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Abstract. The problem of calculating the value of the pseudo-differential operator

a(D, y)ϕ, y ∈ [0, 1] with unbounded symbol a(iξ, y) is ill-posed. If the symbol a(iξ, y)
behaves like an exponential function of ξ, then the problem is severely ill-posed. This

note is devoted to the last case. The mollification method [2] is used to regularize

the problem in the general Lp space setting. Error estimates of Hölder type for the

regularized values and the exact values are derived. Applications of the general scheme

to concrete problems from practice are presented.

1. Introduction

Let a(iξ, y), ξ ∈ R, y ∈ [0, 1], be a given function. We define the pseudo-
differential operator

a(D, y)ϕ(x) :=
1√
2π

∫ ∞

−∞
a(iξ, y)ϕ̂(ξ)eixξdξ. (1.1)

Here, D stands for d/dx and we use the notation ˆ for the Fourier transform.
Namely, let g ∈ L1(R), we denote the Fourier transform of g by [6, p. 32]

ĝ(ξ) =
1√
2π

∞∫
−∞

g(x)e−ixξdξ.

We shall indicate the domain of definition for a(D, y) later on.
Many problems in practice lead to calculating or approximating the operator

a(D, y). In this note we pay attention to the case of the unbounded operators
a(D, y). This situation is frequently met, for example, when one is dealing with
numerical differentiation, analytic continuation, parabolic equations backwards
in time, the Cauchy problem for elliptic equations, etc. (see, e.g., [2]). A serious
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difficulty in this case is that calculating a(D, y) is an ill-posed problem. It means
that a small perturbation in the data ϕ might cause arbitrarily large errors in
the value of the operator. The problem is severely ill-posed when for large |ξ| the
symbol a(iξ, y) behaves itself as an exponential function of |ξ| (see (2.1), (3.1)).

Now let the operator a(D, y) be defined for some ϕ ∈ Lp(R), 1 ≤ p ≤ ∞.
Let ϕ be approximately given by ϕε ∈ Lp(R) such that

‖ϕ− ϕε‖p ≤ ε. (1.2)

Here, ‖ · ‖p denote the norm in Lp(R). Our problem is to approximate the value

u(x, y) := a(D, y)ϕ(x) (1.3)

from the data ϕε in a stable way.
We shall use the mollification method [2] to regularize our problem. Namely,

we shall mollify the measured data ϕε by convolution with an appropriate kernel
so that the problem (1.3) is well-posed with these new data. We shall show how
to choose the mollification parameter so that the error estimate between the
regularized value and the exact value of a(D, y)ϕ is of Hölder type. To this aim
we impose the following “traditional” constrain: u(·, 1) ∈ Lp(R) and there is a
positive constant M such that

‖u(·, 1)‖p ≤M. (1.4)

We shall separate the case p = 2 from the other ones, since in this case we can
use many nice properties of the Hilbert space L2(R) rather than the remained
ones. We emphasize that stability results for the case when p �= 2, due to its
difficulties, have been very little published in the literature.

In this note we shall make use of the following notation: Mν,p (1 ≤ p ≤ ∞)
will denote the collection of all entire functions of exponential type ν which as
functions of a real x ∈ R lie in Lp = Lp(R) [6, p. 100]. We shall denote by
Eν,p(f) the best approximation of f using elements of Mν,p [6, p. 184], i.e.,

Eν,p(f) = inf
g∈Mν,p

‖f − g‖Lp(R).

2. The L2-Case

Suppose that a(·, ·) is a continuous function of its variables. Furthermore, there
are positive constants c1, c2 and τ, ρ such that

c1 exp (τy|ξ|ρ) ≤ |a(iξ, y)| ≤ c2 exp (τy|ξ|ρ), (2.1)

Further, at y = 1 we suppose that there is a positive constant c3 such that

c3 exp (τ |ξ|ρ) ≤ |a(iξ, 1)|. (2.2)

The condition (2.1) says that the function a behaves as an exponential function
of |ξ| and thus the problem (1.3) is severely ill-posed.

