are
projections onto Ker An(n ≥ 0), i.e. Q2

n = Qn; AnQn = 0, and besides PnQn =
QnPn = 0.

The aim of this paper is to establish some existence theorems for systems
of nonlinear difference equations involving linear index-1 or quasi-index-1 parts.
The paper is organized as follows. In Sec. 2 we study the unique solvability
and approximate solutions of IVPs for IDEs with linear index-1 parts. Section
3 deals with the solvability of implicit difference equations, whose linear parts
are of quasi-index-1. Finally, in the last section, some illustrative examples are
considered.

2. Unique Solvability of IVPs for IDEs Involving Linear Index-1 Parts

Suppose we want to find a solution of system (1), satisfying the initial condition

P0x0 = γ (4)

with a given vector γ ∈ R
m. In what follows ‖.‖ denotes any norm in R

m.

Theorem 1. Let the equation (3) be of index 1. Further assume that the
nonlinear functions fn(y, x) satisfy condition (2) and the inequality

‖fn(y, x) − fn(ξ, ζ)‖ ≤ αn‖y − ξ‖ + βn‖x − ζ‖, (5)

with nonnegative constants αn and βn for all y, x, ξ, ζ ∈ R
m. If

ωn := αn‖PnG−1
n ‖ + βn‖VnV T

n+1QnG−1
n ‖ < 1, (6)

then the IVP (1), (4) has a unique solution.
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Proof. Taking into acount relation (2) and observing that

fn(y, x) − fn(Pny, x) =

∫ 1

0

∂fn

∂y
(Pny + tQny, x)Qnydt = 0

for all n ≥ 0, x, y ∈ R
m we come to the equation

fn(y, x) = fn(Pny, x), ∀y, x ∈ R
m. (7)

First, observing that AnPn = An, we find that GnPn = AnPn+BnVnQV T
n+1Pn =

An + BnVnV T
n+1QnPn = An, hence

G−1
n An = Pn. (8)

Similarly, GnQn = BnVnQV T
n+1Qn = BnVnQV T

n+1Vn+1QV T
n+1 = BnVnQV T

n+1,
hence Qn = G−1

n BnVnQV T
n+1 = G−1

n BnQn−1VnV T
n+1, therefore G−1

n BnQn−1 =
QnVn+1V

T
n . Thus

QnG−1
n BnQn−1 = QnVn+1V

T
n ; PnG−1

n BnQn−1 = 0. (9)

Now applying PnG−1
n and QnG−1

n to both sides of equation (1) respectively
and using relations (7), we find

Pnxn+1 = PnG−1
n Bn(Pn−1xn + Qn−1xn) + PnG−1

n fn(Pnxn+1, xn),
(10)

0 = QnG−1
n Bn(Pn−1xn + Qn−1xn) + QnG−1

n fn(Pnxn+1, xn).
(11)

Denoting un := Pn−1xn; vn := Qn−1xn(n ≥ 0) and using (9), from (10) we find

un+1 = PnG−1
n Bnun + PnG−1

n fn(un+1, xn). (12)

Replacing QnG−1
n BnQn−1xn with QnVn+1V

T
n xn and taking into account the fact

that QnVn+1V
T
n xn = Vn+1QV T

n+1Vn+1V
T

n xn = Vn+1QV T
n xn = Vn+1V

T
n Qn−1xn =

Vn+1V
T
n vn, from (11) we get

vn = −VnV T
n+1QnG−1

n {Bnun + fn(un+1, xn)}.

Since xn = un + vn, from the last relation we have

xn = (I − VnV T
n+1QnG−1

n Bn)un − VnV T
n+1QnG−1

n fn(un+1, xn). (13)

Now suppose that un(n ≥ 0) is found (u0 is given, since u0 = P−1x0 =
P0x0 = γ), we have to find xn = un + vn and un+1 from equations (12), (13).
For the sake of simplicity, we denote ξ := un+1, ζ := xn, rn := PnG−1

n Bnun and
sn := (I − VnV T

n+1QnG−1
n Bn)un. Thus we come to the system

ξ = PnG−1
n fn(ξ, ζ) + rn, (14)

ζ = − VnV T
n+1QnG−1

n fn(ξ, ζ) + sn. (15)

For establishing the unique solvability of system (14), (15) we can use an
iteration method, namely
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ξk+1 = PnG−1
n fn(ξk, ζk) + rn, (16)

ζk+1 = − VnV T
n+1QnG−1

n fn(ξk, ζk) + sn, (17)

where k ≥ 0 and ξ0, ζ0 ∈ R
m are arbitrarily chosen.

