Vietnam Journal of MATHEMATICS © VAST 2004

Temperature Determination from Interior Measurements: the Case of Temperature Nonlinearly Dependent Heat Source*

Pham Hoang Quan and Dang Duc Trong

Dept. of Mathematics and Informatics, Ho Chi Minh City National University, 227 Nguyen Van Cu, Ho Chi Minh City, Vietnam

Abstract. We consider the problem of recovering the temperature u(x, y) in a body represented by the half-plane $\mathbb{R} \times \mathbb{R}^+$ from measurements performed at interior points of the body. The function u(x, y) satisfies the nonlinear elliptic equation

$$\Delta u = f(x, y, u(x, y)), \quad x \in \mathbb{R}, \ y > 0.$$

The problem is ill-posed. Using the method of Fourier transforms and the method of truncated, we shall prove the uniqueness and give a regularization result. Error estimate is given.

We consider the problem of determining the temperature u(x,y) in a body represented by the half-plane $\mathbb{R} \times \mathbb{R}^+$ from measurements performed at interior points of the body. The temperature u(x,y) satisfies the following equation

$$\Delta u = f(x, y, u(x, y)), \quad x \in \mathbb{R}, \quad y > 0 \tag{1}$$

subject to the conditions

$$u(x,1) = \varphi(x) \ x \in \mathbb{R}$$
 (2)

and

$$u(x,y) \to 0 \text{ when } |x|, y \to \infty.$$
 (3)

The paper consists of two parts. In Part I, we determine u(x,y) in the half plane $x \in \mathbb{R}, y > 1$. In Part II, we determine u(x,y) in the strip $x \in \mathbb{R}, 0 \le y < 1$.

^{*}This work was supported by the Council for Natural Sciences of Vietnam.

Part I

Put

$$G(x, y, \xi, \eta) = -\frac{1}{4\pi} \ln \frac{(x - \xi)^2 + (y - \eta)^2}{(x - \xi)^2 + (y + \eta - 2)^2}.$$
 (4)

For y > 1, $x \in \mathbb{R}$, integrating the identity

$$\frac{\partial}{\partial \xi}(uG_{\xi} - Gu_{\xi}) + \frac{\partial}{\partial \eta}(uG_{\eta} - Gu_{\eta}) = -Gf \tag{5}$$

over the domain $(-m, m) \times (1, n) \setminus B((x, y), \varepsilon)$, where $B((x, y), \varepsilon)$ is the ball with center at (x, y) and radius $\varepsilon > 0$ and letting $n \to \infty$, $m \to \infty$, $\varepsilon \to 0$, we get, after some rearrangements,

$$u(x,y) = Au(x,y), (6)$$

where

$$Au(x,y) = \int_{-\infty}^{+\infty} G_{\eta}(x,y;\xi,1)\varphi(\xi)d\xi - \int_{-\infty}^{+\infty} \int_{1}^{+\infty} G(x,y;\xi,\eta)f(\xi,\eta,u(\xi,\eta))d\xi d\eta.$$
 (7)

Then, we readily get the following result:

Theorem 1. Suppose that for all $(\xi, \eta, \zeta) \in \mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}$

$$|f'_{\zeta}(\xi,\eta,\zeta)| \le p(\xi,\eta),$$
 (8)

where $p(\xi, \eta) \in L^1(\mathbb{R} \times (1, +\infty)), p \geq 0$ satisfies

$$K \equiv \sup_{(x,y)\in\mathbb{R}\times(1,+\infty)} \left| \int_{-\infty}^{+\infty} \int_{1}^{+\infty} G(x,y;\xi,\eta) p(\xi,\eta) d\xi d\eta \right| < 1.$$
 (9)

Put

$$J = \left\{ u \in C(\mathbb{R} \times (1, +\infty)) \middle| \lim_{\sqrt{x^2 + y^2} \to +\infty} u(x, y) = 0 \right\}.$$
 (10)

Then $A: J \to J$ is a contraction and hence u is uniquely determined and can be found by successive approximation.