We assume that the operator a(D, y) is defined for some ϕ ∈ L2(R) and its
value u(x, y) = a(D, y)ϕ(x) belongs to L2(R) for any y ∈ [0, 1]. Because of the
conditions on a(·, ·) we see that ϕ must be at least infinitely differentiable. Let
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now ϕ be approximately given by ϕε ∈ L2(R) such that the inequality (1.2) is
valid for p = 2.

It is clear that in general a(D, y) is not applicable to ϕε, and when it is
applicable, its value may be quite different from that of u(x, y). To overcome
this difficulty we mollify ϕε by convolution with the Dirichlet kernel. Namely,
we define

ϕε,ν(x) =
1
2π

∫ ∞

−∞

sin(ν(x − z))
x− z

ϕε(z)dz.

Although ϕε in general is not differentiable, the function ϕε,ν is an entire func-
tion of exponential type ν [6, p. 316 - 318]) and it Fourier transform has compact
support containing in [−ν, ν]. Furthermore,

ϕ̂ε,ν(ξ) = χ[−ν,ν](ξ)ϕ̂ε(ξ)

with χ[−ν,ν](ξ) = 1 for ξ ∈ [−ν, ν] and 0 otherwise.
Set

uε,ν(x, y) := a(D, y)ϕε,ϕ(x).

We have
‖uε,ν(·, y)‖2 = ‖ûε,ν(·, y)‖2 = ‖a(·, y)ϕ̂ε,ν‖2

≤ c2 exp(τyνρ)‖ϕε‖2.

Thus, the problem of computing uε,ν(x, y) = a(D, y)ϕε,ν is stable for fixed ν.
Now we estimate the difference between u and uε,ν . We note that the inequality
(2.2) and the equalities

û(ξ, y) = a(iξ, y)ϕ̂(ξ)

and
û(ξ, 1) = a(iξ, 1)ϕ̂(ξ) = ψ̂(ξ)

yield

û(ξ, y) =
a(iξ, y)
a(iξ, 1)

ψ̂(ξ).

Further, with

u0,ν(x, y) :=
1
2π

∫ ∞

−∞

sin(ν(x − z))
x− z

u(z, y)dz,

we have
uε,ν − u = uε,ν − u0,ν + u0,ν − u.

Now, on one hand, by virtue of (2.1), (2.2) and (1.4),

‖u0,ν(·, y) − u(·, y)‖2 = ‖û0,ν(·, y) − û(·, y)‖2

=
( ∫ ∞

−∞

∣∣∣a(iξ, y)
a(iξ, 1)

χ[−ν,ν](ξ)ψ(ξ) − a(iξ, y)
a(iξ, 1)

(ξ)ψ(ξ)
∣∣∣2dξ

)1/2

=
( ∫

|ξ|≥ν

∣∣∣a(iξ, y)
a(iξ, 1)

∣∣∣2|ψ(ξ)|2dξ
)1/2

≤ c2
c3

exp(τ(y − 1)νρ)M.
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On the other hand, because of (2.1) and (1.2),

‖uε,ν(·, y) − u0,ν(·, y)‖2 = ‖ûε,ν(·, y) − û0,ν(·, y)‖2

=
(∫ ν

−ν

|a(iξ, y)(ϕ̂(ξ) − ϕ̂ε(ξ))|2dξ
)1/2

≤ max
|ξ|≤ν

|a(iξ, y)|
( ∫ ν

−ν

|(ϕ̂(ξ) − ϕ̂ε(ξ))|2dξ
)1/2

≤ c2 exp(τyνρ)ε.

Hence
‖uε,ν(·, y) − u(·, y)‖2 ≤ c2 exp(τyνρ)ε+

c2
c3

exp(τ(y − 1)νρ)M.

Taking, for example,

ν = ν∗ =
(1
τ

ln
M

ε

)1/ρ

(2.3)

we get
‖uε,ν∗(·, y) − u(·, y)‖2 ≤ cMyε1−y (2.4)

with c = c2 + c2/c3.

