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Abstract. Invexity is useful only if all the needed functions are invex with respect to

the same directional function η. If one of them does not satisfy this condition, then it

is hard to assert something, even if it is convex. Assertions made in such an incomplete

situation might be false or the invexity assumption might be redundant. Since convex

functions are rarely accepted as invex partners with respect to a given function η, it

is not safe to say that invexity is weaker than convexity. Some wrong theorems of

D. V. Luu and P. T. Kien (2000) are analyzed in this paper to illustrate this opinion.

1. Introduction

It is well known that the Kuhn-Tucker conditions for a constrained minimiza-
tion problem become also sufficient for a (global) minimum if the functions are
assumed to be convex. It remains true if the functions satisfy certain general-
ized convex properties. In 1981, Hanson [5] introduced a class of differentiable
functions satisfying

φ(x) − φ(x′) ≥ 〈∇φ(x′), η(x, x′)〉 for all x, x′ ∈ C, (1)

for some arbitrary given function η defined on C × C, to prove the following
sufficient condition:

Let f0, f1,...,fm be differentiable functions on C ⊂ R
n satisfying (1) for

some η defined on C × C. If there exist x∗ ∈ C and y∗ ∈ R
m satisfying the

Kuhn-Tucker conditions

∇f0(x∗) + ∇(
y∗f̄(x∗)

)
= 0,

y∗ ≥ 0, f̄(x∗) ≤ 0, y∗f̄(x∗) = 0,
(2)

where f̄ = (f1, ..., fm)T , then
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f0(x∗) = min{f0(x) : x ∈ C, f̄(x) ≤ 0}.
Functions satisfying (1) are called invex by Craven [1]. Although its proof is

not longer than the theorem, Hanson’s result is interesting enough to initiate a
lively research direction concerned with invexity and its generalizations. Many
papers have been published, but not all of them are eligible.

Since every convex function is invex with respect to η(x, x′) = x−x′, invexity
is always considered as a generalization of convexity. One even says that invexity
is much weaker than convexity. This is only partially true. In fact, it is senseless
to discuss invexity without mentioning the function η. After fixing the function
η, the class of invex functions with respect to this η is not as large as one used
to believe. Especially, convex functions are often not invex with respect to η if
η(x, x′) 	= x−x′. From this point of view, invexity is not weaker than convexity,
and convexity is not stronger than invexity. If this simple fact is always well
understood, then some errors can be avoided.

A more detailed explanation on the fact just mentioned is given in Sec. 2.
For illustration, some errors made in [7] are analyzed in Secs. 3 and 4.

2. Convexity as a Rarely Accepted Member of Invexity

Let
ϕ(x) = x1 − x2

2, ψ(x) = −x1, x = (x1, x2) ∈ R
2. (3)

These functions are continuously differentiable on R
2 and ∇ϕ(x) = (1,−2x2)

and ∇ψ(x) = (−1, 0). For

η(x, y) = x− y + r(x, y), r(x, y) =
( − (x2 − y2)2, 0

)
, (4)

for all x = (x1, x2) ∈ R
2 and y = (y1, y2) ∈ R

2, we have

〈∇ϕ(y), η(x, y)〉 = x1 − y1 − (x2 − y2)2 − 2y2(x2 − y2)

= x1 − y1 − x2
2 + y2

2

= ϕ(x) − ϕ(y),

which implies that both ϕ and −ϕ are invex on R
2 with respect to η.

Let us consider the problems
(P1) minimize ϕ(x), subject to ψ(x) ≤ 0,

and
(P2) minimize ψ(x), subject to ϕ(x) ≤ 0.

For x∗ = (0, 0) ∈ R
2, we have ϕ(x∗) = ψ(x∗) = 0 and

∇ϕ(x∗) + ∇ψ(x∗) = (1, 0) + (−1, 0) = (0, 0).

