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Abstract. We define the topological degree for a class of operators and use it to find

generalized zeros of operators. Using these results we get the existence of solutions for

singular nonlinear elliptic equations.

1. Introduction

Let E be a dense linear subspace of a real Hilbert space H and D be a subset
of E. Denote by 〈., .〉 the scalar product in H . Let f be a mapping from D into
H , then a vector u in H is said to be a generalized zero of f if and only if there
is a sequence {un} in D such that {un} converges weakly to u in H and

lim
n→∞〈f(un), v〉 = 0 ∀v ∈ E.

Note that f may not be defined at its generalized zeros. In [4] we obtained
a version of the Mountain-pass theorem and applied it to get the existence of
generalized zeros of ∇g, where g is a densely defined functional on H .

In the present paper we shall use the topological degree theory to find gen-
eralized zeros of operators related to partial differential equations. First we
consider the following problem.

Let N be an integer ≥ 2, and Ω be a bounded open subset of R
N . Let

g0, . . . , gN be real functions on Ω, and aij be a real function on Ω × R for any
i, j = 1, . . . , N . Assume that aij is in L∞

loc(Ω) for 1 ≤ i, j ≤ N and there exists
M > 0 such that

∑N
i,j=1 ai,j(x)ξiξj ≥ M |ξ|2 for any (x, (ξ1, . . . , ξN )) in Ω×R

N .
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Moreover, assume that gi(x, t) is measurable in x for fixed t in R and continuous
in t for fixed x in Ω for any i = 0, . . . , N .

We seek solutions in the Sobolev space W 1,2
0 (Ω) of the following equation

–
N∑

i,j=1

∂

∂xi
(aij(x)

∂

∂xj
u(x))+

N∑
i=1

gi(x, u(x))
∂u

∂xi
(x)+g0(x, u(x))+a(x)=0 ∀x ∈ Ω.

(1.1)
Under certain conditions on aij , a and gi there exists an operator T defined

on D(T ) contained in W 1,2
0 (Ω) such that

∫

Ω

{ N∑
i,j=1

ai,j(x)
∂u(x)
∂xi

∂ϕ(x)
∂xj

+
[ N∑

i=1

gi(x, u(x))
∂u

∂xi
(x)+g0(x, u(x))+a(x)

]
ϕ(x)

}
dx

=
∫

Ω

∇T (u)(x)∇ϕ(x)dx ∀(u, ϕ) ∈ D(T ) × W 1,2
0 (Ω).

In this case, to solve (1.1), it is sufficient to prove the existence of solutions of
the following equation

T (u) = 0. (1.2)

We shall use the topological degree theory to solve (1.2). We study the
problem in the following situation: the map T may only be defined on a dense
subspace E of W 1,2

0 (Ω), but T does not vanish at any u in E and we have to
find generalized zeros of T in W 1,2

0 (Ω).
In order to solve (1.2) in this case we shall define a topological degree of

mappings defined in a dense subspace of W 1,2
0 (Ω) and apply it to get a generalized

zero of T in (1.2), then show that this generalized zero is a generalized solution
of (1.1) in W 1,2

0 (Ω). In the present paper, the topological degree is defined for
a class of operators in Hilbert spaces. The results for the Banach spaces will
appear elsewhere.

In [5, 6], Kartsatos and Skrypnik have defined the topological degree for
operators defined on a dense subspace of a Banach space, but their results can
only be applied to get classical solutions.

Since the functions b0, . . . , bN in condition (3.3) in Sec. 3 are respectively in
Lri

loc(Ω) instead of in Lri(Ω), the elliptic partial differential equations considered
in this paper are more singular than those in [3].

The paper consists of two sections. In the first section we define the topo-
logical degree for mappings of class (B+) and apply it to solve singular elliptic
equations in the last section.