Part II

In Part I (Theorem 1), we found $u(x,y), x \in \mathbb{R}, y \geq 1$. Therefore, $\frac{\partial u}{\partial y}(x,1)$ is determined. Consider the equation

$$\Delta u = f(x, y, u(x, y)), \quad x \in \mathbb{R}, \ y \in (0, 1),$$
 (11)

subject to the conditions (12)-(13) below

$$u(x,1) = \varphi(x), \quad x \in \mathbb{R},$$
 (12)

$$\frac{\partial u}{\partial y}(x,1) = \psi(x), \quad x \in \mathbb{R}.$$
 (13)

Let $C_{\infty}(\mathbb{R} \times [0,1))$ denote the Banach space of bounded complex valued continuous functions w on $\mathbb{R} \times [0,1)$ with the norm

$$||w||_{\infty} = \sup_{(x,y)\in\mathbb{R}\times[0,1)} |w(x,y)|$$

1. Uniqueness of Solution

We first consider the uniqueness problem for (11)–(13)

Theorem 2. We write $u_{(y)}(x) = u(x,y)$.

Let b > 0.

Let \mathcal{I} be the set $\{u \in C_{\infty}(\mathbb{R} \times [0,1)) | u_{(y)} \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R}) \text{ and supp } \hat{u}_{(y)} \subset [-b,b] \ \forall y \in [0,1)\}$ where

$$\hat{u}_{(y)}(\zeta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u_{(y)}(x)e^{-i\zeta x} dx$$
 (14)

Suppose that f satisfies

$$|f(\xi, \eta, u_1(\xi, \eta)) - f(\xi, \eta, u_2(\xi, \eta))| \le p(\xi, \eta) |u_1(\xi, \eta) - u_2(\xi, \eta)|,$$
 (15)

for all $(\xi, \eta) \in \mathbb{R} \times [0, 1)$ and $u_1, u_2 \in \mathcal{I}$, where p is a nonnegative function satisfying

$$\frac{2be^b}{\pi} \int_0^1 \int_{-\infty}^{+\infty} p(\xi, \eta) d\xi d\eta < 1. \tag{16}$$

Then (11)-(13) has at most one solution in \mathcal{I} .

Proof. Let u_1, u_2 be two solutions of (11)–(13). Putting $v = u_1 - u_2$, we have

$$\Delta v = f(x, y, u_1(x, y)) - f(x, y, u_2(x, y)), \quad x \in \mathbb{R}, \ y \in (0, 1),$$
 (17)

$$v(x,1) = 0, \quad x \in \mathbb{R},\tag{18}$$

$$\frac{\partial v}{\partial y}(x,1) = 0, \quad x \in \mathbb{R}.$$
 (19)

Let

$$\Gamma(x, y; \xi, \eta) = -\frac{1}{4\pi} \ln \left[(x - \xi)^2 + (y - \eta)^2 \right],$$

$$G(x, y; \xi, \eta) = \Gamma(x, y; \xi, \eta) - \Gamma(x, -y; \xi, \eta).$$

For $x \in \mathbb{R}$, 0 < y < 1, integrating the identity

$$\frac{\partial}{\partial \xi} \left(-vG_{\xi} + Gv_{\xi} \right) + \frac{\partial}{\partial \eta} \left(-vG_{\eta} + Gv_{\eta} \right) = G \left[f(\xi, \eta, u_{1}(\xi, \eta)) - f(\xi, \eta, u_{2}(\xi, \eta)) \right]$$
(20)

over the domain $(-n, n) \times (0, 1) \setminus B((x, y), \varepsilon)$ and letting $n \to \infty, \varepsilon \to 0$, we get, after some rearrangements,

$$v(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} v(\xi,0) \frac{y}{(x-\xi)^2 + y^2} d\xi$$

$$+ \frac{1}{4\pi} \int_{0}^{1} \int_{-\infty}^{+\infty} \ln \frac{(x-\xi)^2 + (y-\eta)^2}{(x-\xi)^2 + (y+\eta)^2} \left[f(\xi,\eta, u_1(\xi,\eta)) - f(\xi,\eta, u_2(\xi,\eta)) \right] d\xi d\eta. \tag{21}$$

