Vietnam Journal of MATHEMATICS © VAST 2005

On the Almost Sure Convergence of Weighted Sums of I.I.D. Random Variables

Dao Quang Tuyen

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Received July 17, 2003 Revised February 20, 2004

Abstract. We generalize some theorems of Chow and Lai [2] to general weighted sums of i.i.d. random variables. A characterization of moment conditions like $Ee^{\alpha|X|^{\beta}}|X|^{\gamma} < \infty$ or $E|X|^{\alpha}(\log^{+}|X|)^{\beta} < \infty$ is also given.

1. Introduction

Let $X_1, X_2, ...$ be independent identically distributed random variables with zero means. Let $(a_{nk}), n, k = 1, 2, ...$, be any array of real numbers and (m_n) be any sequence of positive integers such that $m_n \to \infty$. The problem is to find best conditions for almost sure convergence to zero of

$$S_n = \sum_{k=1}^{m_n} a_{nk} X_k.$$

Some convergence theorems for S_n have been obtained by Chow [1], Chow and Lai [2], Hanson and Koopman [4], Pruitt [5] and Stout [6].

In [2] Chow and Lai have proved strong theorems for the case $a_{nk} = f(n)c_{nk}$ where $f(n) \downarrow 0$ and (c_{nk}) satisfies some summable conditions like $\limsup_{n} \sum_{k} c_{nk}^2 < \infty$ or $\limsup_{n} \sum_{k} |c_{nk}| < \infty$. In this paper we generalize some of these results to more general (a_{nk}) .

In addition, we give a characterization of general moment condition like $Ef(|X_1|) < \infty$ by almost sure convergence to zero of $X_n a_n(f)$. For example, one such known result ([2] Theorem 1) states that $E|X_1|^{\alpha} < \infty$ for any $\alpha \ge 1$ if and only if $n^{-1/\alpha}X_n \to 0$ a.s.

2. Results

We shall use the following definition. An array (a_{nk}) is said to converge to a sequence (a_n) almost uniformly as $k \to \infty$, if for every $\varepsilon > 0$ there exists $K(\varepsilon)$ such that $|a_{nk} - a_n| < \varepsilon$ for all n and all k, except at most $K(\varepsilon)$ k for each n.

It is obvious that if $(a_{nk}) \xrightarrow[k]{} (a_n)$ almost uniformly then $a_{nk} \xrightarrow[k]{} a_n$ for all n. Note that, for arrays, uniform convergence implies almost uniform convergence. But the converse is not true. The array in the proof of Corollary 2 is an example.

Theorem 1. Let $X_1, X_2, ...$ be i.i.d. mean 0 random variables. Then $E e^{t|X_1|} < \infty$ for all t > 0 if and only if $S_n = \sum_{k=1}^{\infty} a_{nk} X_k \to 0$ a.s. for every array of real numbers (a_{nk}) satisfying

(a)
$$A_n := \sum_{k=1}^{\infty} a_{nk}^2 < \infty \text{ for all } n,$$

(b)
$$\frac{a_{nk}^2}{A_n} \xrightarrow{k} 0$$
 almost uniformly,

(c)
$$\sum_{1}^{24n} e^{-\frac{a}{\sqrt{A_n}}} < \infty \text{ for some } a > 0.$$

This theorem improves Theorem 2 in [2], which deals with $a_{nk} = c_{n-k}/\log n$ where $\sum_{1}^{\infty} c_n^2 < \infty$. This array clearly satisfies a), b) and c) of Theorem 1.

Theorem 2. Let (X_n) be any sequence of i.i.d. mean 0 random variables, (a_{nk}) be any array of real numbers and (m_n) be any sequence of positive integers such that $m_n \to \infty$. Then $\sum_{k=1}^{m_n} a_{nk} X_k \to 0$ a.s. if there exists a sequence of positive numbers (c_n) satisfying

(a)
$$\sum_{k=1}^{m_n} |a_{nk}| \le c_{m_n} \quad \forall n \ge 1,$$

- (b) c_n is monotone non-increasing and tending to zero,
- (c) $c_n X_n \to 0$ a.s.