Thus, for y∗ = 1, the Kuhn-Tucker conditions (2) are satisfied for both problems.
Since ϕ(x∗) = 0 and ϕ(x) = −x2

2 < 0 for all x ∈ R
2 satisfying ψ(x) = −x1 =

0 and x 	= x∗, x∗ is not a local minimizer of Problem (P1).
Since ψ(x∗) = 0 and ψ(x) = −x1 < 0 for all x ∈ R

2 satisfying ϕ(x) =
x1 − x2

2 = 0 and x 	= x∗, x∗ is not a local minimizer of Problem (P2).
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We have seen that the invexity of ϕ and the convexity of ψ are not sufficient
for a Kuhn-Tucker point of (P1) or (P2) to be a local minimizer. This situation
may occur even if ψ is a strictly convex function. For instance, if

ψ(x) = −x1 +
1
2
(x2

1 + x2
2)

then
ψ(x∗) = 0, ∇ϕ(x∗) + ∇ψ(x∗) = (1, 0) + (−1, 0) = (0, 0)

for x∗ = (0, 0), and for all x ∈ R
2 satisfying x1 = x2

2 and 0 < x1 < 1, we have
−x1 + x2

1 < 0 and

ψ(x) = −x1 +
1
2
(x2

1 + x2
2) =

1
2
(−x1 + x2

1) < 0,

i.e., the Kuhn-Tucker point x∗ = (0, 0) is not a local minimizer of Problem (P2).
It is easy to show that this x∗ is also a Kuhn-Tucker point of (P1), which is not
a local minimizer.

Note that ϕ stated in (3) is invex with respect to several η which are different
from the one given in (4). For instance, for

η(x, y) = − (|x1| + x2
2 + |y1|

)∇ϕ(y)

and for all x = (x1, x2) ∈ R
2, y = (y1, y2) ∈ R

2, we have

ϕ(x) − ϕ(y) = x1 − x2
2 − y1 + y2

2

≥ − (|x1| + x2
2 + |y1|

)
≥ − (|x1| + x2

2 + |y1|
) (

1 + 4y2
2

)
= 〈∇ϕ(y), η(y, x)〉,

which implies that ϕ is invex on R
2 with respect to this η. But there exists

no function η such that both functions ϕ and ψ are invex with respect to η,
otherwise, due to Hanson’s theorem, x∗ = (0, 0) should be a minimizer of (P1)
and of (P2).

The above examples show:
(a) It is too short to say that invexity is weaker than convexity. On the contrary,

for a given invex function which is not convex, its invexity property is so
strong that a lot of convex functions cannot be accepted as its invex partners
with respect to the same function η.

(b) Invexity is useful only if all the needed functions are invex with respect to
the same function η. If some of them do not satisfy this condition, then it is
hard to assert something, even if the outsiders are convex or strictly convex.
If only some functions are invex with respect to a common η and the others
are not, then one must be careful because the desired assertion may remain
true without this invexity, or it is possibly false.
What does “all the needed functions” mean? If invexity is used to show

that a Kuhn-Tucker point is a minimizer, then the objective function and all
the constraint functions must be invex respect to the same η. If invexity is
used to show λ > 0, where λ is the multiplier in the Kuhn-Tucker conditions
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corresponding to the objective function, then only all constraint functions must
be invex respect to the same η.

In the next sections, we discuss some errors which are easily recognized with
the help of the preceding remarks.

3. An Error Related to Optimization with Pseudo-Invex Objective
Function

Let X be a Banach space, Q1,..., Qm, Qm+1 be subsets of X , and f be a real-
valued function defined on X . Consider the problem

(P3) minimize f(x), subject to x ∈ Q,
where Q =

⋂m+1
i=1 Qi. Let x∗ ∈ Q and let

– K0 be the cone of decreasing directions v of f at x∗ defined by: There are a
neighborhood U of v and numbers α < 0 and ε0 > 0 such that f(x∗ + εu) ≤
f(x∗) + εα for every ε ∈ (0, ε0) and u ∈ U ;