Letting $y \to 1$, we have

$$\int_{-\infty}^{+\infty} v(\xi,0) \frac{1}{(x-\xi)^2 + 1} d\xi + \frac{1}{4} \int_{-\infty}^{+\infty} \int_{0}^{1} \ln \frac{(x-\xi)^2 + (1-\eta)^2}{(x-\xi)^2 + (1+\eta)^2} \cdot \left[f(\xi,\eta, u_1(\xi,\eta)) - f(\xi,\eta, u_2(\xi,\eta)) \right] d\xi d\eta = 0.$$
 (22)

Put

$$F_{(y)}(x) = \frac{y}{x^2 + y^2}, L_{(\eta, y)}(x) = \ln \frac{x^2 + (y - \eta)^2}{x^2 + (y + \eta)^2} \quad (0 < y, \eta < 1, \ x \in R).$$

Then,

$$\hat{F}_{(y)}(\zeta) = \sqrt{\frac{\pi}{2}} e^{-y|\zeta|}$$

and

$$\hat{L}_{(\eta,y)}(\zeta) = \sqrt{2\pi} \frac{1}{|\zeta|} \left[e^{-(y+\eta)|\zeta|} - e^{-|y-\eta||\zeta|} \right]. \tag{23}$$

We write $v_{(y)}(x) = v(x, y)$. Put

$$H_{(\eta, u_1 - u_2)}(\xi) = f(\xi, \eta, u_1(\xi, \eta)) - f(\xi, \eta, u_2(\xi, \eta)).$$
(24)

By (23), Eq. (22) can be rewritten as

$$v_{(0)}(.) * F_{(1)}(x) + \frac{1}{4} \int_{0}^{1} L_{(\eta,1)} * H_{(\eta,u_1-u_2)}(x) d\eta = 0$$

where $\varphi * \psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \varphi(x-\xi)\psi(\xi)d\xi$ with $\varphi \in L^1(\mathbb{R}), \psi \in L^2(\mathbb{R})$.

Taking the Fourier transform, we have

$$\hat{v}_{(0)}(\zeta)\hat{F}_{(1)}(\zeta) + \frac{1}{4} \int_{0}^{1} \hat{L}_{(\eta,1)}(\zeta)\hat{H}_{(\eta,u_1-u_2)}(\zeta)d\eta = 0$$

and by (23)

$$\hat{v}_{(0)}(\zeta) = -\frac{1}{2} \int_{0}^{1} \frac{1}{|\zeta|} \left[e^{-\eta|\zeta|} - e^{\eta|\zeta|} \right] \hat{H}_{(\eta, u_1 - u_2)}(\zeta) d\eta. \tag{25}$$

From (21), we have

$$v_{(y)}(x) = \frac{\sqrt{2}}{\sqrt{\pi}}v_{(0)}(.) * F_{(y)}(x) + \frac{1}{2\sqrt{2\pi}} \int_{0}^{1} L_{(\eta,y)} * H_{(\eta,u_1-u_2)}(x)d\eta.$$
 (26)

Taking the Fourier transform, we have

$$\hat{v}_{(y)}(\zeta) = \frac{\sqrt{2}}{\sqrt{\pi}} \hat{v}_{(0)}(\zeta) \hat{F}_{(y)}(\zeta) + \frac{1}{2\sqrt{2\pi}} \int_{0}^{1} \hat{L}_{(\eta,y)}(\zeta) \hat{H}_{(\eta,u_1-u_2)}(\zeta) d\eta.$$
 (27)