2. Topological Degree of Mappings in Class (B+)

Definition 2.1. Let {En}n be a strictly increasing sequence of finite-dimensional
subspaces of a Hilbert space H such that E ≡ ∪∞

n=1En is dense in H. Denote by
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Pn the orthogonal projection from H onto En for every integer n. Let G be an
open bounded set in E. Denote by G

E
, Gn, Gn

En and ∂Enk
Gnk

the closure of
G in E, G ∩ En, the closure and boundary of Gn in En respectively. Let f be a
mapping from G

E
into H. We put

fn(x) = Pn(f(x)) ∀n ∈ N, x ∈ G
En

n .

The mapping f is said to be of class (B+) on G
E

if and only if fn is a
continuous mapping from Gn

En into En for any integer n and the following
condition is satisfied:

(B+) There is not any sequence {xnk
}k in E such that the sequence {xnk

}k is
weakly convergent in H , xnk

∈ ∂Enk
Gnk

, 〈f(xnk+1), xnk+1〉 ≤ 0 and 〈f(xnk+1), v〉
= 0 for all k ∈ N and v in Enk

.
The class (B+) depends on the choice of {En}n, and we consider only such

one sequence in this section. The class (B+) is similar to the class (S+) in [1, 2,
8, 9].

Following the proof of Proposition 11 in [3], we have the following lemma

Lemma 2.1. Let X0 be a subspace of a finite-dimensional Hilbert space X, and
P be the orthogonal projection from X onto X0. Let G be an open bounded subset
of X such that G0 ≡ G ∩ X0 �= ∅, and let f be a continuous mapping from G
into X. Put

f0(x) = P ◦ f(x) ∀x ∈ G0
X0

.

Suppose that the Leray–Schauder topological degrees deg (f, G, 0) and
deg (f0, G0, 0) are defined but not equal. Then there exists a vector u in ∂G
such that 〈f(u), u〉 ≤ 0 and 〈f(u), v〉 = 0 for all v in X0.

Remark. If G contains 0, then the foregoing lemma has been proved in [3].

The following lemma is the key result in order to define the topological degree
for mappings of class (B+).

Lemma 2.2. Let G be a non-empty open bounded set in E, f be in class (B+)
on G

E
and {fn}n be as in Definition 2.1. Then there exists an integer n0 such

that the Leray–Schauder degree deg(fn, Gn, 0) is defined and

deg(fn, Gn, 0) = deg(fn0 , Gn0 , 0) ∀n ≥ n0.

Proof. First we note that Gn is non-empty for any sufficiently large integer n.
We shall show that 0 is in En \ fn(∂EnGn) when n is sufficiently large. Suppose
by contradiction that there exist a strictly increasing sequence of integers {ml}
and a sequence {xml

} such that xml
is in ∂Eml

Gml
and fml

(xml
) = 0 for any

integer l. Since ∂EnGn is contained in ∂EG and G is a bounded subset of H ,
we can (and shall) suppose that {xml

} is a weakly Cauchy sequence in ∂EG,
〈f(xml+1), xml+1〉 ≤ 0 and 〈f(xml+1), v〉 = 0 for any v in Eml

. By (B+) we get
a contradiction. Thus there exists an integer m0 such that the Leray–Schauder
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degree deg(fn, Gn, 0) is defined when n ≥ m0. In order to show the remaining
part of the lemma we suppose by contradiction that there is a strictly increasing
sequence of integers {nk} such that

deg(fnk
, Gnk

, 0) �= deg(fnk+1 , Gnk+1 , 0) ∀k ∈ N.

Since Enk+1 is a finite-dimensional Hilbert space, applying Lemma 2.2 we can
find a weakly Cauchy sequence {xnk

}k in H such that xnk
belongs to ∂Enk

Gnk

and

〈f(xnk+1), xnk+1〉 ≤ 0 and 〈f(xnk+1), v〉 = 0 for all k ∈ N and v in Enk
.

By (B+), we again get a contradiction, which completes the proof of the lemma.
�

Using the lemma we have the following definition.

Definition 2.2. Let H, {En}n and E be as in Definition 2.1. Let G be an open
bounded set in E, f be a mapping from G

E
into H and {fn}n be as in Definition

2.1. Assume that f is of class (B+) on G
E
. By Lemma 2.2 we can define

deg(f, G, 0) = lim
n→∞ deg(fn, Gn, 0),

which is called the topological degree of f on G at 0.