Clearly, for k ≥ 1 we have

‖ξk+1 − ξk‖ ≤ ‖PnG−1
n ‖(αn‖ξk − ξk−1‖ + βn‖ζk − ζk−1‖) (18)

and

‖ζk+1 − ζk‖ ≤ ‖VnV T
n+1QnG−1

n ‖(αn‖ξk − ξk−1‖ + βn‖ζk − ζk−1‖). (19)

Denoting µk := αn‖ξk − ξk−1‖ + βn‖ζk − ζk−1‖ and multiplying both sides of
inequalities (18) and (19) by αn and βn, respectively, then taking the sum of
both sides of the obtained inequalities, we find

µk+1 ≤ (αn‖PnG−1
n ‖ + βn‖VnV T

n+1QnG−1
n ‖)µk = ωnµk ≤ ... ≤ ωk

nµ1.

Since ‖ξk+1−ξk‖ ≤ ‖PnG−1
n ‖µk ≤ µ1‖PnG−1

n ‖ωk−1
n , ‖ζk+1−ζk‖ ≤ µ1‖VnV T

n+1Qn

G−1
n ‖ωk−1

n , it follows that ξk −→ ξ∗ and ζk −→ ζ∗ when k −→ ∞. Evidently,
(ξ∗, ζ∗) is a solution of system (14), (15).

Now assume that (ξ, ζ) and (ξ′, ζ′) are two solutions of system (14), (15).
Then ‖ξ − ξ′‖ = ‖PnG−1

n {fn(ξ, ζ) − fn(ξ′, ζ′)}‖ ≤ ‖PnG−1
n ‖{αn‖ξ − ξ′‖ +

βn‖ζ − ζ′‖}. Similarly, ‖ζ − ζ′‖ = ‖VnV T
n+1QnG−1

n {fn(ξ, ζ) − fn(ξ′, ζ′)}‖ ≤
‖VnV T

n+1QnG−1
n ‖{αn‖ξ − ξ′‖ + βn‖ζ − ζ′‖}. Acting as before, we get αn‖ξ −

ξ′‖ + βn‖ζ − ζ′‖ ≤ ωn(αn‖ξ − ξ′‖ + βn‖ζ − ζ′‖). From the last inequality, it
follows αn‖ξ − ξ′‖ + βn‖ζ − ζ′‖ = 0 hence ξ = ξ′ and ζ = ζ′. Thus the unique
solvability of the IVP (1), (4) is proved. �

Remark 1.
* Condition (5) holds if for all x, y ∈ R

m, ‖∂fn

∂y
(y, x)‖ ≤ αn and ‖∂fn

∂x
(y, x)‖ ≤ βn

* Condition (2) is satisfied if fn(y, x) = gn(Any, x) where gn ∈ C1(Rm ×
R

m, Rm).

Theorem 2. The conclusion of Theorem 1 remains valid if instead of condition
(5) we require

Im
∂fn

∂y
(y, x) ⊂ ImAn, ∀x, y ∈ R

m, (20)

max{αn‖PnG−1
n ‖, βn‖VnV T

n+1QnG−1
n ‖} < 1, (n ≥ 0). (21)

Proof. First, observe that

QnG−1
n [fn(y, x) − fn(0, x)] = QnG−1

n

∫ 1

0

∂fn

∂y
(ty, x)ydt

=

∫ 1

0

QnG−1
n

∂fn

∂y
(ty, x)ydt.
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Taking into account relation (20) we can rewrite ∂f
∂y (ty, x)y as Anzn(y, x, t) for

some zn(y, x, t) ∈ R
m. From (8) it follows QnG−1

n An = 0, hence
∫ 1

0

QnG−1
n

∂fn

∂y
(ty, x)ydt = 0.

Therefore

QnG−1
n fn(y, x) = QnG−1

n fn(0, x), ∀x, y ∈ R
m. (22)

Thus instead of system (14), (15) we have

ξ = PnG−1
n fn(ξ, ζ) + rn, (23)

ζ = − VnV T
n+1QnG−1

n fn(0, ζ) + sn. (24)

Obviously, the contractivity condition βn‖VnV T
n+1QnG−1

n ‖ < 1 ensures the unique
solvability of equation (24). Substituting the unique solution ζ of equation (24)
into equation (23) and using the assumption αn‖PnG−1

n ‖ < 1 we can easily
deduce the unique solvability of equation (23). �

Remark 2. Both conditions (2), (20) hold, for example, if

fn(y, x) = Σkn

i=1ainAi
ny + gn(x),

where gn ∈ C1(Rm, Rm).
Next, we present an algorithm for finding an approximate solution of IVP

(1), (4).