By (23) and (25), Eq. (27) takes the form

$$\hat{v}_{(y)}(\zeta) = \frac{1}{2} \int_{0}^{1} \frac{1}{|\zeta|} \left[e^{(\eta - y)|\zeta|} - e^{-|y - \eta| |\zeta|} \right] \hat{H}_{(\eta, u_1 - u_2)}(\zeta) d\eta. \tag{28}$$

for $\zeta \in [-b, b]$. By (15), we get

$$\left| \hat{H}_{(\eta, u_{1} - u_{2})}(\zeta) \right| = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{+\infty} \left[f(\xi, \eta, u_{1}(\xi, \eta)) - f(\xi, \eta, u_{2}(\xi, \eta)) \right] e^{-i\zeta\xi} d\xi \right| \\
\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left| f(\xi, \eta, u_{1}(\xi, \eta)) - f(\xi, \eta, u_{2}(\xi, \eta)) \right| d\xi \\
\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} p(\xi, \eta) |u_{1}(\xi, \eta) - u_{2}(\xi, \eta)| d\xi \\
\leq \frac{1}{\sqrt{2\pi}} ||v||_{\infty} \int_{-\infty}^{+\infty} p(\xi, \eta) d\xi. \tag{29}$$

Using the inequalities $\left|\frac{e^{\eta|\zeta|}-e^{-\eta|\zeta|}}{|\zeta|}\right| \leq 2e^{|\zeta|} \leq 2e^b$ for $\zeta \in [-b,b]$ and $\eta \in [0,1)$ and $\left|\frac{e^{-\alpha|\zeta|}-e^{-\beta|\zeta|}}{|\zeta|}\right| \leq 2e^{|\zeta|} \leq 2e^b$ for $\alpha,\beta \in [0,2]$, we can prove that

$$|\hat{v}_{(y)}(\zeta)| \le \frac{2}{\sqrt{2\pi}} e^b ||v||_{\infty} \int_{0}^{1} \int_{-\infty}^{+\infty} p(\xi, \eta) d\xi d\eta$$

for all $\zeta \in \mathbb{R}, y \in [0,1)$. Hence

$$\|\hat{v}_{(.)}(.)\|_{\infty} \le \frac{2}{\sqrt{2\pi}} e^b \|v\|_{\infty} \int_{0}^{1} \int_{-\infty}^{+\infty} p(\xi, \eta) d\xi d\eta.$$
 (30)

Likewise

$$|v_{(y)}(x)| = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} \hat{v}_{(y)}(\zeta) e^{ix\zeta} d\zeta \le \frac{1}{\sqrt{2\pi}} 2b \|\hat{v}_{(.)}(.)\|_{\infty} \quad \forall x \in \mathbb{R}, \ y \in [0, 1).$$

Thus

$$||v||_{\infty} \le \frac{1}{\sqrt{2\pi}} 2b ||\hat{v}_{(.)}(.)||_{\infty}.$$
 (31)

The inequalities (30)-(31) imply

$$||v||_{\infty} \le \frac{2}{\pi} b e^b ||v||_{\infty} \int_{0}^{1} \int_{-\infty}^{+\infty} p(\xi, \eta) d\xi d\eta.$$

Hence $u_1 = u_2$ and the proof is complete.

2. Nonlinear Approximation and Regularization

In this section, we determine an approximation of the solution of (11)–(13) in the form

$$u_{\varepsilon} = v_{\varepsilon} + w_{\varepsilon},$$

where v_{ε} is an approximation to the solution v of the problem

$$\Delta v = 0, \quad x \in \mathbb{R}, \ y \in (0, 1), \tag{32}$$

$$v(x,1) = \varphi(x), \quad x \in \mathbb{R},$$
 (33)

$$\frac{\partial v}{\partial u}(x,1) = \psi(x), \quad x \in \mathbb{R},$$
 (34)

and w_{ε} is an approximation to the solution w of the problem

$$\Delta w = g(x, y, w), \quad x \in \mathbb{R}, \ y \in (0, 1), \tag{35}$$

$$w(x,1) = 0, \quad x \in \mathbb{R},\tag{36}$$

$$\frac{\partial w}{\partial u}(x,1) = 0, \quad x \in \mathbb{R},$$
 (37)

in which $g(x, y, w) = f(x, y, w + v_0)$ with v_0 being the exact solution of Problem (36)–(38).