The topological degree of maps in class (B+) has following properties.

Theorem 2.1. Let G be an open bounded set in E. We have the following
assertions

(i) The identity map Id is of class (B+) and deg(Id, G, 0) = 1 whenever 0 is
in G.

(ii) If f is of class (B+) and deg(f, G, 0) �= 0, then f has a generalized zero in
H.

(iii) Let h be a mapping from [0, 1] × G
E

into H. Assume that
(a) Pn ◦ h|

[0,1]×Gn
En is continuous on [0, 1]× Gn

En for any integer n, and
(b) there is not any weakly Cauchy sequence {(tnk

, xnk
)}k in [0, 1] × H such

that xnk
∈ ∂Enk

Gnk
, < h(tnk+1 , xnk+1), xnk+1 > ≤ 0 and

〈h(tnk+1 , xnk+1), v〉 = 0 ∀k ∈ N, v ∈ Enk
.

Then the topological degree deg (h(0, .), G, 0) and deg (h(1, .), G, 0) are defined
and equal.

Proof. By properties of the Leray-Schauder topological degree and by Definition
2.2 we get (i). Now we prove (ii). By Definition 2.2 there are a sequence
{xm}m≥n0 in G and an integer n0 such that xm ∈ Gm and Pm ◦f(xm) = 0 when
m ≥ n0. Thus we have
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〈f(xm), w〉 = 0 when m ≥ n0 and w ∈ Em.

Since {En} is a strictly increasing sequence, we get (ii).
Arguing as in the proof of Lemma 2.3 we see that h(t, .) is of class (B+) for

all t in [0, 1] and Pm ◦ h|
[0,1]×Gm

En is a homotopy of compact vector fields when
m is greater than some integer n0. In this case

deg
(
Pm ◦ h|{0}×Gm

En , Gm, 0
)

= deg(Pm ◦ h|{1}×Gm
En , Gm, 0).

By Lemma 2.3 we can choose an integer n ≥ n0 such that

deg(h(0, .), G, 0) = deg(Pn ◦ h|{0}×Gn
En , Gn, 0)

and
deg(h(1, .), G, 0) = deg(Pn ◦ h|{1}×Gn

En , Gn, 0).

Combining the above equations we obtain (iii). �

Corollary 2.1. Let H and E be as in Definition 2.1. Let G be an open bounded
set in E and f be a mapping from G

E
into H such that fm is continuous on

Gm
Em for any integer m. Assume that G contains 0 and

〈f(x), x〉 > 0 ∀x ∈ ∂EG.

Then f has a generalized zero in H.

Proof. Put

h(t, x) = tx + (1 − t)f(x), (t, x) ∈ [0, 1]× G
E

.

For any x in the boundary of G in E we have

〈h(t, x), x〉 = t‖x‖2 + (1 − t)〈f(x), x〉 > 0, ∀t ∈ [0, 1].

Thus the mapping h satisfies all conditions of (iii) in Theorem 2.1. On the
other hand, h(0, .) = f and h(1, .) = Id. Therefore by Theorem 2.1 we get the
corollary.

3. A Nonlinear Singular Elliptic Equation

Let N be an integer ≥ 2, and Ω be a bounded open subset of R
N . Let g0, . . . , gN

be real functions on Ω, and aij be a real function on Ω×R for any i, j = 1, . . . , N .
Assume that aij is in L∞

loc(Ω) for 1 ≤ i, j ≤ N and there exists M > 0 such that
N∑

i,j=1

ai,j(x)ξiξj ≥ M |ξ|2 ∀(x, (ξ1, . . . , ξN )) ∈ Ω × R
N . (3.1)