Remark. We say that $S_n = \sum_{1}^{m_n} a_{nk} X_k$ converges to zero almost surely and absolutely if $S'_n = \sum_{1}^{m_n} |a_{nk}| |X_k| \to 0$ a.s. Because the proof of Theorem 2 holds when S_n is replaced by S'_n , Theorem 2 states the convergence of S_n in absolute sense too. Consequently under the conditions of Theorem 2 $\sum_{1}^{m'_n} a_{nk} X_k \to 0$ a.s. for all sequences (m'_n) such that $m'_n \to \infty$ and $m'_n \le m_n$ for all n.

We shall give below some corollaries of this theorem. We shall use the following notations [2]. Let $e_1(x) = e^x$, $e_2(x) = e_1(e^x)$, etc., and let $\log_2 x = \log\log x$, $\log_3 x = \log(\log_2 x)$, etc. By convention we shall also write $\log_1 x = \log x$, $\log_0 x = e_0(x) = 1$ and $e_k = e_k(1)$. For definiteness let us define $\log_k x = 1$ for all x > 0 such that $\log_k x < 1$ or $\log_k x$ is not defined.

Corollary 1. Let $X_1, X_2, ...$ be i.i.d. mean 0 random variables. For any $\alpha > 0$ and k = 1, 2, ..., the following statements are equivalent:

- (a) $E e_k(t|X_1|^{\alpha}) < \infty \quad \forall t > 0;$
- (b) $\lim_{n} (\log_k n)^{-1/\alpha} X_n = 0$ a.s.;
- (c) $\lim_{n \to \infty} \sum_{i=1}^{m_n} a_{ni} X_i = 0$ a.s. for every sequence (m_n) and array (a_{ni}) such that

$$m_n \to \infty \ and \ \sum_{1}^{m_n} |a_{ni}| = O\left((log_k m_n)^{-1/\alpha}\right).$$

This corollary clearly improves Theorem 5 in [2]. It applies to more general array (a_{nk}) and to every sequence $m_n \to \infty$. Of course the most important case is $m_n = n \ \forall n$.

Corollary 2. Let $X_1, X_2, ...$ be i.i.d. mean 0 random variables. For any $\alpha \geq 1$ the following statements are equivalent:

- (a) $E|X_1|^{\alpha} < \infty$; (b) $\lim_n n^{-1/\alpha} X_n = 0$ a.s.;
- (c) $\lim_{n} \sum_{k=0}^{m_n} a_{nk} X_k = 0$ a.s. for every sequence (m_n) and array (a_{nk}) such that $m_n \to \infty$ and $\sum_{1}^{m_n} |a_{nk}| = O(m_n^{-1/\alpha}).$

This corollary is essentially weaker than Theorem 1 in [2]. We write it down to show a simple consequence of Theorem 2. It would be stronger than Theorem 1 in [2] if the last condition in (c) could be replaced by $\sum_{n=1}^{m_n} a_{nk}^2 = O(m_n^{-1/\alpha})$. But our method of proof is not suitable to derive such a result.

By Corollaries 1 and 2, we can see that the finiteness of expectation of some function of X_1 is equivalent to a condition like (c) of Theorem 2. By the theorem below, we obtain such equivalent conditions for more general functions. Hence Theorem 2 extends its applicability.

Theorem 3. Let $X_1, X_2, ...$ be i.i.d. random variables.

(a) For any $\alpha > 0$ and $\beta \geq 0$

$$E|X_1|^{\alpha}(\log^+|X_1|)^{\beta} < \infty$$
 if and only if $\lim_n \frac{X_n \log^{\beta/\alpha} n}{n^{1/\alpha}} = 0$ a.s.

(b) For any $\alpha > 0$, $\beta > 0$ and $\gamma \geq 0$

$$Ee^{\alpha |X_1|^{\beta}} |X_1|^{\gamma} < \infty$$
 if and only if $\limsup_n \frac{|X_n|}{(\log n)^{1/\beta}} \le \frac{1}{\alpha^{1/\beta}}$ a.s.

Theorem 2 and Theorem 3 together lead to the following corollaries.

