Vietnam Journal of MATHEMATICS © VAST 2005

Using Boundary-Operator Method for Approximate Solution of a Boundary Value Problem (BVP) for Triharmonic Equation*

Dang Quang A

Hanoi Institute of Inform. Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam

Received April 25, 2003 Revised November 23, 2004

Abstract In this paper we propose and study an iterative method for solving a BVP for a triharmonic type equation. It is based on using a boundary-domain operator defined on pairs of boundary and domain functions in combination with parametric extrapolation technique. This method iteratively reduces the BVP for sixth order equation to a sequence of BVPs for Poisson equation.

1. Introduction

In earlier papers we developed the boundary operator method for constructing and investigating the convergence of a domain decomposition method for a BVP for second order elliptic equation with discontinuous coefficients [1], and an iterative method for the Dirichlet problem for the biharmonic type equation $\Delta^2 u - a\Delta u + bu = f$ when $a^2 - 4b \ge 0$ [2]. In the case if the latter condition is not satisfied, for example for the equation $\Delta^2 u + bu = f$ describing the bend of a plate on elastic foundation, the boundary operator method does not work. Therefore, for treating this case in [3] we have introduced boundary-domain operator defined on pairs of domain functions and boundary functions. With the help of this operator the BVP for biharmonic type equation is reduced to a

 $^{^*}$ This work was supported in part by the National Basic Research Program in Natural Science Vietnam.

10 Dang Quang A

sequence of BVPs for Poisson equation.

In this paper the boundary-domain operator method is used for constructing and studying an iterative method for the following BVP for triharmonic equation

$$\Delta^{3}u - au = f(x), \quad x \in \Omega,$$

$$u|_{\Gamma} = 0, \quad \Delta u|_{\Gamma} = 0,$$

$$\frac{\partial u}{\partial \nu}\Big|_{\Gamma} = 0,$$
(1)

where Δ is the Laplace operator, Ω is a bounded domain in $R^n (n \geq 2)$, Γ is the sufficiently smooth boundary of Ω , ν is the outward normal to Γ and a is a positive number. The solvability and smoothness of the solution of problem (1) follows from the general theory of elliptic problems (see [5]), namely, if $f \in H^s(\Omega)$ then there exists a unique solution $u \in H^{s+6}(\Omega)$. Here, as usual, $H^s(\Omega)$ is Sobolev space.

2. Reduction of BVP to Boundary-Domain Operator Equation

We set

$$\Delta u = v, \Delta v = w$$

and

$$\varphi = au \tag{2}$$

and denote by w_0 the trace of w on Γ , i.e. $w_0 = w|_{\Gamma}$. Then from (1) we come to the sequence of problems

$$\Delta w = f + \varphi, \quad x \in \Omega, \quad w|_{\Gamma} = w_0,$$

$$\Delta v = w, \quad x \in \Omega, \quad v|_{\Gamma} = 0,$$

$$\Delta u = v, \quad x \in \Omega, \quad u|_{\Gamma} = 0,$$
(3)

where the functions φ and w_0 are temporarily undefined. The solution u from the above problems should satisfy the last condition in (1) and the relation (2), i.e.

$$au = \varphi, \quad \frac{\partial u}{\partial \nu}\Big|_{\Gamma} = 0.$$
 (4)

Now, we introduce the operator B defined on pairs of boundary functions w_0 and domain functions φ

$$z = \begin{pmatrix} w_0 \\ \varphi \end{pmatrix}$$

by the formula

$$Bz = \begin{pmatrix} -a\frac{\partial u}{\partial \nu} \\ \varphi - au \end{pmatrix},\tag{5}$$

where u is found from the sequence of problems

$$\Delta w = \varphi, \quad x \in \Omega, \quad w|_{\Gamma} = w_0,
\Delta v = w, \quad x \in \Omega, \quad v|_{\Gamma} = 0,
\Delta u = v, \quad x \in \Omega, \quad u|_{\Gamma} = 0.$$
(6)

Notice that the operator B primarily defined on smooth functions is extended by continuity on the whole space $H = L_2(\Gamma) \times L_2(\Omega)$. Its properties will be investigated later.