Moreover, assume that gi(x, t) is measurable in x for fixed t in R and continuous
in t for fixed x in Ω for any i = 0, . . . , N , and
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g0(x, 0) = 0 ∀ x ∈ Ω, (3.2)

|gi(x, t)| ≤ bi(x) + ki|t|si ∀(x, t) ∈ Ω × R, i = 0, . . . , N, (3.3)

and

−M

2
|z|2−k|t|q−c(x) ≤

[ N∑
i=1

gi(x, t)zi+g0(x, t)+a(x)
]
t ∀(x, t, z) ∈ Ω×R×R

N ,

(3.4)
where s0, . . . , sN , k, k0, . . . , kN , r0, . . . , rN and q are non-negative real numbers
and b0, · · · , bN and c are measurable functions such that c ∈ L1(Ω), q ∈ (1, 2),
r0 ∈ (

2N
N+2 ,∞)

, s−1
0 ∈ (N−2

2N r0,∞), a ∈ Lr0(Ω), ri ∈ (N,∞) for any i = 1, . . . , N ,
s−1

i ∈ (
N−2
2N ri,∞

)
and bi ∈ Lri

loc(Ω) for any i = 0, . . . , N .
We shall use Lemma 2.3 to find generalized solutions of the following equation

−
N∑

i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj
u(x)

)
+

N∑
i=1

gi(x, u(x))
∂u

∂xi
(x)+g0(x, u(x))+a(x) = 0

∀x ∈ Ω. (3.5)

First we need some notations and definitions. For any open bounded subset
D of R

N we denote by W 1,2
0 (D) the completion of C∞

c (D, R) in the following
norm

‖u‖D =
( ∫

D

|∇u|2dx
)1/2

∀u ∈ C∞
c (D, R).

It is well known that W 1,2
0 (D) is a Hilbert space with the scalar product

〈u, v〉D =
∫

D

∇u.∇vdx ∀u, v ∈ W 1,2
0 (D).

Let {Ωk} be an increasing sequence of open subsets of Ω such that Ωk is contained
in Ωk+1 and Ω =

⋃∞
k=1 Ωk. Choose a sequence {v1,m}m∈N in C∞

c (Ω1) such
that {v1,m}m∈N is a maximal orthonormal set of W 1,2

0 (Ω1). After that we can
find a sequence {v2,m}m∈N in C∞

c (Ω2) such that {v1,m}m∈N ∪ {v2,m}m∈N is a
maximal orthonormal set of W 1,2

0 (Ω2). Thus by the mathematical induction we
can find the set {vn,m : n, m ∈ N} in C∞

c (Ω) such that {vj,m : m ∈ N, j =
1, . . . , k} is a maximal orthonormal set of W 1,2

0 (Ωk) for every integer k. We
rewrite {vn,m}n,m∈N as a sequence {ek}k∈N and denote by En the vector subspace
spanned by {e1, . . . , en} . Put H = W 1,2

0 (Ω) and E = ∪nEn. We have the
following results.

Lemma 3.1.
(i) E is dense in H.
(ii) Let u be in C∞

c (Ω). Then there are an integer k and a sequence {un} in E
such that the support of un is contained in Ωk for any integer n and {un}
converges to u in W 1,2

0 (Ω).
(iii) Let m be a positive integer and u be in W 1,2

0 (Ω). Then there exists a unique
Tm(u) in W 1,2

0 (Ω) such that for every v in W 1,2
0 (Ω)
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〈Tm(u), v〉Ω =
∫

Ωm

N∑
i,j=1

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx

+
∫

Ωm

[ N∑
i=1

gi(x, u(x))
∂u

∂xi
(x) + g0(x, u(x))

]
v(x)dx +

∫

Ω

avdx.

(iv) Let {uk} be a sequence weakly converging to u in W 1,2
0 (Ω). Then {Tm(uk)}

weakly converges to Tm(u) in W 1,2
0 (Ω) for any integer m.

(v) Let u be in E. Then there exist an integer m0 and a unique T (u) in W 1,2
0 (Ω)

such that for any v in W 1,2
0 (Ω)

〈T (u), v〉Ω =
∫

Ω

N∑
i,j=1

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx

∗
∫

Ω

[ N∑
i=1

gi(x, u(x))
∂u

∂xi
(x) + g0(x, u(x)) + a(x)

]
v(x)dx,

〈T (u), v〉Ω = 〈Tm(u), v〉Ω ∀m ≥ m0.