Theorem 3. Let the LIDE (3) be of index-1 and the nonlinear functions fn sat-
isfy condition (2), (5). Moreover, suppose the following conditions are satisfied:

(i) the matricies I − VnV T
n+1QnG−1

n Bn are uniformly bounded, i.e.

‖I − VnV T
n+1QnG−1

n Bn‖ ≤ C1; (25)

(ii) the norm of the matrices PnG−1
n Bn are uniformly bounded by a constant

less than 1, i.e.

‖PnG−1
n Bn‖ ≤ δ0 < 1; (26)

(iii) the coefficients αn, βn are small enough, such that

αn‖PnG−1
n ‖ + βn‖VnV T

n+1QnG−1
n ‖ ≤ ω < 1, (27)

(1 − ω)−1‖PnG−1
n ‖(δ0αn + C1βn) ≤ δ1 < 1 − δ0, (28)

and

(1 − ω)−1‖VnV T
n+1QnG−1

n ‖(δ0αn + C1βn) ≤ C2. (29)

Then within a given tolerance ε > 0, we can always find an approximate solution
{xn}(n ≥ 0) via iterations, such that ‖xn − xn‖ ≤ ε(n ≥ 0), where {xn}(n ≥ 0)
is a unique solution of IVP (1), (4).

Proof. Theorem 1 ensures the unique solvability of IVP (1), (4), therefore system
(14), (15) has the unique solution {un+1, xn}(n ≥ 0). Starting with u0 = γ and
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performing some iterations by formulae (16), (17) for n = 0, we can find x0 and
u1 such that ‖u1 − u1‖ ≤ ε/C and ‖x0 − x0‖ ≤ ε where C = (C1 + C2)(1− δ)−1

and δ = 1 − δ0 − δ1 > 0. Now suppose by induction that for k = 0, 1, ..., n− 1
we have found approximate solution uk+1, xk of system (14), (15), such that

‖uk+1 − uk+1‖ ≤ ε/C; ‖xk − xk‖ ≤ ε; (k = 0, 1, ..., n− 1). (30)

Let x̃n, ũn+1 be the unique solution of the system

ũn+1 = PnG−1
n fn(ũn+1, x̃n) + rn, (31)

x̃n = − VnV T
n+1QnG−1

n fn(ũn+1, x̃n) + sn, (32)

where rn = PnG−1
n Bnun and sn = (I − VnV T

n+1QnG−1
n Bn)un. The unique solv-

ability of system (31), (32) is established by the same manner as in Theorem
1. Using relations (14), (15), (31), (32) and taking into account assumptions
(25), (26), (30), we get ‖ũn+1 −un+1‖ ≤ ‖PnG−1

n ‖{αn‖ũn+1 −un+1‖+βn‖x̃n −
xn‖} + ‖PnG−1

n Bn‖‖un − un‖ or

‖ũn+1 − un+1‖ ≤ µn‖PnG−1
n ‖ + δ0ε/C, (33)

where µn denotes the quantity αn‖ũn+1 − un+1‖ + βn‖x̃n − xn‖. Analogously,
‖x̃n − xn‖ ≤ ‖VnV T

n+1QnG−1
n ‖{αn‖ũn+1 − un+1‖ + βn‖x̃n − xn‖}+

+‖I − VnV T
n+1QnG−1

n Bn‖‖un − un‖, i.e.

‖x̃n − xn‖ ≤ µn‖VnV T
n+1QnG−1

n ‖ + C1ε/C. (34)

Multiplying both sides of inequalities (33) and (34) by αn and βn respectively
and then taking the sum of both sides of the obtained inequalities we have
µn ≤ (αn‖PnG−1

n ‖ + βn‖VnV T
n+1QnG−1

n ‖)µn + (δ0αn + C1βn)ε/C ≤ ωµn +
(δ0αn + C1βn)ε/C. Thus,

µn ≤ (δ0αn + C1βn)ε

C(1 − ω)
. (35)

From relations (33) and (35) it follows

‖ũn+1 − un+1‖ ≤ (δ0αn + C1βn)‖PnG−1
n ‖ε

C(1 − ω)
+

δ0ε

C
.