3. The Lp-Case (p ∈ [1,∞])

In this section we suppose that
1. for every y ∈ [0, 1], a(z, y) is an entire function with respect to z ∈ C and for

all r ∈ R+ there are positive constants c4, τ, ρ such that

max
|z|≤r

|a(z, y)| ≤ c4 exp(τyrρ), (3.1)

2. u(x, y) can be represented in the form

u(x, y) = v(·, y) ∗ ψ(·), v(·, y) ∈ L1(R), ψ ∈ Lp(R), (3.2)

3. there exist positive constants c5, α, β ≥ ρ such that

Eν,1(v(·, y)) ≤ c5 exp(α(y − 1)νβ) for y ∈ [0, 1). (3.3)

We need the following result.

Lemma. (A rough generalization of Bernstein’s inequality) Let the function
a(z, y) satisfy the condition (3.1). Then for any ϕ ∈ Mν,p and ν ≥ 1, with
c6 = c4(3τρ+ 3ρ/(3ρ − eρ)), we have the inequality

‖a(D, y)ϕ‖p ≤ c6ν
ρ exp(τyνρ)‖ϕ‖p.

Proof. Since a(z, y) is an entire function for every y ∈ [0, 1], it can be represented
in the form
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a(z, y) :=
∞∑

n=0

an(y)zn.

The Cauchy inequality and the inequality (3.1) yield

|an(y)| ≤ c4
exp(τyrρ)

rn
, ∀r > 0.

It can be verified that the right hand side of the foregoing inequality attains its
minimum at

r =
( n

τyρ

)1/ρ

.

It follows that

|an(y)| ≤ c4

(eτyρ
n

)n/ρ

.

Thus, following Bernstein’s inequality [6, p. 116]), we get

‖a(D, y)ϕ‖p = ‖
∞∑

n=0

an(y)Dnϕ‖p

≤
∞∑

n=0

|an(y)|‖Dnϕ‖p

≤
∞∑

n=0

|an(y)|νn‖ϕ‖p

≤ c4‖ϕ‖p

∞∑
n=0

(eτyρνρ

n

)n/ρ

:= c4‖ϕ‖p

∞∑
n=0

( q
n

)n/ρ

.

Here q = eτyρνρ.
The function of p > 0

g(p) =
( q
p

)p/ρ

attains its maximum at p = q/e. Hence

∞∑
n=0

( q
n

)n/ρ

=
∑

n≤3q/e

( q
n

)n/ρ

+
∑

n>3q/e

( q
n

)n/ρ

≤ 3
q

e
exp

( q

eρ

)
+

∑
n>3q/e

(e
3

)n/ρ

< 3
q

e
exp

( q

eρ

)
+

3ρ

3ρ − eρ
.
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Thus,
‖a(D, y)ϕ‖p ≤ c4‖ϕ‖p

(
3τρνρ exp(τνρ) +

3ρ

3ρ − eρ

)
.

The last yields the inequality in the lemma for ν ≥ 1.
We note that the result of this lemma is rather weak. If we impose some more

conditions on the function a, then we may get better estimates. For example, if

a(z, y) =
∞∑

n=0

an(y)zn

with an(y) ≥ 0, then for ϕ ∈ Mν,p,

‖a(D, y)ϕ‖p ≤ a(ν, y)‖ϕ‖p.

Or with p = 2,

‖a(D, y)ϕ‖2 ≤ max
|ξ|≤ν

|a(iξ, y)|‖ϕ‖2.

Now we introduce the de la Vallée Poussin kernel [6, p. 304] which is defined
by

kν(x) :=
1
πν

cos(νx) − cos(2νx)
ν2

, ν > 0.

This kernel belongs to M2ν,1 and has many nice properties. In particular, the
convolution of a function ϕ ∈ Lp(R) with this kernel belongs to M2ν,p [6, p. 304 -
306]:

ϕν(x) :=

∞∫
−∞

kν(x− z)ϕ(z)dz = kν ∗ ϕ ∈ M2ν,p

and
‖ϕν − ϕ‖p ≤ (1 + 2

√
3)Eν,p(ϕ).

Further,
‖ϕν‖p ≤ 2

√
3‖ϕ‖p.

We are now in a position to regularize our problem. To do that first we
mollify ϕε by convolution with the de la Vallée Poussin kernel:

ϕε,ν(x) :=

∞∫

−∞
kν(x− z)ϕε(z)dz := kν ∗ ϕε.