(vi) The restriction of T on Ek is a continuous mapping from Ek into W 1,2
0 (Ω)

for any integer k.
(vii) There is a positive real number C such that

〈T (u), u〉Ω ≥ ‖u‖2
Ω

(M

2
− C‖u‖q−2

Ω − ‖c‖L1(Ω)‖u‖−2
Ω

)
∀u ∈ E \ {0}.

Proof. Since E is dense in C∞
c (Ω), we get (i). Now we prove (ii). Fix u in

C∞
c (Ω). We can choose an integer k such that the support of u is contained

in Ωk. Since {vj,m : m ∈ N, j = 1, . . . , k} is a maximal orthonormal set of
W 1,2

0 (Ωk), we can find a sequence {un} as in (ii).
Now we show (iii). Fix a positive integer m and put

Gm,i(u)(x) = gi(x, u(x)) ∀x ∈ Ωm, i = 0, . . . , N.

By a result in [7, p.30] and by (3.3) we see that Gm,i is a continuous mapping
from Lrisi(Ω) into Lri(Ωm).

Put p0 =
(
1 − 1

r0

)−1 and pi =
(
1 − 1

ri
− 1

2

)−1 for any i = 1, . . . , N . By
conditions on ri we see that p−1

i > N−2
2N . Thus by the Sobolev embedding

theorem there is a positive real number C such that

∣∣∣
∫

Ωm

[ N∑
i=1

gi(x, u(x))
∂u

∂xi
(x)

]
v(x)dx +

∫

Ωm

g0(x, u(x))v(x)dx +
∫

Ω

a(x)v(x)dx|
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= |
∫

Ωm

[ N∑
i=1

Gm,i(u)
∂u

∂xi
+ Gm,0(u)

]
v(x)dx +

∫

Ω

avdx|

≤ C
[ N∑

i=1

‖Gm,i(u)‖ri,m‖u‖Ω + ‖Gm,0(u)‖r0,m + ‖a‖r0

]
‖v‖Ω,

where ‖w‖r = ‖w‖Lr(Ω) and ‖w‖r,m = ‖w‖Lr(Ωm).
Using Holder’s inequality and the assumption aij ∈ L∞

loc(Ω), we have.
∫

Ωm

N∑
i,j=1

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx ≤ C‖u‖‖v‖. (3.6)

Applying the Riesz theorem, we get (iii).
Now we prove (iv). Let u be in W 1,2

0 (Ω) and {uk} be a sequence weakly
converging to u in W 1,2

0 (Ω). Since r−1
i s−1

i > N−2
2N for any i = 0, . . . , N , by the

Rellich–Konkrachov theorem the sequence {Gm,i(uk)} converges to Gm,i(u) in
Lri(Ωm).

By conditions on ri, i = 0, . . . , N , we can find positive real numbers qi such
that q−1

0 + r−1
0 ≤ 1, q−1

i + r−1
i ≤ 1

2 for any i = 1, . . . , N and q−1
i > N−2

2N

for any i = 0, . . . , N . Since v belongs to W 1,2
0 (Ω), by the Sobolev embedding

theorem v is in Lqi for any i = 0, . . . , N . Thus the sequence {vGm,0(uk)}k

(respectively {vGm,i(uk)}k ) converges to vGm,0(u) (respectively vGm,i(u) for
any i = 1, . . . , N) in L1(Ωm) (respectively L2(Ωm)). Thus by (iii) and (3.6) we
see that

lim
k→∞

〈Tm(uk), v〉Ω = 〈Tm(u), v〉Ω

and we obtain (iv).
Let u be in E, then there is an integer m0 such that the support of u is

contained in Ωm0 . Therefore we obtain (v).
Since the dimension of Ek is finite, the strong topology and the weak one

on Em coincide. Therefore we get (vi) by using (iv) and (v). Fix a u in E. By
(3.1), (3.4) and the Sobolev embedding theorem there is a positive real number
C such that

〈T (u), u〉Ω ≥ M‖u‖2
Ω −

∫

Ω

[M

2
|∇u|2 + k|u|q + |c|

]
dx

≥ M

2
‖u‖2

Ω − C‖u‖q
Ω − ‖c‖L1(Ω).