Theorem 1.

a) Suppose that u is the solution of the original Problem (1) and

$$w_0 = \Delta^2 u|_{\Gamma}, \quad \varphi = au. \tag{7}$$

Then the pair of functions $z = (w_0, \varphi)^T$, where T denotes transpose, satisfies the operator equation

$$Bz = F, (8)$$

where

$$F = \begin{pmatrix} a \frac{\partial u_2}{\partial \nu} \\ a u_2 \end{pmatrix},\tag{9}$$

 u_2 being determined from the problems

$$\Delta w_2 = f, \quad x \in \Omega, \quad w_2|_{\Gamma} = 0,$$

$$\Delta v_2 = w_2, \quad x \in \Omega, \quad v_2|_{\Gamma} = 0,$$

$$\Delta u_2 = v_2, \quad x \in \Omega, \quad u_2|_{\Gamma} = 0.$$
(10)

b) Conversely, each pair of functions $z = (w_0, \varphi)^T$, which is the solution of the equation (8) - (10) uniquely defines a function u which is the solution of the Problem (1) such that the relation (7) is valid.

Proof. The Part a) of the theorem is easy proved if after reducing the Problem (1) to the sequence of the problems (3) we represent

$$(u, v, w) = (u_1, v_1, w_1) + (u_2, v_2, w_2),$$

where u_1, v_1, w_1 satisfy the problems (6) and u_2, v_2, w_2 satisfy (10) and take into account the definition of the operator B.

For proving Part b) let u_1 be the solution of (6). Then by the definition of B we have

$$Bz = \begin{pmatrix} -a\frac{\partial u_1}{\partial \nu} \\ \varphi - au_1 \end{pmatrix}.$$

Take into account (9), from (8) we obtain

$$\frac{\partial(u_1+u_2)}{\partial\nu}=0, \quad \varphi-a(u_1+u_2)=0.$$

Now, it is easy to verify that the function $u = u_1 + u_2$ is the solution of Problem (1) and there holds the relation (7).

The theorem is proved.

Now, let us study the properties of B in the space H with the scalar product

$$(z,\bar{z}) = (w_0,\bar{w}_0)_{L_2(\Gamma)} + (\varphi,\bar{\varphi})_{L_2(\Omega)}$$

for the elements $z = (w_0, \varphi)^T$ and $\bar{z} = (\bar{w}_0, \bar{\varphi})^T$.

Property 1. B is symmetric and positive in H.

Proof. For any functions z and \bar{z} belonging to H we have

$$(Bz,\bar{z}) = \int_{\Gamma} -a \frac{\partial u}{\partial \nu} \bar{w}_0 d\Gamma + \int_{\Omega} (\varphi - au) \bar{\varphi} dx.$$
 (11)

Taking into account the expression of Bz given by (5)-(6) and of $B\bar{z}$ by the same formula, where all the functions are marked with a bar over, we make transformations of the first integral

$$J_{1} = \int_{\Gamma} -a \frac{\partial u}{\partial \nu} \bar{w}_{0} d\Gamma = \int_{\Gamma} -a \frac{\partial u}{\partial \nu} \bar{w} d\Gamma = \int_{\Gamma} (au \frac{\partial \bar{w}}{\partial \nu} - a \frac{\partial u}{\partial \nu} \bar{w}) d\Gamma$$
$$= a \int_{\Omega} (u \Delta \bar{w} - \bar{w} \Delta u) dx = a \int_{\Omega} (u \bar{\varphi} - v \Delta \bar{v}) dx$$
$$= a \int_{\Omega} u \bar{\varphi} dx + a \int_{\Omega} \operatorname{grad} v. \operatorname{grad} \bar{v} dx.$$

From here and (11) it follows that

$$(Bz, \bar{z}) = a \int_{\Omega} \operatorname{grad} v.\operatorname{grad} \bar{v} dx + \int_{\Omega} \varphi \bar{\varphi} dx = (B\bar{z}, z).$$

It means that B is symmetric in H.

Furthermore, we have

$$(Bz, z) = a \int_{\Omega} |\operatorname{grad} v|^2 dx + \int_{\Omega} \varphi^2 dx \ge 0.$$

Therefore, (Bz, z) = 0 if and only if $\varphi = 0$ and $\operatorname{grad} v = 0$. Since $v|_{\Gamma} = 0$ we have v = 0 in Ω . This implies $w_0 = 0$. Hence z = 0, and the positiveness of the operator B is proved.

Property 2. B can be decomposed into the sum of a symmetric, positive, completely continuous operator and a projection operator, namely,

$$B = B_0 + I_2, (12)$$

where B_0 and I_2 are defined as follows

$$z = \begin{pmatrix} w_0 \\ \varphi \end{pmatrix}, \quad B_0 z = \begin{pmatrix} -a \frac{\partial u}{\partial \nu} \\ -a u \end{pmatrix}, \quad I_2 z = \begin{pmatrix} 0 \\ \varphi \end{pmatrix},$$
 (13)

u being defined from (6).