Using estimate (28), from the last relation we find

‖ũn+1 − un+1‖ ≤ δ1 + δ0

C
ε =

(1 − δ)ε

C
. (36)

Similarly, from inequalities (34), (35), using assumption (29), we get

‖x̃n−xn‖ ≤ {(1−ω)−1‖VnV T
n+1QnG−1

n ‖(δ0αn+C1βn)+C1}ε/C ≤ (C1+C2)ε/C,

hence

‖x̃n − xn‖ ≤ (1 − δ)ε. (37)

Now performing some iterations by the formulae

ξk+1 = PnG−1
n fn(ξk, ζk) + rn, (38)
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ζk+1 = −VnV T
n+1QnG−1

n fn(ξk, ζk) + sn, (39)

we can find un+1 = ξk+1, xn = ζk+1 such that ‖un+1 − ũn+1‖ ≤ δε/C and
‖xn − x̃n‖ ≤ δε. From relations (36), (37) and the last estimates, we come to
the disired inequality ‖un+1 − un+1‖ ≤ ε/C and ‖xn − xn‖ ≤ ε. The proof of
Theorem 3 is complete. �

3. Solvability of IVPs in Quasi-Index-1 Cases

Suppose the LIDE (3) is of quasi-index-1. Moreover, assume that

rn+1 ≥ rn(n ≥ 0). (40)

Clearly, equation (1) can be reduced to the form

Σnyn+1 = B̃nyn + gn(yn+1, yn), (41)

where yn = V T
n xn, B̃n = UT

n BnVn and gn(y, x) = UT
n fn(Vn+1y, Vnx). The fol-

lowing lemma collects some obvious facts needed for our further consideration.

Lemma. The following 3 assertions hold:
1. The matrices Gn = An+BnVnQ(n)V T

n+1 and G̃n := Σn+B̃nQ(n) are singular
or nonsingular simultaneously.

2. Condition (2) is equivalent to the inclusion

KerΣn ⊂ Ker
∂gn

∂y
(y, x). (42)

3.

gn(y, x) = gn(P (n)y, x) (43)

for all n ≥ 0 and y, x ∈ R
m.

In the following theorem, for simplicity, we use the Euclid norm.

Theorem 4. Suppose the LIDE (3) is of quasi-index 1 and condition (40) holds.
Further, assume that the nonlinear functions fn(y, x) satisfy condition (2) and
the following growth condition:

‖fn(ξ, ζ)‖ ≤ an‖ξ‖νn + bn‖ζ‖µn + cn (44)

with nonegative constants an, bn, cn, νn, µn, where θn := max{νn, µn} ≤ 1. Ad-
ditionally, we suppose that if θn = 1 then (an + bn)‖G−1

n ‖ < 1. Then the IVP
(1), (4) possesses a solution.

Proof. Applying P (n)G̃−1
n and Q(n)G̃−1

n to both sides of equation (41) respec-
tively and using the relations P (n) + Q(n) = I, G̃−1

n B̃nQ(n) = Q(n), G̃−1
n Σn =

P (n) as well as taking into account the previous lemma, we get

P (n)yn+1 = P (n)G̃−1
n B̃nP (n)yn + P (n)G̃−1

n gn(P (n)yn+1, yn),

0 = Q(n)G̃−1
n B̃nP (n)yn + Q(n)yn + Q(n)G̃−1

n gn(P (n)yn+1, yn).
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Putting ξn = P (n)yn and observing that P (n)yn+1 = P (n)P (n+1)yn+1 = P (n)ξn+1

we come to the following system:

P (n)ξn+1 = P (n)G̃−1
n B̃nξn + P (n)G̃−1

n gn(P (n)ξn+1, yn), (45)

0 = Q(n)G̃−1
n B̃nξn + Q(n)yn + Q(n)G̃−1

n gn(P (n)ξn+1, yn).
(46)

From the last equation, it follows

yn = (P (n) + Q(n))yn = (I − Q(n)G̃−1
n B̃n)ξn − Q(n)G̃−1

n gn(P (n)ξn+1, yn). (47)

On the other hand, equation (45) gives

ξn+1 = G̃−1
n B̃nξn + G̃−1

n gn(P (n)ξn+1, yn) + Q(n)η, (48)

where η ∈ R
m is an arbitrary vector. Denoting pn(η) := G̃−1

n B̃nξn + Q(n)η and
qn:=(I −Q(n)G̃−1

n B̃n)ξn and simplifying our notations by setting ξ=ξn+1, ζ=yn

we come to the final system that should be investigated.