2.1. Regularization of Problem (32)–(34)

For $x \in \mathbb{R}$, 0 < y < 1, integrating the identity

$$\frac{\partial}{\partial \xi} (-vG_{\xi} + Gv_{\xi}) + \frac{\partial}{\partial \eta} (-vG_{\eta} + Gv_{\eta}) = 0$$

over the domain $(-n, n) \times (0, 1) \setminus B((x, y), \varepsilon)$ and letting $n \to \infty, \varepsilon \to 0$, we get, after some rearrangements,

$$v(x,y) = -\int_{-\infty}^{+\infty} \left[\varphi(\xi) G_{\eta}(x,y,\xi,1) - G(x,y,\xi,1) \psi(\xi) \right] d\xi + \int_{-\infty}^{+\infty} G_{\eta}(x,y,\xi,0) v(\xi,0) d\xi.$$
(38)

Letting $y \to 1$ in (38), we have

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{(x-\xi)^2 + 1} v_{(0)}(\xi) d\xi + \int_{-\infty}^{+\infty} \left[-\varphi(\xi) G_{\eta}(x,1,\xi,1) + G(x,1,\xi,1) \psi(\xi) \right] d\xi = \varphi(x). \tag{39}$$

This equation can be rewritten in operator form as follows

$$F_{(1)} * v_{(0)}(.)(x) = \pi K_{(1)}(x) + \frac{\sqrt{\pi}}{\sqrt{2}}\varphi(x), \tag{40}$$

where

$$K_{(y)}(x) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[-\varphi(\xi)G_{\eta}(x, y, \xi, 1) + G(x, y, \xi, 1)\psi(\xi) \right] d\xi. \tag{41}$$

Put

$$M_{(y,1)}(x) = \frac{1-y}{x^2 + (y-1)^2} - \frac{1+y}{x^2 + (y+1)^2}$$

We have

$$\hat{M}_{(y,1)}(\zeta) = \frac{1}{2} \pi \left[e^{(y-1)|\zeta|} - e^{-(y+1)|\zeta|} \right]. \tag{42}$$

On the other hand, in view of (41), (42) and (23), we get

$$K_{(y)}(x) = -\frac{1}{4\pi} \left[2\varphi * M_{(y,1)}(x) + \psi * L_{(1,y)}(x) \right]. \tag{43}$$

By (23) and (40), we have

$$\hat{v}_{(0)}(\zeta) = e^{|\zeta|} \left(\sqrt{2\pi} \hat{K}_{(1)}(\zeta) + \hat{\varphi}(\zeta) \right). \tag{44}$$

Applying the Fourier transform with respect to the variable x in the relation (38), we get, in view of (44),

$$\hat{v}_{(y)}(\zeta) = N(\zeta, y) \tag{45}$$

where

$$N(\zeta, y) = e^{|\zeta|} \hat{F}_{(y)}(\zeta) \left(2\hat{K}_{(1)}(\zeta) + \frac{\sqrt{2}}{\sqrt{\pi}} \hat{\varphi}(\zeta) \right) - \sqrt{2\pi} \hat{K}_{(y)}(\zeta).$$

We get the following result, the proof of which is immediate (and is not reproduced here).

Proposition 1. Suppose $v_{(y)}(.) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ and $\hat{v}_{(y)}(.) \in L^1(\mathbb{R})$ for $y \in [0,1)$. Let v_0 be an exact solution of (45) with exact data N_0 in the right hand side and let N be measured data such that $||N-N_0||_2 < \varepsilon, ||.||_2$ the norm in $L^2(\mathbb{R} \times (0,1))$. Then there exists a regularized solution v_{ε} such that

$$||v_0 - v_{\varepsilon}||_2 < \varepsilon.$$

2.2. Regularization of Problem (35)–(37)

Let $v_0 \in L^2(\mathbb{R} \times (0,1))$ be an exact solution of (45) and let $v_{\varepsilon} \in L^2(\mathbb{R} \times (0,1))$ be a regularized solution.