Therefore we obtain (vii). �

Applying the foregoing lemma and Theorem 2.2 we get the following result.

Theorem 3.1.
(i) Under conditions (3.1) - (3.4) the equation (3.5) has at least a generalized

solution u in W 1,2
0 (Ω), that is for any v ∈ C∞

c (Ω)
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∫

Ω

{ N∑
i,j=1

ai,j(x)
∂u(x)
∂xi

∂v(x)
∂xj

+
[ N∑

i=1

gi(x, u(x))
∂u

∂xi
(x) + g0(x, u(x)) + a(x)

]
v(x)

}
dx = 0

(3.7)

(ii) Furthermore, this solution is a classical smooth solution if the functions
g0, . . . , gN are sufficiently smooth.

Proof. Choose a positive real number R such that
M

2
− CRq−2 − ‖c‖L1(Ω)R

−2 >
M

4
,

where C and c are as in (vii) of Lemma 3.1.
Put G = {w ∈ E : ||w||Ω < R}. We see that ∂EG = {w ∈ E : ‖w‖Ω = R}

and by Lemma 3.1 the mapping T satisfies the conditions of Corollary 2.1. Thus
there exists a weakly Cauchy sequence {un} in G such that

lim
n→∞〈T (un), v〉 = 0 ∀v ∈ E.

Let u be the weak limit of {un} in W 1,2
0 (Ω). Fix a v in E and let k be an integer

such that the support of v is contained in Ωk, we have

〈Tm(un), v〉Ω = 〈Tk(un), v〉Ω ∀n ∈ N, m ≥ k.

Thus by (iv) of Lemma 3.1 we get

〈Tm(u), v〉Ω = 0 ∀m ≥ k. (3.8)

Let v be in C∞
c (Ω). By (ii) of Lemma 3.1 there are an integer k and a sequence

{vl} in E such that the support of vl is contained in Ωk for any integer n and
{vl} strongly converges to v in W 1,2

0 (Ω). By (3.8) we have

〈Tm(u), v〉Ω = lim
l→∞

〈Tm(u), vl〉Ω = 0 ∀m ≥ k

or
∫

Ω

{ N∑
i,j=1

ai,j(x)
∂u(x)
∂xi

∂v(x)
∂xj

+
[ N∑

i=1

gi(x, u(x))
∂u

∂xi
(x) + g0(x, u(x)) + a(x)

]
v(x)

}
dx = 0

for every m ≥ k, which implies (3.7).
Now we show (ii). If v is in W 1,2

0 (Ω) and its support is a compact subset in Ω,
then, arguing as in the proof of (i), we see that (3.7) is valid for v. Therefore by
the regularity theory of elliptic equations and by using convenient test functions
we can get the smoothness of u if the functions gi are of class C∞(Ω) and the sets
gi(Ωk ×R) and a(Ωk) are bounded in R for any integer k and any i = 0, · · · , N .
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Example. Let N be an integer ≥ 2 and Ω be an open bounded domain in R
N with

smooth boundary. Let s, p and q be positive real numbers such that s >
2N

N + 2
,

1
p

> max
{
1,

s(N − 2)
(N + 2)s − 2N

}
and q >

2
1 − p

. Let K be in Ls
loc(Ω) such that

K− ≡ max{0,−K} is in Lq(Ω). Using Theorem 3.1 we can find a generalized
solution in W 1,2

0 (Ω) to the following equation

−Δu(x) + K(x) sign (u(x))|u(x)|p + 1 = 0 ∀x ∈ Ω.

The proof of the example will be appeared elsewhwere. �
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