Vietnam Journal of MATHEMATICS © VAST 2005

Renewal Process for a Sequence of Dependent Random Variables

Bui Khoi Dam

Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, 1037 Hanoi, Vietnam

Received October 15, 2003 Revised April 25, 2004

Abstract. We investigate a renewal process $N(t) = \max\{n \geq 1 : S_n = \sum_{i=1}^n X_i \leq t\}$ for $t \geq 0$ where X_1, X_2, \ldots with $P(X_i \geq 0) = 1$ $(i = 1, 2, \ldots)$ is a sequence of m-dependent or mixing random variables. We give such a condition under which N(t) has finite moment. Strong law of large numbers and central limit theorems for the function N(t) are given.

1. Preliminaries and Notations

Let (Ω, \mathcal{A}, P) be a probability space and let X_0, X_1, X_2, \ldots be non negative random variables with $P(X_0 = 0) = 1$, $S_n = \sum\limits_{i=1}^n X_i$. It is well known that if the sequence X_1, X_2, \ldots is independent and identically distributed, then the counting process $N(t) = \max\{n \geq 1: S_n = \sum\limits_{i=1}^n X_i \leq t\}, t \geq 0$ is called a renewal process. In this article, we investigate generalized renewal process, i.e. we suppose that our basic sequence X_0, X_1, X_2, \ldots is a sequence of m - independent or mixing radom variables. We denote $\mathcal{F}_n = \sigma(X_0, X_1, \ldots, X_n), \quad \mathcal{F}^k = \sigma(X_k, X_{k+1}, \ldots)$. Now we begin this section with some definitions.

Definition 1.1. A sequence of random variables $(X_n)_{n\geq 0}$ is called m-dependent if the sigma-fields \mathcal{F}_n and \mathcal{F}^{n+k} are independent for all k>m.

Definition 1.2. We consider the following quantities

74 Bui Khoi Dam

$$\alpha(n) = \sup\{|P(A.B) - P(A).P(B)| : A \in \mathcal{F}_k, B \in \mathcal{F}^{k+n}\}; \\ \rho(n) = \sup\{|Cov(X.Y)|/(V(X)^{1/2}.V(Y)^{1/2}) : X \in \mathcal{F}_k, Y \in \mathcal{F}^{k+n}\}; \\ \phi(n) = \sup\{|P(B|A) - P(B)| : A \in \mathcal{F}_k, P(A) > 0; B \in \mathcal{F}^{k+n}\}.$$

A sequence of random variables $(X_n)_{n\geq 0}$ is said to be α -mixing (resp. ρ -mixing, ϕ -mixing) if $\lim_{n\to +\infty} \alpha(n)=0$ (resp. $\lim_{n\to +\infty} \rho(n)=0$, $\lim_{n\to +\infty} \phi(n)=0$).

2. Results

Theorem 2.1. Let $(X_n)_{n\geq 0}$ be a sequence of nonnegative random variables. Denote $p_i = P(X_i \geq a)$ where a is a positive constant and $N(t) = \max\{n \geq 1 : a\}$

$$S_n = \sum_{i=1}^n X_i \leq t$$
. Suppose that either

- (i) $(X_n)_{n\geq 0}$ is a (m-1)- dependent random variables, $(m \leq 1)$ such that $\sum_{i=1}^n p_{r+im} \geq A_r.n^{\alpha_r}, \ 0 < A_r < +\infty, \ \alpha_r > 0 \text{ for all } n \geq 1, \ m-1 \geq r \geq 0,$
- (ii) $(X_n)_{n\geq 0}$ is a ϕ -mixing sequence of random variables such that $\liminf p_n = p > 0$.

Then

$$E[N(t)]^l < +\infty, \ \forall l.$$

We need the following lemma to prove the theorem.

Lemma 2.1. Let $(X_n)_{n\geq 0}$ be a sequence of non negative, independent random variables such that

$$\sum_{i=1}^{n} p_i \ge A.n^{\alpha}, \quad 0 < A < +\infty, \quad \alpha > 0 \text{ for all } n \ge 1.$$

Then

$$E[N(t)]^l < +\infty, \ \forall l.$$

Proof. From the definition of N(t), it is easy to see that N(t) is a non decreasing function in t. We define new random variables \bar{X}_n as follows: for a given positive number a, we put

$$\bar{X}_n = 1_{(a,\infty)}(X_n), \quad n \ge 1,$$
$$\bar{S}_n = \sum_{i=1}^n \bar{X}_i,$$

and

$$\bar{N}(t) = \max\{n \ge 1 : \bar{S}_n \le t\}.$$

It is easy to see that

$$0 < N(t) < \bar{N}(t/a)$$
 for all $t > 0$.