– K1, ...,Km be the cones of admissible directions v of the inequality-type
constraints Q1, ..., Qm at x∗ defined by: There are a neighborhood U of v
and a number ε0 > 0 such that x∗ + εu ∈ Qi for every ε ∈ (0, ε0) and u ∈ U ,
where i = 1, ...,m, respectively;

– Km+1 be the cone of tangent directions of the equality-type constraintQm+1

at x∗.
Denote by K∗

i the dual cone of Ki:

K∗
i = {ξ ∈ X∗ : 〈ξ, x〉 ≥ 0, ∀x ∈ Ki}.

Let us consider the following sufficient condition:
Assertion 1. (Luu and Kien [7], Theorem 3.1)
Assume that
(a) The function f is locally Lipschitz at x∗ and it has directional derivative at

x∗ in any directions; f is pseudo-invex at x∗ on Q with the scale function

η(x, x∗) = x− x∗ + r(x, x∗),

where
‖r(x, x∗)‖/‖x− x∗‖ → 0 whenever ‖x− x∗‖ → 0;

(b) Q1,..., Qm, and Qm+1 are convex sets such that there exists

x̂ ∈
m⋂

i=1

(intQi) ∩Qm+1,

where intQi denotes the interior of Qi;
(c) There exist ξ ∈ K∗

i (i = 0, 1, ...,m+ 1), not all zero, such that

ξ0 + ξ1 + ...+ ξm+1 = 0.

Then x∗ is a local minimum of f over Q.
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Recall that a function f : X → R having directional derivatives at y ∈ Q ⊂ X
is said to be pseudo-invex at y on Q with respect to η : X ×X → X if, for all
x ∈ Q,

f ′(y; η(x, y)) ≥ 0 implies f(x) − f(y) ≥ 0.

Obviously, this kind of pseudo-invexity follows from the invexity defined for Fréchet
differentiable functions as follows: f is called invex at y with respect to η if

f(x) − f(y) ≥ f ′(y)η(x, y) for all x ∈ X.

and f is named invex with respect to η if it is invex at every y ∈ X (see [1]).
In Assertion 1, only the objective function f is assumed to be pseudo-invex,

while the other constraint functions defining Q1,..., Qm, and Qm+1 are convex,
i.e., not necessarily pseudo-invex or invex with respect to the same η. Thus,
according to our remarks in Sec. 2, the assumption of pseudo-invexity could be
redundant, or the assertion could be wrong. In fact, to show that the assertion
is wrong, we now present a simple example with an invex objective function.

Counter example 1. Consider a concrete example of (P3), where m = 1,

f(x) = x1 − x2
2, x = (x1, x2),

Q1 = {(x1, x2) ∈ R
2 : x1 ≥ −1},

Q2 = {(x1, x2) ∈ R
2 : x1 = 0},

and x∗ = (0, 0) ∈ Q = Q1 ∩ Q2 = Q2. As shown in Sec. 2, f(x) = x1 − x2
2 is

invex on R
2 with respect to

η(x, y) = x− y + r(x, y), r(x, y) =
( − (x2 − y2)2, 0

)
.

Since

0 ≤ ‖r(x, y)‖
‖x− y‖ =

(x2 − y2)2(
(x1 − y1)2 + (x2 − y2)2

) 1
2
≤ (x2 − y2)2

|x2 − y2| = |x2 − y2|

for x2 	= y2 and since ‖r(x, y)‖ = 0 for x2 = y2, we have

‖r(x, y)‖/‖x− y‖ → 0 as ‖x− y‖ → 0.