The complete continuity of B_0 is easily followed from the embedding theorems of Sobolev spaces (see, e.g., [5]). The analogous technique was used in our earlier works [1, 3].

Property 3. B is bounded in H.

This fact is a direct corollary of Property 2.

Since $B = B^* > 0$ but is not completely continuous in H the use of two-layer iterative schemes to the equation (8) does not guarantee its convergence. Hence, in the next section we will disturb this equation and apply the parametric extrapolation method (see [1-4]) for constructing approximate solution for Problem (1).

3. Construction of Approximate Solution of BVP (1) Via a Perturbed Problem

We associate with the original problem (1) the following perturbed problem

$$\Delta^{3} u_{\delta} - a u_{\delta} = f(x), \quad x \in \Omega,$$

$$u_{\delta}|_{\Gamma} = 0, \quad \Delta u_{\delta}|_{\Gamma} = 0,$$

$$\left(-a \frac{\partial u_{\delta}}{\partial \nu} + \delta \Delta^{2} u_{\delta} \right) \Big|_{\Gamma} = 0,$$
(14)

where δ is a small parameter.

Theorem 2. Suppose that $f \in H^{s-6}(\Omega)$, $s \geq 6$. Then for the solution of the problem (14) there holds the following asymptotic expansion

$$u_{\delta} = u + \sum_{i=1}^{N} \delta^{i} y_{i} + \delta^{N+1} y_{\delta}, \quad x \in \Omega, \quad 0 \leqslant 3N \leqslant s - 5/2,$$
 (15)

where $y_0 = u$ is the solution of (1), y_i (i = 1, ..., N) are functions independent of δ , $y_i \in H^{s-3i}(\Omega)$, $y_{\delta} \in H^{s-3N}(\Omega)$ and

$$||y_{\delta}||_{H^2(\Omega)} \leqslant C_1,\tag{16}$$

 C_1 being independent of δ .

Proof. Under the assumption of the theorem, by [5] there exists a unique solution $u \in H^s(\Omega)$ of the problem (14). After substituting (15) into (14) and balancing coefficients of like powers of δ we see that y_i and y_δ satisfy the following problems

$$\Delta^{3} y_{i} - a y_{i} = 0, \quad x \in \Omega,$$

$$y_{i}|_{\Gamma} = 0, \quad \Delta y_{i}|_{\Gamma} = 0,$$

$$a \frac{\partial y_{i}}{\partial \nu}\Big|_{\Gamma} = \Delta^{2} y_{i-1}\Big|_{\Gamma}, \quad i = 1, ..., N,$$

$$(17)$$

14 Dang Quang A

$$\Delta^{3} y_{\delta} - a y_{\delta} = 0, \quad x \in \Omega,$$

$$y_{\delta}|_{\Gamma} = 0, \quad \Delta y_{\delta}|_{\Gamma} = 0,$$

$$\left(-a \frac{\partial y_{\delta}}{\partial \nu} + \delta \Delta^{2} y_{\delta} \right) \Big|_{\Gamma} = -\Delta^{2} y_{N} \Big|_{\Gamma}.$$
(18)

Once again, using [5] it is not difficult to establish successively that (17) has a unique solution $y_i \in H^{s-3i}(\Omega)$ and (18) has a unique solution $y_\delta \in H^{s-3N}(\Omega)$. Clearly, y_i (i = 1, ..., N) do not depend on δ . It remains to estimate y_δ . For this purpose we reduce (18) to a boundary operator equation. We set

$$\Delta y_{\delta} = v_{\delta}, \ \Delta v_{\delta} = w_{\delta}$$

and

$$w_{\delta}|_{\Gamma} = w_{\delta 0}, \quad ay_{\delta} = \varphi_{\delta}.$$

Then we get

$$\Delta w_{\delta} = \varphi_{\delta}, \quad x \in \Omega, \quad w_{\delta}|_{\Gamma} = w_{\delta 0},
\Delta v_{\delta} = w_{\delta}, \quad x \in \Omega, \quad v_{\delta}|_{\Gamma} = 0,
\Delta y_{\delta} = v_{\delta}, \quad x \in \Omega, \quad y_{\delta}|_{\Gamma} = 0.$$
(19)

It is easy to see that the pair of functions $z_{\delta} = (w_{\delta 0}, \varphi_{\delta})^T$ satisfies the operator equation

$$Bz_{\delta} + \delta I_1 z_{\delta} = h, \tag{20}$$

where

$$h = \begin{pmatrix} -\Delta^2 y_N |_{\Gamma} \\ 0 \end{pmatrix}, \quad I_1 z_{\delta} = \begin{pmatrix} w_{\delta 0} \\ 0 \end{pmatrix}.$$

Using Lemma 1 in Appendix we have

$$(Bz_{\delta}, z_{\delta}) \leqslant (Bz_0, z_0), \tag{21}$$

where z_0 is the solution of the equation $Bz_0 = h$. This equation has a solution because it is the one that Problem (18) with $\delta = 0$ may be reduced to.