ξ = G̃−1
n gn(P (n)ξ, ζ) + pn(η), (49)

ζ = − Q(n)G̃−1
n gn(P (n)ξ, ζ) + qn. (50)

In R
m × R

m endowed with the norm ‖(ξ, η)‖ = max{‖ξ‖, ‖η‖} we consider the
map

Tn(ξ, ζ) := (G̃−1
n gn(P (n)ξ, ζ) + pn(η),−Q(n)G̃−1

n gn(P (n)ξ, ζ) + qn).

Since ‖Un‖ = ‖Vn+1‖ = ‖P (n)‖ = ‖Q(n)‖ = 1, from the growth condition (44)
it follows for ‖(ξ, ζ)‖ ≥ 1 that

‖gn(P (n)ξ, ζ)‖ ≤ an‖ξ‖νn + bn‖ζ‖µn + cn ≤ (an + bn)‖(ξ, ζ)‖θn + cn. (51)

Clearly, relation (51) implies that

‖Tn(ξ, ζ)‖ = max{‖G̃−1
n gn(P (n)ξ, ζ) + pn(η)‖, ‖Q(n)G̃−1

n gn(P (n)ξ, ζ) + qn‖}

≤ ‖G̃−1
n ‖(an + bn)‖(ξ, ζ)‖θn + c̃n,

where c̃n = max{‖pn(η)‖, ‖qn‖} + cn‖G̃−1
n ‖. Observing that

‖G̃−1
n ‖ = ‖V T

n+1G
−1
n Un‖ ≤ ‖G−1

n ‖ = ‖Vn+1G̃
−1
n UT

n ‖ ≤ ‖G̃−1
n ‖

we get ‖G−1
n ‖ = ‖G̃−1

n ‖. When ‖(ξ, ζ)‖ is sufficiently large, there holds the
inequality

‖Tn(ξ, ζ)‖
‖(ξ, ζ)‖ ≤ (an + bn)‖G−1

n ‖‖(ξ, ζ)‖θn−1 + c̃n‖(ξ, ζ)‖−1. (52)
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The estimate (52) implies that, in both cases, when θn < 1 or θn = 1 and

(an + bn)‖G−1
n ‖ < 1, lim‖(ξ,ζ)‖→∞

‖Tn(ξ,ζ)‖
‖(ξ,ζ)‖ < 1. Thus Tn(ξ, ζ) maps a closed ball

in R
m ×R

m centered at (0, 0) with a sufficiently large radius R in to itself. The
Brouwer fixed point theorem ensures the existence of solutions of the system (49),
(50). Starting with the given initial value u0 = P0x0 = γ or u0 = V1P

(0)V T
1 x0 =

γ we get P (0)V T
1 x0 = V T

1 γ, hence, ξ0 = P (0)y0 = P (0)V T
0 x0 = P (0)V T

1 x0 = V T
1 γ

is known. From system (49), (50) we can find ξ1, y0 and then ξ2, y1, etc... Thus
xn = Vnyn can be found, which was to be proved. �

4. Examples

4.1. Consider system (1) with the following data

An =

( 1
sin(n+1)

− 1
4 sin(n+1)

1
cos(n+1)

− 1
4 cos(n+1)

)

, Bn =

( 1
17 sin(n+1)

0
−1

34 cos(n+1)
1

17 cos(n+1)

)

,

fn(y, x) = gn(Any, Anx) = gn(ξ, ζ) =

(

an cos ξ(1) + bn sin ζ(2)

cn cos ζ(1) + dn sin ξ(2)

)

,

where

an = cn =
1

210
‖An‖−1; bn =

1

210+n
‖An‖−1; dn =

1

210+n+1
‖An‖−1 and

‖.‖ denotes the max-norm in R
m or Rm×m. Obviously,

Ker An ⊂ Ker
∂fn

∂y
(y, x),

and

V T
n =

( −4√
17

1√
17

1√
17

4√
17

)

, G−1
n =

( −466
85 sin(n+1)

546
85cos(n+1)

−468
17 sin(n+1)

−464
17cos(n+1)

)

,

‖fn(y, x) − fn(z, t)‖ ≤ αn‖y − z‖ + βn‖x − t‖,
where

αn = βn =
1

210
.

Further,

‖PnG−1
n ‖ =

112

85
| sin (n + 1)| + 32

85
| cos (n + 1)| ≤ 144

85
,

‖VnV T
n+1QnG−1

n Bn‖ =
136

5
(| sin (n + 1)|+ | cos (n + 1)|) ≤ 272

5
,

ωn = αn‖PnG−1
n ‖ + βn‖VnV T

n+1QnG−1
n Bn‖ ≤ 144

85
αn +

272

5
βn < 1.