Obviously, Q1 and Q2 are convex and x∗ ∈ intQ1 ∩Q2. Since K0 = {(v1, v2) ∈
R

2 : v1 < 0},K1 = R
2, andK2 = {(v1, v2) ∈ R

2 : v1 = 0}, for ξ0 = (−1, 0) ∈ K∗
0 ,

ξ1 = (0, 0) ∈ K∗
1 , and ξ2 = (1, 0) ∈ K∗

2 , it holds ξ0 + ξ1 + ξ2 = 0. Hence, all the
assumptions of Assertion 1 are satisfied. Therefore, it ensures that x∗ = (0, 0) is
a local minimizer. But, on the admissible set Q = {(x1, x2) ∈ R

2 : x1 = 0}, the
objective function is f(x) = −x2

2, which has no local minimizer. This example
shows that Assertion 1, i.e., Theorem 3.1 in [7], is false.

4. Error Related to Optimization with Invex Constraint Functions

Let f be a real-valued function defined on a Banach space X , and g a mapping
from X into a Banach space Y . Let K be a closed convex cone in Y . Consider
the problem
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(P4)
{

minimize f(x),
subject to g(x) ∈ −K.

For x∗ ∈M = {x ∈ X : g(x) ∈ −K}, denote

Kg(x∗) = K + {λg(x∗) : λ ∈ R},
LM (x∗) = {v ∈ X : g′(x∗)v ∈ −Kg(x∗)}.

Suppose that f and g are Fréchet differentiable of first and second-order at x∗.
For

L(x, y∗, λ) = λf(x) + 〈y∗, g(x)〉 (x ∈ X, λ ∈ R, y∗ ∈ Y ∗),

assume that
∃y∗ ∈ Y ∗ : Lx(x∗, y∗, λ) = 0, 〈y∗, g(x∗)〉 = 0, (5)

and ∃δ > 0 ∃β > 0 : Lxx(x∗, y∗, 1)(v, v) ≥ δ ‖v‖2

for all v ∈ LM (x∗) ∩ {v ∈ X : 〈y∗, g′(x∗)v〉 ≤ β ‖v‖}. (6)

Assertion 2. (Luu and Kien [7], Theorem 4.4)
Let x∗ ∈ M . Assume that (5) and (6) hold. Suppose, in addition, that the
mapping g is K-invex at x∗ on M with a scale mapping η satisfying

η(x, x∗) = x− x∗ + r(x, x∗) for all x ∈M,

where ‖r(x, x∗)‖/‖x−x∗‖ → 0 as ‖x−x∗‖ → 0. Then there exist number α > 0
and ρ > 0 such that

f(x) ≥ f(x∗) + α‖x− x∗‖ for all x ∈M ∩B(x∗; ρ), (7)

where B(x∗; ρ) = {x ∈ X : ‖x− x∗‖ < ρ}.

Recall that a Fréchet differentiable function g : X → Y is said to be K-invex
at y ∈M on M with respect to η : X ×X → X if

g(x) − g(y) − g′(y)η(x, y) ∈ K for all x ∈M.

Function g is called K-invex with respect to η if this property holds for all x ∈ X
and y ∈ X .

Assertion 3. (Luu and Kien [7], Theorem 4.5)
Let x∗ ∈ M . Assume that (5) and (6) hold. Suppose, furthermore, that the
following condition is fulfilled:

0 ∈ int
(
g′(x∗)X +K

)
. (8)

Then there exist number α > 0 and ρ > 0 such that (7) holds.

Assertion 2 states a sufficient condition for a special kind of local minima.
For this purpose, if invexity is really useful then it should be assumed both for
the objective and the constraint functions. But, in Assertion 2, the K-invexity is
only assumed for the constraint function g and not for the objective function f .
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Due to the remarks in Sec. 2, the assumption on K-invexity could be redundant,
or the assertion could be wrong. Indeed, we will show that both cases appear,
i.e., the invexity is redundant and the assertion is wrong.