In Sec. 2, when investigating the properties of B we have established that

$$(Bz_{\delta}, z_{\delta}) = a \int_{\Omega} |\operatorname{grad} v_{\delta}|^{2} dx + \int_{\Omega} \varphi_{\delta}^{2} dx.$$
 (22)

In view of the Fridrichs inequality we have

$$\int_{\Omega} |\operatorname{grad} v_{\delta}|^2 dx \ge C_2 ||v_{\delta}||_{L_2(\Omega)}^2. \tag{23}$$

On the other hand, since y_{δ} satisfies the last problem in (19) there holds the estimate

$$||y_{\delta}||_{H^2(\Omega)} \leqslant C_3 ||v_{\delta}||_{L_2(\Omega)}$$

From here and (23), (22) and (21) we obtain

$$||y_{\delta}||_{H^2(\Omega)} \leqslant C_1,$$

where $C_1 = \frac{C_3}{\sqrt{aC_2}}(Bz_0, z_0)^{1/2}$, C_2, C_3 and z_0 being independent of δ . Thus, the theorem is proved.

As usual (see [1-4]), we construct an approximate solution of the original problem (1) by the formula

$$U^E = \sum_{i=1}^{N+1} \gamma_i u_{\delta/i},\tag{24}$$

where

$$\gamma_i = \frac{(-1)^{N+1-i}i^{N+1}}{i!(N+1-i)!},$$

 $u_{\delta/i}$ is the solution of (14) with the parameter δ/i (i = 1, ..., N + 1). Then, it is easy to obtain the following

Theorem 3. For the approximate solution in the form (24) for the original Problem (1) there holds the estimate

$$||U^E - u||_{H^2(\Omega)} \leqslant C\delta^{N+1}.$$

where u is the solution of (1), C is a constant independent of δ .

4. Iterative Method for Solving Problem (14)

First we notice that in the same way as for the original Problem (1), Problem (14) may be reduced to the operator equation

$$B_{\delta}z_{\delta} = F,\tag{25}$$

for $z_{\delta} = (w_{\delta 0}, \varphi_{\delta})^T$, where $w_{\delta 0} = \Delta^2 u_{\delta}|_{\Gamma}$, $\varphi_{\delta} = au_{\delta}$, $B_{\delta} = B + \delta I_1$, B and F are defined as in Theorem 1. Clearly, B_{δ} is bounded and

$$B_{\delta} = B_{\delta}^* \ge \delta I,\tag{26}$$

where I is the identity operator.

For solving (25) we can apply the general theory of two-layer iterative scheme for equation with symmetric, positive definite operator [6]. Namely, we consider the iterative scheme

$$\frac{z_{\delta}^{(k+1)} - z_{\delta}^{(k)}}{\tau_{\delta,k+1}} + B_{\delta} z_{\delta}^{(k)} = F, \tag{27}$$

where $\tau_{\delta,k+1}$ is the Chebyshev collection of parameters according to bounds $\gamma_{\delta}^{(1)} = \delta, \ \gamma_{\delta}^{(2)} = \delta + \|B\|$ (see [6] for detail). In the case of simple iteration

$$\tau_{\delta,k} \equiv \tau_{\delta,0} = \frac{2}{\gamma_{\delta}^{(1)} + \gamma_{\delta}^{(2)}}$$

we get

$$||z_{\delta}^{(k)} - z_{\delta}||_{H} \leqslant (\rho_{\delta})^{k} ||z_{\delta}^{(0)} - z_{\delta}||_{H}, \tag{28}$$

where

$$\rho_{\delta} = \frac{1 - \xi_{\delta}}{1 + \xi_{\delta}}, \ \xi_{\delta} = \frac{\gamma_{\delta}^{(1)}}{\gamma_{\delta}^{(2)}}$$

and as above $H = L_2(\Gamma) \times L_2(\Omega)$.