Corollary 3. Let $X_1, X_2, ...$ be i.i.d. mean 0 random variables. For any $\alpha > 0$ and $\beta \geq 0$, the following statements are equivalent:

- (a) $E|X_1|^{\alpha} (log^+|X_1|)^{\beta} < \infty;$
- (b) $\lim_n \frac{X_n \log^{\beta/\alpha} n}{n^{1/\alpha}} = 0$ a.s.;
- (c) $\lim_{n} \sum_{k=1}^{m_n} a_{nk} X_k = 0$ a.s. for every sequence (m_n) and array (a_{nk}) such that $m_n \to \infty$ and $\sum_{k=1}^{m_n} |a_{nk}| = O(m_n^{-1/\alpha} \log^{\beta/\alpha} m_n)$.

Corollary 4. Let $X_1, X_2, ...$ be i.i.d. mean 0 random variables. Suppose $E e^{\alpha |X_1|^{\beta}} |X_1|^{\gamma} < \infty$ for any $\alpha > 0$, $\beta > 0$ and $\gamma \geq 0$. Then $\sum_{k=1}^{m_n} a_{nk} X_k \to 0$ a.s. for every sequence (m_n) and array (a_{nk}) such that $m_n \to \infty$ and $\sum_{k=1}^{m_n} |a_{nk}| = o(\log^{-1/\beta} m_n)$.

From Theorem 3 we can also obtain other consequences.

If the common distribution function of i.i.d. random variables $X_1, X_2...$ is exponential then $E e^{\alpha|X_1|} < \infty$ if and only if $\alpha < \lambda$. Hence by Theorem 3 $\limsup_n |X_n|/\log n \le 1/\alpha$ a.s. if and only if $1/\alpha > 1/\lambda$. Because this equivalence holds for all $\alpha > 0$, $\limsup_n |X_n|/\log n$ must be equal $1/\lambda$ a.s.

By the same method, we can derive similar conclusions for other distribution functions. For example, we have the following statement, written for well known distribution functions.

If $X_1, X_2, ...$ are i.i.d. random variables, then almost surely

$$\limsup_n \frac{|X_n|}{\log n} = \begin{cases} \frac{1}{\alpha}, & \text{if } X_1 \text{ is Laplace with parameter } \alpha \\ \frac{1}{\lambda}, & \text{if } X_1 \text{ is gamma with parameter } \alpha, \ \lambda \\ 2, & \text{if } X_1 \text{ is } \chi^2 \end{cases}$$

$$\limsup_n \frac{|X_n|}{\sqrt{2\log n}} = \begin{cases} \sigma, & \text{if } X_1 \text{ is } N(0, \sigma^2) \\ \alpha, & \text{if } X_1 \text{ is Rayleigh with parameter } \alpha \end{cases}$$

$$\limsup_n \frac{|X_n|}{\log^{1/\alpha} n} = \frac{1}{\lambda}, & \text{if } X_1 \text{ is Weibull with parameters } \alpha, \ \lambda$$

$$\lim_n \frac{X_n}{n^{1/\alpha}} = 0 \text{ if and only if } \begin{cases} \alpha < a, & \text{if } X_1 \text{ is Pareto with parameters } a, \ b \\ \alpha < a, & \text{if } X_1 \text{ is Student's } t \text{ with parameter } a \\ 0 < \alpha < 1, & \text{if } X_1 \text{ is Cauchy.} \end{cases}$$

3. Proofs

Proof of Theorem 1. Without loss of generality suppose $EX_1^2=1$. Set $\varphi(t):=E\,e^{t\,X_1}$ for all real t. Then $\varphi(t)$ is an entire function and $\varphi(0)=1$, $\varphi'(0)=0$ and $\varphi''(0)=1$. Hence there exists $t_0>0$ such that for all $|t|\leq t_0$ $\varphi(t)\leq 1+t^2$. By (b) for any real t there exists K(t) such that

$$\frac{|a_{nk}|}{\sqrt{A_n}}|t| < t_0$$

for all n and all k except for at most K(t) k for each n. Hence we have, setting $S_{nm} = \sum_{k=1}^{m} a_{nk} X_k$,

$$E e^{t\frac{S_{nm}}{\sqrt{A_n}}} = E e^{t\sum_{k \notin I_m(t)} a_{nk} X_k / \sqrt{A_n}} \prod_{k \in I_m(t)} \varphi\left(\frac{a_{nk}}{\sqrt{A_n}} t\right)$$