Counter example 2. Let X = Y = R, K = R+, and f(x) = g(x) = x. For
x∗ = 0, λ = 1, and y∗ = −1, (5) is fulfilled. Since Kg(x∗) = K = R+ and
M = −R+, we have

LM (x∗) = {v ∈ R : v ≤ 0} = −R+

and, for β = 1/2,

{v ∈ X : 〈y∗, g′(x∗)v〉 ≤ β ‖v‖} = {v ∈ R : −v ≤ |v|/2} = R+,

which yields

LM (x∗) ∩ {v ∈ R : 〈y∗, g′(x∗)v〉 ≤ β ‖v‖} = {0}.
Hence, it follows from L(x, y∗, 1) = x−x = 0 that (6) is satisfied for an arbitrary
δ > 0 and β = 1/2. Since g is linear, and therefore K-invex (everywhere) with
respect to η(x, y) = x− y, Assertion 2 implies that x∗ = 0 is a local minimizer.
Since g′(x∗)X + K = R + R+ = R, (8) is fulfilled. Therefore, Assertion 3 also
yields the same. But the function f(x) = x has no local minimizer in M = −R+.
Hence, both Assertion 2 and Assertion 3, i.e., Theorems 4.4 and 4.5 in [7], are
false.

In the above example, both objective and constraint functions f and g are
linear. Nevertheless, it has no effect. The invexity assumption is really useless
and redundant here.

Since there are properties which are only true in higher dimensional spaces,
i.e., only if dimX ≥ 2, let us describe an example with X = R

2. Moreover,
unlike the previous example, in the next example the set LM (x∗) ∩ {v ∈ X :
〈y∗, g′(x∗)v〉 ≤ β ‖v‖} has nonempty interior.

Counter example 3. Let X = R
2, Y = R, K = R+, f(x) = x2

1 − (x2 + 1)2,
and g(x) = −x2. For x∗ = (0, 0), λ = 1, and y∗ = −2, (5) is fulfilled. Since
Kg(x∗) = K = R+ and M = {x ∈ R

2 : x2 ≥ 0}, we have

LM (x∗) = {v ∈ R
2 : −v2 ≤ 0} = {v ∈ R

2 : v2 ≥ 0}
and, for β = 1,

{v ∈ X : 〈y∗, g′(x∗)v〉 ≤ β ‖v‖} = {v ∈ R
2 : (−2)(−v2) ≤ ‖v‖}

= {v ∈ R
2 : 2v2 ≤ (v2

1 + v2
2)1/2},

which yields

LM (x∗) ∩ {v : 〈y∗, g′(x∗)v〉 ≤ β ‖v‖} = {v ∈ R
2 : v2 ≥ 0, 3v2

2 ≤ v2
1}.

Since L(x, y∗, 1) = x2
1 − x2

2 − 1, it follows from 3v2
2 ≤ v2

1 that

Lxx(x∗, y∗, 1)(v, v) = 2(v2
1 − v2

2) = v2
1 + (v2

1 − 2v2
2) ≥ v2

1 + v2
2 = ‖v‖2,
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i.e., (6) is satisfied for δ = β = 1. Since g is linear, and therefore K-invex
(everywhere) with respect to η(x, y) = x−y, Assertion 2 implies that x∗ = (0, 0)
is a local minimizer. Since

g′(x∗)X +K = {−x2 : (x1, x2) ∈ R
2} + R+ = R + R+ = R,

(8) is fulfilled. Therefore, Assertion 3 also yields the same. But f(x∗) = −1
and f(x) = −(x2 + 1)2 < −1 for all x ∈ M satisfying x1 = 0 and x2 > 0, i.e.,
x∗ = (0, 0) cannot be a local minimizer. Thus, this example shows again that
both Assertion 2 and Assertion 3, i.e., Theorems 4.4 and 4.5 in [7], are false,
even when X = R

2.

5. Concluding Remarks

The counter examples in Secs. 3 and 4 show that all the main results of Luu
and Kieu [7] are wrong. While demonstrating the power of invexity and its
generalizations, several other essential errors have been made in [2 - 4, 6] by
misplacing the originally interesting concept of Hanson [5]. Obviously, such
an inflation does not heighten the image of invexity. Some of these errors are
analyzed in [8] and [9].
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