For $x \in \mathbb{R}$, 0 < y < 1, integrating the identity

$$\frac{\partial}{\partial \xi}(-uG_{\xi} + Gu_{\xi}) + \frac{\partial}{\partial \eta}(-uG_{\eta} + Gu_{\eta}) = Gg$$

over the domain $[(-n,n)\times(0,1)]\setminus B((x,y),\varepsilon)$ and letting $n\to\infty,\varepsilon\to0$, we get, after some rearrangements,

$$w(x,y) = \int_{-\infty}^{+\infty} w(\xi,0)G_{\eta}(x,y,\xi,0)d\xi$$

$$-\int_{-\infty}^{+\infty} \int_{0}^{1} G(x,y,\xi,\eta)g(\xi,\eta,w(\xi,\eta))d\xi d\eta.$$
(46)

This gives

$$w(x,y) = \int_{-\infty}^{+\infty} w(\xi,0)G_{\eta}(x,y,\xi,0)d\xi - \int_{-\infty}^{+\infty} \int_{0}^{1} G(x,y,\xi,\eta)f(\xi,\eta,v_{0}(\xi,\eta) + w(\xi,\eta))d\xi d\eta.$$
(47)

We write $w_{(y)}(x) = w(x, y)$.

Suppose that f satisfies the following conditions

$$f(\xi, \eta, 0) = 0, \tag{48}$$

$$\left| f(\xi, \eta, \zeta_1) - f(\xi, \eta, \zeta_2) \right| \le \left| p(\xi, \eta) \right| \left| \zeta_1 - \zeta_2 \right| \tag{49}$$

for all $(\xi, \eta, \zeta) \in \mathbb{R} \times [0, 1) \times \mathbb{R}$, where $p \in L^2(\mathbb{R} \times (0, 1))$.

Under the foregoing condition on f, we state (and prove) the following Lemma 1, which will be used in the proof of Theorem 3.

Lemma 1. Suppose that f satisfies the conditions (48)–(49) and that $v_{\varepsilon} \in L^2(\mathbb{R} \times (0,1))$.

Let
$$T_{(v_{\varepsilon})}: L^2(\mathbb{R} \times (0,1)) \to L^2(\mathbb{R} \times (0,1))$$
 be defined by

$$T_{(v_{\varepsilon})}w(x,y) = \frac{1}{4\pi} \int_{-b}^{b} \int_{0}^{1} \int_{-\infty}^{+\infty} \frac{1}{|\zeta|} \left[e^{(\eta-y)|\zeta|} - e^{-|y-\eta||\zeta|} \right] f_{(\eta,w,v_{\varepsilon})}(\xi) e^{-i\xi\zeta} e^{i\zeta x} d\xi d\eta d\zeta$$
(50)

where

$$f_{(\eta, w, v_{\varepsilon})}(\xi) \equiv f(\xi, \eta, v_{\varepsilon}(\xi, \eta) + w(\xi, \eta))$$

and b is a fixed positive number such that

$$\alpha \equiv \frac{4}{\pi} b e^{2b} \|p\|_2^2 < 1.$$

Then $T_{(v_{\varepsilon})}$ is a contraction.

Proof. Put

$$\begin{split} Q_{(y)}(\zeta) &= Q(y,\zeta) = \frac{1}{2\sqrt{2\pi}} \int\limits_{0}^{1} \int\limits_{-\infty}^{+\infty} \frac{1}{|\zeta|} \left[e^{(\eta-y)|\zeta|} - e^{-|y-\eta| \; |\zeta|} \right] f_{(\eta,w,v_{\varepsilon})}(\xi) e^{-i\xi\zeta} d\xi d\eta, \\ & \zeta \in [-b,b], y \in [0,1) \end{split}$$

and

$$Q_{(y)}(\zeta) = 0, \quad \zeta \notin [-b, b], y \in [0, 1).$$

Using the inequalities

$$\frac{1}{|\zeta|} |e^{(\eta - y)|\zeta|} - e^{-|y - \eta||\zeta|}| \le 4e^b \ \forall \eta, y \in [0, 1), \zeta \in [-b, b]$$

and

$$|f_{(\eta,w,v_{\varepsilon})}(\xi)| \leq |p(\xi,\eta)| \left(|v_{\varepsilon}(\xi,\eta)| + |w(\xi,\eta)| \right) \ \forall (\xi,\eta) \in \mathbb{R} \times [0,1), w \in L^{2}(\mathbb{R} \times [0,1)),$$

we get
$$Q_{(y)} \in L^2(\mathbb{R})$$
 and $\widehat{T_{(v_\varepsilon)}w_{(y)}}(\zeta) = Q_{(y)}(\zeta)$.