This guarantees that , we can investigate the function $\bar{N}(t)$ instead of the function N(t).

$$P(\bar{N}(j) = n) = P(\bar{X}_1 + \bar{X}_2 + \dots + \bar{X}_n = j).$$

Denote by $I_n^J(1 \leq j \leq n)$ the set of all combinations of j numbers from the set $\{1, 2, ..., n\}$. For $i_1, i_2, ..., i_j \in I_n^j$, we consider the following events:

$$A\{i_1, i_2, ..., i_n\} = \{\bar{X}_{i_1} = \dots = \bar{X}_{i_j} = 1\},$$

$$\bar{A}\{i_1, i_2, ..., i_n\} = \{\bar{X}_{i(1)} = \dots = \bar{X}_{i(n-j)} = 0\},$$

where $\{i(1), ..., i(n-j)\}$ is the complement of $\{i_1, ..., i_j\}$, i.e.

$$\{i(1),...,i(n-j)\} = \{1,2,...,n\} \setminus \{i_1,...,i_j\}.$$

We obtain the following relations

$$\begin{split} \{\bar{X}_1 + \bar{X}_2 + \dots + \bar{X}_n &= j\} = \bigcup_{\{i_1, \dots, i_j \in I_n^j\}} A\{i_1, \dots, i_j\} \cap \bar{A}\{i_1, \dots, i_j\} \\ &\subset \bigcup_{\{i_1, \dots, i_j \in I_n^j\}} \bar{A}\{i_1, \dots, i_j\}. \end{split}$$

We have the following probability

$$P(\bar{N}(j) = n) \le C_n^J \prod_{s=1}^{n-j} \{1 - p_{i_s}\}.$$

Using the inequality

$$(1-x) < e^{-x}$$
 for $0 < x < 1$,

we get

$$P(\bar{N}(j) = n) \le C_n^J \cdot \exp\{-\sum_{s=1}^{n-j} p_{i_s}\} \le C_n^J \cdot \exp\{j\} \cdot \exp\{-\sum_{i=1}^n p_i\}.$$

Combining the above inequalities, we get

$$E(\bar{N}(j))^l = \sum_{n=1}^{\infty} n^l \cdot P(\bar{N}(j) = n) \le e^j \cdot \sum_{n=j}^{\infty} C_n^j \cdot n^l \exp\{-\sum_{i=1}^n p_i\}.$$

Since $C_n^j \leq \frac{n^j}{j!}$ and $\sum_{i=1}^n p_i \leq A.n^{\alpha}$, we have

$$E(\bar{N}(j))^{l} \le \frac{e^{j}}{j!} \cdot \sum_{n \ge j} n^{j+l} e^{-n^{\alpha}}.$$

But $e^{-n^{\alpha}} = o(\frac{1}{n^{\beta}})$ for all $\beta \geq 1$. So we deduce $e^{-n^{\alpha}} \leq \frac{1}{n^{j+l+2}}$ if n is sufficiently large. Then, we have

$$E(\bar{N}(j))^l \leq \frac{e^j}{j!} \Big(\sum_{j \leq n \leq n_0} n^{j+l} e^{-n\alpha} + \sum_{n \geq n_0} n^{j+l} \Big) \leq \sum_{n \geq n_0} \frac{1}{n^2} < \infty.$$

The lemma is proved.

Proof of Theorem 2.1.

(i) Let $\bar{X}_1, \bar{X}_2, ..., \bar{X}_n$ be such random variables as in the Lemma. We estimate the probability

$$P(\bar{N}(j) = n) = P(\bar{X}_1 = \lambda_1, \bar{X}_2 = \lambda_2, ..., \bar{X}_n = \lambda_n)$$

where λ_i $(1 \le i \le n)$ takes only the value 0 or 1 and among them, there are j numbers being 1 while n-j numbers being 0.

Suppose that n = km + r for $0 \le r < m$. We rewrite m-1

$$A = \{\bar{X}_1 = \lambda_1, \bar{X}_2 = \lambda_2, ..., \bar{X}_n = \lambda_n\} = \bigcap_{s=1}^{m-1} B_s,$$

here

76

$$B_s = \{\bar{X}_s = \lambda_s, \bar{X}_{m+s} = \lambda_{m+s}, \bar{X}_{2m+s} = \lambda_{2m+s}, ..., \bar{X}_{km+s} = \lambda_{km+s}\}$$

for $0 \le s \le r$, and

$$B_s = \{\bar{X}_s = \lambda_s, \bar{X}_{m+s} = \lambda_{m+s}, \bar{X}_{2m+s} = \lambda_{2m+s}, ..., \bar{X}_{(k-1)m+s} = \lambda_{(k-1)m+s}\}$$

for m-1 > s > r.

Note that the random variables $\bar{X}_s, \bar{X}_{m+s}, \dots$ are independent, we get

$$P(A) \le \max_{0 \le s \le m-1} P(B_s) \le \max_{0 \le s \le m-1} C_k^j e^j \exp\{-\sum_{i=1}^k p_{im+s}\} \le C_k^j e^j \bar{\lambda} e^{-n^{\lambda_0}}.$$

By the same argument as in the Lemma, we deduce that $E(N(j))^l < \infty$ for all l > 0.