Thus, all conditions of theorem 1 are satisfied, hence the IVP (1), (4) has a
unique solution.
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Since

‖PnG−1
n Bn‖ =

32

289
= δ0 < 1, ‖I−VnV T

n+1QnG−1
n Bn‖ = 3 = C1, ωn ≤ 57

1024
= ω,

the inequalities (28),(29) hold with the left sides 129456
23754355 and 14384

82195 respec-
tively.

Let γ = (1, 1)T .
According to Theorem 3 we can find approximate solutions {x̄n}, n ≥ 0 via

interations such that ‖x̄n − xn‖ ≤ 10−6, n ≥ 0. (see table).

n x
(1)
n x

(2)
n n x

(1)
n x

(2)
n

0 1.2040725 1.8162902 5 −0.0016114 −0.0070262

1 0.1175060 0.1792858 6 0.0001727 −0.0005747

2 0.0115993 0.0196851 7 0.0010052 0.0027487

3 0.0005366 0.0002837 8 0.0036480 0.0146555

4 −0.0020460 −0.0075569 . . . . . . . . .

4.2. Consider system (1) with the data

Anxn+1 = Bnxn + fn(xn+1, xn) (n = 0, 1, 2, ...) (53)

with

An =







0
√

2n(n+1)

2
√

n2+1

−
√

2n(n+1)

2
√

n2+1

0
√

2(n+1)

2
√

n2+1

−
√

2(n+1)

2
√

n2+1
n 0 0







Bn =









3n2

√
n2+1

−
√

2
2
√

n2+1

√
2(6n−1)

2
√

n2+1
3n√
n2+1

3
√

2
2
√

n2+1
5
√

2
2
√

n2+1

n + 1
√

2n(−2
√

n2+1+3n+1)

2
√

n2+1

−
√

2n(4
√

n2+1+n−1)

2
√

n2+1









and fn(y, x) = Ungn(V T
n+1y, V T

n x), where

Un =







n√
n2+1

0 −1√
n2+1

1√
n2+1

0 0

0 1 n√
n2+1






and V T

n+1 =





0 1√
2

−1√
2

1 0 0
0 1√

2
1√
2





are orthogonal matrices, such as An = UnΣnV T
n+1 with Σn = diag (n + 1, n, 0)

and
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gn(ξ, ζ) =





g
(1)
n (ξ, ζ)

g
(2)
n (ξ, ζ)

g
(3)
n (ξ, ζ)





=





an cos (ξ(1) + ξ(2))(ζ(3))1/3

bn sin (ζ(1) + ζ(2))(ξ(1))1/5

bn cos (ζ(1) + ζ(2))(ξ(1))1/5 + an sin (ξ(1) + ξ(2))(ζ(3))1/3 + cn



 .

Here we put

an =

√
2
[

− 4n2 +
(

π/4 − 7
)

n + π/2 − 5
]

(n + 1)1/3
, bn =

√
2[4n2 + (3 − π/4)n]

(π/4 − n − 1)1/5
,

cn = n2 +
(

2 − π

2

)

n + 4 − π

2
.

Then system (1) is reduced to the system (41) with

B̃n = UT
n BnVn =





−1 3n 4
n n + 1 −3n
2n 0 n + 1



 .

Since ∂gn

∂ξ
Q(n) = (0, 0, 0)T , condition (2) is satisfied. Moreover, we have

‖fn(y, x)‖ = ‖Ungn(V T
n+1y, V T

n x)‖ ≤ ‖gn(ξ, ζ)‖
≤

√
3{|an|‖ξ‖1/5 + |bn|‖ζ‖1/3 + |cn|} ≤

√
3|an|‖x‖1/5 +

√
3|bn|‖y‖1/3 +

√
3|cn|.

Further, the matrices G̃n = Σn + B̃nQ(n) are nonsingular,

G̃−1
0 =





1 0 −4
0 1 0
0 0 1



 , G̃−1
n =





1
n+1

0 −4
(n+1)2

0 1
n

3
n+1

0 0 1
n+1



 .

Thus all conditions of Theorem 4 are fulfilled. A short computation shows that

xn = Vnyn =





0 1 0
1√
2

0 1√
2

−1√
2

0 1√
2









π/4 − n
n

n + 1



 =





n
1√
2
(π/4 + 1)

1√
2
(π/4 + 1)



 .
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