$$\leq \left(E e^{|t||X_1|}\right)^{K(t)} \prod_{k \in I_m(t)} \left(1 + \frac{a_{nk}^2}{A_n} t^2\right) \leq \left(E e^{|t||X_1|}\right)^{K(t)} e^{t^2},$$

where $I_m(t) = \{k \leq m; |(a_{nk} / \sqrt{A_n})t| < t_0\}$. Also we have

$$E e^{t \frac{|S_{nm}|}{\sqrt{A_n}}} \le E \left(e^{t \frac{S_{nm}}{\sqrt{A_n}}} + e^{-t \frac{S_{nm}}{\sqrt{A_n}}} \right) \le 2 e^{t^2} \left(E e^{|t| |X_1|} \right)^{K(t)}.$$

Hence by Fatou lemma and (a), setting the last term by H(t), we have

$$E e^{t \frac{|S_n|}{\sqrt{A_n}}} \le H(t).$$

For any $\varepsilon > 0$, by Markov inequality and c), the last inequality leads to

$$\sum_{n=1}^{\infty} P(|S_n| > \varepsilon) = \sum_{n=1}^{\infty} P(e^{t|S_n|/\sqrt{A_n}} > e^{t\varepsilon/\sqrt{A_n}})$$

$$\leq \sum_{n=1}^{\infty} e^{-t\varepsilon/\sqrt{A_n}} E e^{t|S_n|/\sqrt{A_n}} \leq H(t) \sum_{n=1}^{\infty} e^{-t\varepsilon/\sqrt{A_n}} < \infty$$

if t is chosen such that $t\varepsilon > a$. So we obtain that $S_n \to 0$ completely and therefore almost surely.

In the converse, for any given sequence (c_n) such that $c^2 = \sum_{n=1}^{\infty} c_n^2 < \infty$ and $c_1^2 > 0$ define $a_{nk} := c_{n-k} / \log n$ for $k \le n$ and $a_{nk} := 0$ for k > n. Then a) holds for (a_{nk}) with $A_n \le c^2 / \log^2 n$. Condition b) also holds because, as $c_n \to 0$, for any $\varepsilon > 0$ there exists $K(\varepsilon)$ such that $c_n^2/c_1^2 < \varepsilon$ for $n > K(\varepsilon)$. Consequently

$$\frac{a_{nk}^2}{A_n} = \frac{c_{n-k}^2}{\sum_{i=1}^n c_{n-i}^2} < \frac{c_{n-k}^2}{c_1^2} < \varepsilon$$

if $n-k > K(\varepsilon)$ i.e. if $k < n-K(\varepsilon)$. Hence there are only at most $K(\varepsilon) k$ for which the chain of inequalities above is not true, as $a_{nk} = 0$ for k > n. Condition c) holds for any a > c as $\sum_{1}^{\infty} e^{-a/\sqrt{A_n}} \le \sum_{1}^{\infty} e^{(-a/c)\log n} = \sum_{1}^{\infty} n^{-a/c} < \infty$.

To this array (a_{nk}) Theorem 2 of [2] is applicable. Hence, by assuming $S_n \to 0$ a.s., we obtain that $E e^{t|X_1|} < \infty$ for all t > 0.

Proof of Theorem 2. Since $c_n \downarrow$, for any $\varepsilon > 0$ we have, setting $S_n = \sum_{1}^{m_n} a_{nk} X_k$,

$$|S_n| \le \left(\sum_{k=1}^{m_n} |a_{nk}|\right) \max_{k \le m_n} |X_k| \le c_{m_n} \max_{k \le m_n} |X_k|$$

$$\le \max\left(c_{m_n} \max_{k \le N} |X_k|, \max_{N < k \le m_n} c_k |X_k|\right)$$

for any N. Since $c_n X_n \to 0$ a.s. for any $\varepsilon > 0$ and almost all ω there exists $N = N(\omega)$ such that $c_n |X_n| < \varepsilon$ for all $n > N(\omega)$. Hence for almost all ω

$$|S_n| \le \max \left(c_{m_n} \max_{k \le N(\omega)} |X_k|, \, \varepsilon \right).$$

Because $c_n \to 0$ and $m_n \to \infty$ we obtain that

$$\limsup_{n} |S_n| \le \varepsilon$$
 a.s.,

which leads to the conclusion since ε can be chosen arbitrarily small.