From Lemma we see that the problem of calculating

uε,ν := a(D, y)ϕε,ν(x)

is stable in the Lp-norm for fixed ν > 0. With

u0,ν = kν ∗ u,
we have

uε,ν − u = uε,ν − u0,ν + u0,ν − u.
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For ν ≥ 1, from Lemma and (1.2),

‖uε,ν(·, y) − u0,ν(·, y)‖p ≤ c62
√

3(2ν)ρ exp(τy(2ν)ρ)ε.

On the other hand, by virtue of (3.2), (3.3) and the properties of the de la Vallée
Poussin kernel,

‖u0,ν(·, y) − u(·, y)‖p = ‖kν ∗ (v(·, y) ∗ ψ(·)) − v(·, y) ∗ ψ(·)‖p

= ‖(kν ∗ v(·, y)) ∗ ψ(·) − v(·, y) ∗ ψ‖p

= ‖(kν ∗ v(·, y) − v(·, y)) ∗ ψ(·)‖p

≤ ‖kν ∗ v(·, y) − v(·, y)‖1‖ψ‖p

≤ c5 exp(α(y − 1)νβ)M.

Thus,

‖uε,ν(·, y) − u(·, y)‖p ≤ c62
√

3(2ν)ρ exp(τy(2ν)ρ)ε+ c5 exp(α(y − 1)νβ)M.

Since ρ ≤ β,

‖uε,ν(·, y) − u(·, y)‖p ≤ c62
√

3(2ν)ρ exp(τy(2ν)ρ)ε+ c5 exp(α(y − 1)νρ)M.

For ε small enough, taking, for example,

ν = ν∗∗ =
( 1
τy2ρ + α(1 − y)

ln
M

ε

)1/ρ

, (3.4)

we arrive at the inequality

‖uε,ν∗∗(·, y) − u(·, y)‖p

≤
(
c6

2
√

3
τy2ρ + α(1 − y)

ln
M

ε
+ c5

)
M1− τy2ρ

τ2ρy+α(1−y) ε
α(1−y)

τ2ρy+α(1−y) ,
(3.5)

which is of Hölder type.

4. Applications

4.1. Analytic Continuation

1. Problem A. Let σ > 0 be a given number. We denote the strip z = x+iy ∈ C

with |y| < σ by Ω. Let f(z) be analytic in Ω. Suppose that f is given only on
the real axis, we have to extend f analytically from this data to the strip Ω.

2. Problem B. Let R be a given positive constant greater than 1. Set

x(ρ) =
1
2

(
ρ+

1
ρ

)
cosϕ, y(ρ) =

1
2

(
ρ− 1

ρ

)
sinϕ, 1 ≤ ρ ≤ R, 0 ≤ ϕ < 2π.
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We see that

x2(ρ)
a2(ρ)

+
y2(ρ)
b2(ρ)

= 1, a(ρ) =
1
2

(
ρ+

1
ρ

)
, b(ρ) =

1
2

(
ρ− 1

ρ

)

describes an ellipse (denoting by Ω(ρ)) in the complex plane with the foci at ±1
and the sum of the semi-axes equalling ρ. Let f(z) be analytic in the interior of
the ellipse with Ω(R), and given only in the interval [−1, 1]. The problem is to
compute f(z) in Ω(R) \ [−1, 1].

We note that Problem B can be easily transformed to Problem A.
Suppose that for any y ∈ [−σ, σ] the function f(·+ iy) ∈ Lp(R) with 1 ≤ p ≤

∞. Further, we suppose that f(x) is real-valued and there is a positive constant
M such that ‖f(· ± iσ)‖p ≤ M . Instead of the exact f(x) it is supposed that
fε(x) is given, where fε ∈ Lp(R), and

‖f − fε‖p ≤ ε.

Here, ε > 0 is the noise level.
Since f is analytic in Ω,

f(z) = f(x+ iy) =
∞∑

n=0

f (n)(x)
n!

(iy)n =
∞∑

n=0

(iy)n

n!
Dnf(x).