It follows that

$$T_{(v_{\varepsilon})}w \in L^2(\mathbb{R} \times (0,1)),$$

$$||T_{(v_{\varepsilon})}w_{1} - T_{(v_{\varepsilon})}w_{2}||_{2}^{2} = ||\widehat{T_{(v_{\varepsilon})}w}_{1(.)}(.) - \widehat{T_{(v_{\varepsilon})}w}_{2(.)}(.)||_{2}^{2}$$

$$\leq \frac{1}{8\pi} \int_{-b}^{b} \int_{0}^{1} \int_{-\infty}^{1} \int_{-\infty}^{+\infty} \frac{1}{|\zeta|^{2}2} \left[e^{\left(\eta - y\right)|\zeta|} - e^{-|\eta - y||\zeta|}\right]^{2} p^{2}(\xi, \eta) d\xi d\eta d\zeta dy ||w_{1} - w_{2}||_{2}^{2}$$

$$\leq \frac{4}{\pi} b e^{2b} ||p||_{2}^{2} ||w_{1} - w_{2}||_{2}^{2}$$

$$\leq \alpha ||w_{1} - w_{2}||_{2}^{2}$$
(51)

Hence $T_{(v_{\varepsilon})}$ is a contraction. This completes the proof.

Theorem 3. Let $v_0 \in L^2(\mathbb{R} \times (0,1))$ be an exact solution of (45) and let $v_{\varepsilon} \in L^2(\mathbb{R} \times (0,1))$ be a regularized solution.

Suppose that f satisfies the conditions (48)–(49).

Assume the exact solution $w_0 \in L^2(\mathbb{R} \times (0,1))$ of (35)–(37) satisfies

$$\widehat{w}_{0(\eta)}(\zeta)e^{|\zeta|}\sqrt{|\zeta|} \in L^2(\mathbb{R} \times (0,1)). \tag{52}$$

Then there exists a function w_{ε} such that

$$||w_{\varepsilon} - w_0||_2 \le \sqrt{\frac{18E^2||p||_2^2}{\pi} + 2||v_{\varepsilon} - v_0||_2^2},$$

where

$$E = \|\widehat{w}_{0(\eta)}(\zeta)e^{|\zeta|}\sqrt{|\zeta|}\|_{2}. \tag{53}$$

Proof. Let b be the positive solution of the equation

$$\frac{8}{\pi}be^{2b}\|p\|_2^2 = \frac{1}{3}. (54)$$

Let $T_{(v_{\varepsilon})}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by

$$T_{(v_{\varepsilon})}w(x,y) = \frac{1}{4\pi} \int_{-b}^{b} \int_{-\infty}^{1} \int_{-\infty}^{+\infty} \frac{1}{|\zeta|} \left[e^{(\eta-y)|\zeta|} - e^{-|y-\eta||\zeta|} \right] f_{(\eta,w,v_{\varepsilon})}(\xi) e^{-i\xi\zeta} e^{i\zeta x} d\xi d\eta d\zeta.$$
(55)

Since $T_{(v_{\varepsilon})}$ is a contraction, there exists a unique $w_{\varepsilon} \in L^2(\mathbb{R})$ such that

$$T_{(v_{\varepsilon})}w_{\varepsilon}=w_{\varepsilon}$$

and w_{ε} can be obtained by successive approximation.

As in the proof of Theorem 2, we have

$$\hat{w}_{0(y)}(\zeta) = \frac{1}{2\sqrt{2\pi}} \int_{0}^{1} \int_{-\infty}^{+\infty} \frac{1}{|\zeta|} \left[e^{(\eta - y)|\zeta|} - e^{-|y - \eta||\zeta|} \right] f_{(\eta, w_0, v_0)}(\xi) e^{-i\xi\zeta} d\xi d\eta.$$