Proof of Corollary 1. By Theorem 5 in [2], (a) is equivalent to (b). Statement (c) implies (b), because both (c) and (26) of Theorem 5 in [2] are applicable to $a_{nk} := (\log_k n)^{-1/\alpha}/(n-k)^2$ for k < n and $a_{nk} := 0$ otherwise, and to $m_n := n$. Hence (b) holds by Theorem 5 in [2].

Conversely, suppose there exist an array (a_{nk}) and a sequence (m_n) satisfying the conditions in (c). Then there exists a constant K such that $\sum_{n=1}^{\infty} |a_{ni}| \le 1$

 $K(\log_k m_n)^{-1/\alpha} \ \forall n$. Define $c_n = K(\log_k n)^{-1/\alpha} \ \forall n$. Then c_n satisfies all conditions of Theorem 2. Hence, by Theorem 2, (b) implies (c).

Proof of Corollary 2. Define $a_{nk} = n^{-1/\alpha}/(n-k)^2$ for k < n and $a_{nk} = 0$ otherwise, and $m_n = n$. By Theorem 1 in [2] we see that (c) implies (b) with these (a_{nk}) , (m_n) and (a) is equivalent to (b). Lastly, arguing similarly as in the proof of Corollary 1, we can show that (b) implies (c).

Lemma 1. Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ be a function such that f(x) is monotone increasing on $[b, \infty)$ for some $b \geq 0$ and is bounded on [0, b] if b > 0. Define f^{-1} as the inverse function of f restricted on $[b, \infty)$ and as any positive function on [0, f(b)) if b > 0. Then $E f(|X_1|) < \infty$ if and only if $\limsup_n |X_n| / f^{-1}(an) \leq 1$ a.s. for some and therefore for all real a > 0.

Proof. To show the "only if" part of the conclusion, suppose $E f(|X_1|) < \infty$. Let us fix any a > 0 and let N be any positive integer such that aN > f(b). We have, since f^{-1} is monotone increasing on $[f(b), \infty)$,

$$\infty > E f(|X_1|) \ge \sum_{i=N}^{\infty} ai P \left(f^{-1}(ai) < |X_1| \le f^{-1}(a(i+1)) \right)$$
$$= a \left\{ N P \left(|X_1| > f^{-1}(aN) \right) + \sum_{i=N+1}^{\infty} P \left(|X_1| > f^{-1}(ai) \right) \right\}.$$

Consequently, since X_n are i.i.d.,

$$\sum_{n=1}^{\infty} P\left(\frac{|X_n|}{f^{-1}(an)} > 1\right) < \infty.$$

By Borel–Cantelli lemma [3], $\limsup_{n} \frac{|X_n|}{f^{-1}(an)} \le 1$ a.s.

Conversely, let us fix any a > 0 and let N be any positive integer such that aN > f(b). Then we have

$$E f(|X_1|) \le E f(|X_1|) 1_{\{|X_1| \le f^{-1}(aN)\}} + E f(|X_1|) 1_{\{|X_1| > f^{-1}(aN)\}}$$

$$\le \max_{0 \le x \le f^{-1}(aN)} f(x) + \sum_{i=N}^{\infty} a(i+1) P(f^{-1}(ai) < |X_1| \le f^{-1}(a(i+1))).$$

The last sum, as is shown before,

$$\leq a + a \left\{ N P\left(|X_1| > f^{-1}(aN)\right) + \sum_{i=N+1}^{\infty} P\left(|X_i| > f^{-1}(ai)\right) \right\},$$

where the last sum is finite by Borel–Cantelli lemma, since X_n are independent and $\limsup_n |X_n|/f^{-1}(an) \le 1$ a.s. Hence we obtain the finiteness of $Ef(|X_1|)$, since f is bounded on [0,b].