The iterative scheme (27) may be realized by the following algorithm

- (i) Given a start approximation $z_{\delta}^{(0)}=(w_{\delta 0}^{(0)},\varphi_{\delta}^{(0)})^{T}$. (ii) Knowing $z_{\delta}^{(k)}=(w_{\delta 0}^{(k)},\varphi_{\delta}^{(k)})^{T}$, (k=0,1,...), solve successively three prob-

$$\Delta w_{\delta}^{(k)} = f + \varphi_{\delta}^{(k)}, \quad x \in \Omega, \quad w_{\delta}^{(k)}|_{\Gamma} = w_{\delta 0}^{(k)},
\Delta v_{\delta}^{(k)} = w_{\delta}^{(k)}, \quad x \in \Omega, \quad v_{\delta}^{(k)}|_{\Gamma} = 0,
\Delta u_{\delta}^{(k)} = v_{\delta}^{(k)}, \quad x \in \Omega, \quad u_{\delta}^{(k)}|_{\Gamma} = 0.$$
(29)

iii) Compute the new approximation of $z^{(k+1)}_{\delta} = (w^{(k+1)}_{\delta 0}, \varphi^{(k+1)}_{\delta})^T$

$$w_{\delta 0}^{(k+1)} = w_{\delta 0}^{(k)} + \tau_{\delta,k+1} \left(a \frac{\partial u_{\delta}^{(k)}}{\partial \nu} \Big|_{\Gamma} - \delta w_{\delta 0}^{(k)}\right), \quad x \in \Gamma,$$

$$\varphi_{\delta}^{(k+1)} = \varphi_{\delta}^{(k)} + \tau_{\delta,k+1} \left(a u_{\delta}^{(k)} - \varphi_{\delta}^{(k)}\right), \quad x \in \Omega.$$

Using estimates for the solution of elliptic problems [5] and taking into account (28) we get the estimate

$$||u_{\delta}^{(k)} - u_{\delta}||_{H^{5/2}(\Omega)} \le C(\rho_{\delta})^{k} ||z_{\delta}^{(0)} - z_{\delta}||_{H},$$

where C is a constant independent of δ and $z_{\delta} = (\Delta^2 u_{\delta}|_{\Gamma}, au_{\delta})^T$ as was mentioned in the beginning of the section.

Appendix

Lemma 1. Suppose A is a linear, symmetric and positive operator, P is a nonnegative operator in a Hilbert space H with the scalar product (.,.). Let u_{δ} and u_0 be the solutions of the equations

$$Au_{\delta} + \delta Pu_{\delta} = h, \quad \delta > 0, \tag{30}$$

$$Au_0 = h. (31)$$

Then there holds the estimate

$$(Au_{\delta}, u_{\delta}) \leqslant (Au_0, u_0). \tag{32}$$

Proof. From (30) and (31) we have

$$Au_{\delta} + \delta Pu_{\delta} = Au_{0}.$$

Boundary-Operator Method for Approximate Solution of Boundary Value Problem 17

Scalarly multiplying both sides of the above equality by u_{δ} and taking into account the nonnegativeness of P we get

$$(Au_{\delta}, u_{\delta}) \leqslant (Au_{0}, u_{\delta}). \tag{33}$$

From the inequality

$$(A(u_{\delta} - u_0), u_{\delta} - u_0) = (Au_{\delta}, u_{\delta}) - 2(Au_0, u_{\delta}) + (Au_0, u_0) \ge 0$$

we have

$$2(Au_0, u_\delta) \leqslant (Au_\delta, u_\delta) + (Au_0, u_0).$$

Now, from the above inequality and (33) the estimate (32) follows and the lemma is proved.

Acknowledgement. I am grateful to the referee for some valuable comments and suggestions.

References

- 1. Dang Quang A, Approximate method for solving an elliptic problem with discontinuous coefficients, *J. Comput. and Appl. Math.* **51** (1994) 193–203.
- 2. Dang Quang A, Boundary operator method for approximate solution of biharmonic type equation, *Vietnam J. Math.* **22** (1994) 114–120.
- 3. Dang Quang A, Mixed boundary-domain operator method in approximate solution of biharmonic type equation, *Vietnam J. Math.* **26** (1998) 243–252.
- 4. Dang Quang A, Iterative method for solving a boundary value problem for triharmonic equation, *Vietnam J. Math.* **30** (2002) 71–78.
- J. L. Lions and E. Magenes, Problemes aux Limites non Homogenes et Applications Vol. 1, Dunod, Paris, 1968.
- 6. A. Samarskij and E. Nikolaev, *Numerical Methods for Grid Equations* Vol.**2**, Birkhäuser, Basel, 1989.