Furthermore

$$\begin{split} &\|w_{0}-w_{\varepsilon}\|_{2}^{2} = \|\widehat{w}_{0(.)}-\widehat{w}_{\varepsilon(.)}\|_{2}^{2} \\ &\leq \int_{-\infty}^{+\infty} \int_{0}^{1} |\widehat{w}_{0(y)}(\zeta) - \widehat{T_{(v_{\varepsilon})}w_{\varepsilon(y)}}(\zeta)|^{2} dy d\zeta \\ &\leq 2 \int_{|\zeta| > b} \int_{0}^{1} (\widehat{w}_{0(y)}(\zeta))^{2} dy d\zeta \\ &+ \frac{1}{4\pi} \int_{-b}^{b} \int_{0}^{1} |\int_{0}^{1} \int_{-\infty}^{+\infty} \frac{1}{|\zeta|} \left[e^{(\eta-y)|\zeta|} - e^{-|y-\eta||\zeta|} \right] \\ &\times \left[f_{(\eta,w_{0},v_{0})}(\xi) - f_{(\eta,w_{\varepsilon},v_{\varepsilon})}(\xi) \right] e^{-i\xi\zeta} d\xi d\eta \Big|^{2} dy d\zeta \\ &\leq 2 \int_{|\zeta| > b} \int_{0}^{1} \frac{(\widehat{w}_{0(y)}(\zeta) \sqrt{|\zeta|} e^{|\zeta|})^{2}}{be^{2b}} dy d\zeta \\ &+ \frac{1}{4\pi} \int_{-b}^{b} \int_{0}^{1} |\int_{0}^{1} \int_{-\infty}^{+\infty} \frac{1}{|\zeta|} \left[e^{(\eta-y)|\zeta|} - e^{-|y-\eta||\zeta|} \right] \\ &\times \left[f_{(\eta,w_{0},v_{0})}(\xi) - f_{(\eta,w_{\varepsilon},v_{\varepsilon})}(\xi) \right] e^{-i\xi\zeta} d\xi d\eta \Big|^{2} dy d\zeta \\ &\leq \frac{2E^{2}}{be^{2b}} + \frac{1}{3} (\|w_{0} - w_{\varepsilon} + v_{0} - v_{\varepsilon}\|_{2})^{2}, \end{split}$$

therefore

$$\frac{1}{3} \|w_0 - w_{\varepsilon}\|_2^2 \le \frac{16E^2 \|p\|_2^2}{\pi} + \frac{2}{3} \|v_0 - v_{\varepsilon}\|_2^2$$

Hence

$$||w_0 - w_{\varepsilon}||_2 \le \sqrt{\frac{48E^2||p||_2^2}{\pi} + 2||v_0 - v_{\varepsilon}||_2^2}.$$

This completes the proof.

Regularization of Problem (11)-(13)

From Proposition 1 and Theorem 3 we readily get the following result:

Theorem 4. Let $N(\zeta, y)$ be defined in (45).

Let u_0 be an exact solution of (11)–(13) corresponding to the exact data $N_0(\zeta, y)$ and let N be a measured data such that

$$||N-N_0||_2<\varepsilon.$$

Under assumptions in Proposition 1 and Theorem 3, there exists a regularized solution

$$u_{\varepsilon} = v_{\varepsilon} + w_{\varepsilon}$$

such that

$$||u_{\varepsilon} - u_0||_2 \le \varepsilon + \sqrt{\frac{48E^2||p||_2^2}{\pi} + 2\varepsilon^2}.$$

References

- 1. D.D. Ang, R. Gorenflo, V.K. Le, and D.D. Trong, Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction, Lecture Notes in Mathematics, Springer, Heidelberg, 2002.
- 2. J. V. Beck, B. Blackwell and C. R. St. Clair, Jr., *Inverse Heat Conduction*, John Wiley & Sons, Inc., 1985.
- 3. A. Friedman, Partial Differential Equations of Parabolic Type, Englewood Cliffs, N. J., Prentice-Hall Inc., 1966.
- 4. C. W.Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, 1993.
- 5. T. T. Le, D. N. Thanh and P. H. Tri, Surface temperature determination from Borehole measurements: A finite slab model, *Acta Mathematica Vietnamica* **20** (1995) 193–206.