Proof of Theorem 3. To show a), set $g(x) = x^{\alpha} (\log^+ x)^{\beta}$ for $x \geq 0$. Then g(x) is monotone increasing and g^{-1} exists on the set $[1, \infty)$. For $x \in [0, 1)$ define $g^{-1}(x) = 1$. By Lemma 1 $E|X_1|^{\alpha} (\log^+ |X_1|)^{\beta} < \infty$ if and only if $\limsup_n \frac{|X_n|}{g^{-1}(an)} \leq 1$ a.s. for all a > 0. Because the exact form of g^{-1} is unknown, we shall estimate its behavior at $+\infty$ by the following function. Put $h(x) = \left(\frac{\alpha^{\beta} x}{\ln^{\beta} x}\right)^{1/\alpha}$ for $x \geq 2$ and h(x) = 1 for $0 \leq x < 2$. We shall show that $h(an)/g^{-1}(an) \to 1$ for all a > 0.

Note that, for large enough n,

$$\frac{g(h(an))}{g(g^{-1}(an))} = \left(\frac{\beta \log \alpha}{\log (an)} + 1 - \frac{\log \log^{\beta}(an)}{\log (an)}\right)^{\beta} \longrightarrow 1$$

as $n \to \infty$. We shall prove a more general statement: for every two sequences $0 < a_n \to \infty$, $0 < b_n \to \infty$ if $g(a_n)/g(b_n) \to 1$ then $a_n/b_n \to 1$. Suppose there are such (a_n) and (b_n) , but in contrary $\limsup_n a_n/b_n = c > 1$. Then there exist n_i such that $a_{n_i}/b_{n_i} \to c$. Hence $a_{n_i}^{\alpha}/b_{n_i}^{\alpha} \to c^{\alpha}$ and $a_{n_i} > b_{n_i}$ for large enough n_i . So $\limsup_n \log a_{n_i}/\log b_{n_i} \ge 1$. Consequently $\limsup_n a_n^{\alpha} \log^{\beta} a_n/(b_n^{\alpha} \log^{\beta} b_n) \ge c^{\alpha} > 1$, which contradicts the assumption $g(a_n)/g(b_n) \to 1$. So $\limsup_n a_n/b_n \le 1$. Similarly we obtain that $\liminf_n a_n/b_n \ge 1$, hence $\lim_n a_n/b_n = 1$.

So we have, by Lemma 1, $E|X_1|^{\alpha}(\log^+|X_1|)^{\beta}<\infty$ if and only if for all a>0

$$\limsup_{n} \frac{|X_n|}{h(an)} = \limsup_{n} \frac{|X_n|}{g^{-1}(an)} \frac{g^{-1}(an)}{h(an)} \le 1 \quad \text{a.s.},$$

which is equivalent to

$$\limsup_n \, \frac{|X_n| {\log^{\beta/\alpha} n}}{n^{1/\alpha}} \leq \alpha^{\beta/\alpha} \, a^{1/\alpha} \quad \text{a.s.}$$

for all a > 0. Since a > 0 can be chosen arbitrarily small the last inequality is equivalent to $\limsup_n |X_n| \log^{\beta/\alpha} n / n^{1/\alpha} = 0$ a.s.

For proving b) set $g(x)=e^{\alpha x^\beta}x^\gamma$ for $x\geq 0$. Also define $h(x)=(\log\alpha^{\gamma/\beta}x-\log(\log x)^{\gamma/\beta})^{1/\beta}\alpha^{-1/\beta}$ for $x\geq d$, and h(x)=1 for $0\leq x< d$, where d is chosen large enough such that h(x) is well defined. Then it is easy to show $g(h(n))/g(g^{-1}(n))\to 1$, where g^{-1} is the inverse function of g. As before, in order to show $h(n)/g^{-1}(n)\to 1$, let us prove that for every sequences $a_n\to\infty$, $b_n\to\infty$ if $g(a_n)/g(b_n)\to 1$ then $a_n/b_n\to 1$. Suppose we have such (a_n) and (b_n) but in contrary $\lim\sup_n a_n/b_n=c>1$. Then there exist subsequences a_{n_i},b_{n_i} such that $a_{n_i}/b_{n_i}\to c$. Therefore $(a_{n_i}^\beta-b_{n_i}^\beta)/b_{n_i}^\beta\to c^\beta-1>0$ and $(a_{n_i}^\gamma-b_{n_i}^\gamma)/b_{n_i}^\gamma\to c^\gamma-1>0$ if $\gamma>0$. Consequently, since $b_{n_i}^\beta\to\infty$,