Set

a(D, y) :=
∞∑

n=0

(iy)n

n!
Dn = eiyD.

We can say that the problem of analytic continuation is in fact an application
of the “complex” translation operator to the function under consideration. The
differential operator of infinite order a(D, y) has not always a meaning for general
functions f and when it has a meaning, it might be unbounded. It is proved
that [4] the problem of analytic continuation is severely ill-possed and belongs
to the class (1.3).

4.2. The Cauchy Problem for Laplace’s Equation

The Cauchy problem

uxx(x, y) + uyy(x, y) = 0, −∞ < x <∞, 0 < y < 1,
u(x, 0) = ϕ(x), −∞ < x <∞,

uy(x, 0) = 0, −∞ < x <∞

is well-known to be severely ill-posed. Formally, the solution of this problem can
be represented in the form [2]

u(x, y) =
∞∑

n=0

y2nD2n

(2n)!
ϕ(x) := cosh(yD)ϕ(x).

To guarantee the stability of the solution we impose the condition
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‖u(·, 1)‖p ≤M.

Consider the problem

vxx + vyy = 0, −∞ < x <∞, 0 < y < 1, (4.1)
vy(x, 0) = 0, −∞ < x <∞, (4.2)
v(x, 1) = δ(x), −∞ < x <∞. (4.3)

Here δ is the Dirac function (see, e.g., [6]). It is proved that [3] v(·, y) ∈ L1(R)
for y ∈ [0, 1) and for σ ∈ (0, 1 − y) there is a constant c7 such that

Eν,1

(∂n+mv(·, y)
∂xn∂ym

)
≤ c7

(n+m)!
(1 − y − σ)n+m

, n,m = 0, 1, 2, . . . .

Furthermore, the solution of the boundary value problem

uxx + uyy = 0, −∞ < x <∞, 0 < y < 1,
uy(x, 0) = 0, u(x, 1) = ψ(x), −∞ < x <∞,

with ψ ∈ Lp(R) can be represented in the form of the convolution

u(x, y) = v(·, y) ∗ ψ(·).
Thus, the Cauchy problem for the Laplace equation can be considered as a
special case of the problem (1.3). For more details, the reader is referred to [3].

4.3. The Heat Equation Backwards in Time

Consider the heat equation backwards in time

ut(x, t) = uxx(x, t), −∞ < x <∞, 0 ≤ t ≤ T, (4.4)
u(x, T ) =uT (x),−∞ < x <∞. (4.5)

Suppose that, the solution u(·, t) of the problem (4.4) - (4.5) and the Cauchy
data uT (·) are to be in Lp(R), 1 < p ≤ ∞, and instead of the exact uT (·) we
have only the measured data uε

T ∈ Lp(R) such that

‖uε
T − uT ‖p ≤ ε. (4.6)

Formally,
u(x, t) = exp(−tD2)uT (x).

And to guarantee the stability of the solution, we suppose that

‖u(·, 0)‖p ≤M.

It is well known that

u(x, t) =
∫ ∞

−∞
k(x− y, t)u(y, 0)dy, for p > 1,



152 Dinh Nho Hào and H. Sahli

where
k(x, t) =

1√
4πt

e−x2/(4t).

And in [2] it has been proved that

Eν,1(k(·, t)) ≤ 4
π
e−tν2

, if ν ≥
√

3/(2t). (4.7)

Thus, this problem belongs to the class (1.3).

4.4. Inversion of the Laplace Transform

Denote by

L(f)(s) =
∫ ∞

0

e−sxf(x)dx := F (s)

the Laplace transform of the function f . We are interested in inverting L from
F , when it is given only for real s. Following [1] we set

V f(x) = ex/2f(ex).

It has been proved in [1] that if F ∈ H2∪L2(0,∞) and V LF (x) has an analytic
extension in the strip Ω := {|�z| ≤ π}, then

L−1F (x) = V −1(V LF (x + iπ) + V LF (x − iπ))/(2π)).

Here, H2 stands for the Hardy space [5].

We see immediately from the last formula that the general scheme (1.3) is ap-
plicable to this particular case of inversion of the Laplace transform.
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