$$\frac{g(a_{n_i})}{g(b_{n_i})} = e^{\alpha} \frac{a_{n_i}^{\beta} - b_{n_i}^{\beta}}{b_{n_i}^{\beta}} b_{n_i}^{\beta} \frac{a_{n_i}^{\gamma} - b_{n_i}^{\gamma}}{b_{n_i}^{\gamma}} + e^{\alpha} \frac{a_{n_i}^{\beta} - b_{n_i}^{\beta}}{b_{n_i}^{\beta}} b_{n_i}^{\beta} \longrightarrow \infty,$$

which contradicts the assumption. So $\limsup_n a_n / b_n \le 1$. Similarly we have $\liminf_n a_n / b_n \ge 1$. Hence we obtain that $\lim_n a_n / b_n = 1$.

So we have, since $h(n)/\log^{1/\beta}n \to 1/\alpha^{1/\beta}$, $\limsup_n \frac{|X_n|}{g^{-1}(n)} \le 1$ a.s. if and only if $\limsup_n \frac{|X_n|}{h(n)} \le 1$ a.s. if and only if $\limsup_n \frac{|X_n|}{\log^{1/\beta}n} \le \frac{1}{\alpha^{1/\beta}}$ a.s.

Proof of Corollary 3. Defining $c_n = K n^{-1/\alpha} \log^{\beta/\alpha} n$ and acting similarly as in the proof of Corollary 1, by Theorem 2, we obtain that (b) implies (c). Conversely (c) implies (b) because by (c) $\lim_n n^{-1/\alpha} \log^{\beta/\alpha} n \sum_{k=1}^n (n-k+1)^{-2} X_k = 0$ a.s. Then by Lemma 3 in [2] we obtain (b), arguing similarly as in the proof of Theorem 1 in [2].

Proof of Corollary 4. Set $b_{m_n} := \sum_{1}^{m_n} |a_{nk}|$ and define c_k , k = 1, 2, ..., such that $c_k \log^{1/\beta} k = \max_{\{n; m_n \geq k\}} \{b_{m_n} \log^{1/\beta} m_n\}.$

We shall show that c_n satisfies all conditions of Theorem 2.

We have $c_n \log^{1/\beta} n$ is monotone non-increasing and tending to zero, since $b_{m_n} \log^{1/\beta} m_n \to 0$ by the assumption. Hence $c_n = (c_n \log^{1/\beta} n)(\log^{-1/\beta} n)$, as the product of two monotone non-increasing and tending to zero sequences, has the same properties. By the definition of c_n we have $b_{m_n} \leq c_{m_n}$ for all n. By Theorem 3 $\limsup_n \frac{|X_n|}{\log^{1/\beta} n} \leq \frac{1}{\alpha^{1/\beta}}$ a.s. Hence almost surely

$$\limsup_{n} |X_n c_n| = \limsup_{n} \frac{|X_n|}{\log^{1/\beta} n} \cdot c_n \log^{1/\beta} n \le \frac{1}{\alpha^{1/\beta}} \lim_{n} c_n \log^{1/\beta} n = 0.$$

So c_n satisfies all conditions of Theorem 2. By Theorem 2 we obtain the conclusion.

References

- Y.S. Chow, Some convergence theorems for independent random variables, Ann. Math. Statist. 37 (1966) 1482–1493.
- 2. Y.S. Chow and T.L. Lai, Limiting behavior of weighted sums of independent random variables, *Ann. Probab.* **1** (1973) 810–824.
- 3. Y.S. Chow and H. Teicher, *Probability Theory*, Springer, New York, Heidelberg, Berlin, 1978.
- 4. D. L. Hanson and L. H. Koopman, On the convergence rate of the law of large numbers for linear combinations of independent random variables, *Ann. Math. Statist.* **36** (1965) 559–564.
- W.E. Pruitt, Summability of independent random variables. J. Math. Mech. 15 (1966) 769–776.
- W. F. Stout, Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences, Ann. Math. Statist. 39 (1968) 1549–1562.