(ii) Without loss of generality, we can suppose that the random variables X_n take only the values 0 or 1 and $p = \inf_n p_n > 0$. Since the mixing coefficient $\phi(n)$ tends to zero when n tends to $+\infty$, we have $0 < \phi(n_0) < 1 - q$ (here q = 1 - p) for a sufficiently large number n_0 . Suppose that $n = kn_0 + r$ for $0 \le r < n_0$, then we can rewrite the event A as follows:

$$\begin{split} A &= \{\bar{N}(j) = n\} = \bigcup_{(\lambda_1, \lambda_2, \dots, \lambda_n)} \{\bar{X}_1 = \lambda_1, \bar{X}_2 = \lambda_2, \dots, \bar{X}_n = \lambda_n\} \\ &= \bigcup_{(\lambda_1, \lambda_2, \dots, \lambda_n)} \{\bar{X}_1 = \lambda_1, \bar{X}_{n_0+1} = \lambda_{n_0+1}, \dots, \bar{X}_{kn_0+1} = \lambda_{kn_0+1}\} \dots \\ &\quad \{\bar{X}_r = \lambda_r, \bar{X}_{n_0+r} = \lambda_{n_0+r}, \dots, \bar{X}_{kn_0+r} = \lambda_{kn_0+r}\} \dots \\ &\quad \{\bar{X}_{n_0} = \lambda_{n_0}, \bar{X}_{2n_0} = \lambda_{2n_0}, \dots, \bar{X}_{kn_0} = \lambda_{kn_0}\}. \end{split}$$

Now we have

$$P(A) \le C_n^j P(\{\bar{X}_{n_0} = \lambda_{n_0}, \bar{X}_{2n_0} = \lambda_{2n_0}, ..., \bar{X}_{kn_0} = \lambda_{kn_0}\}).$$

We estimate the probability:

$$P(\{\bar{X_{n_0}} = \lambda_{n_0}, \bar{X_{2n_0}} = \lambda_{2n_0}, ..., \bar{X_{kn_0}} = \lambda_{kn_0}\}) = P(\bar{X_{n_0}} = \lambda_{n_0})P(\bar{X_{2n_0}} = \lambda_{2n_0} \mid \bar{X_{n_0}} = \lambda_{n_0})...P(\bar{X_{kn_0}} = \lambda_{kn_0} \mid \bar{X_{n_0}} = \lambda_{n_0}, \bar{X_{2n_0}} = \lambda_{2n_0}, ..., \bar{X_{(k-1)n_0}} = \lambda_{(k-1)n_0}).$$

This implies that

$$P(A) \le C_n^j (1 + \phi(n_0))^j (q + \phi(n_0))^{k-j}.$$

We get finally

$$E(N(j))^{l} = \sum_{n=1}^{\infty} n^{l} P(N(j) = n) \le (1 + \phi(n_{0}))^{j} \sum_{n \ge j} n^{l} C_{n}^{j} (q + \phi(n_{0}))^{k-j}$$
$$\le C \sum_{k=1}^{\infty} k^{l+j} (q + \phi(n_{0}))^{k} \le \infty.$$

The proof of the theorem is complete.

In a classical renewal theory, it is well-known that if $\{X_n, n \geq 1\}$ are i.i.d. non-negative radom variables with $\mu = EX_1 > 0$. Then we have the following Renewal Theorem:

$$\lim_{t\to\infty}\frac{EN(t)}{t}=\frac{1}{\mu}.$$

The theorem below is a generalization of Renewal Theorem to the case when $\{X_n, n \geq 1\}$ are (m-1)-dependent radom variables.

Theorem 2.2. Let $\{X_n, n \geq 1\}$ be a sequence of (m-1)- independent, identically distributed, non-negative radom variables such that $P(X_1 = 0) < 1$ and $0 < \mu = EX_1 < \infty$.

Denote $S_n = \sum_{i=1}^n X_i$. Define

$$N(t) = \max\{n : S_n \le t\},$$

$$T(t) = \inf\{n : S_n > t\}.$$

Then

$$ET(t) < \infty, \lim_{t \to \infty} \frac{EN(t)}{t} = \lim_{t \to \infty} \frac{ET(t)}{t} = \frac{1}{\mu}.$$
 (*)

Now we state the lemma, which plays an important role in proving the above theorem

Lemma 2.2. Let $\{X_n, n \geq 1\}$ be a sequence of non negative, (m-1)-dependent, identically distributed random variables $(m \geq 1)$. Denote $S_n = \sum_{i=1}^n X_i$. We define a stopping time T(t) as follows:

Bui Khoi Dam

$$T(t) = \inf\{n : S_n > t\}.$$

Then the following inequality holds

$$E[T(t)].EX_1 - (m-1)EX_1 \le ES_{T(t)} \le E[T(t)].EX_1 + (m-1)EX_1.$$

Proof. We evaluate ES_T for T = T(t):

$$ES_{T} = \int_{\Omega} S_{T} dP = \sum_{k=1}^{\infty} \int_{(T=k)} S_{k} dP = \sum_{k=1}^{\infty} \sum_{j=1}^{k} \int_{(T=k)} X_{j} dP$$

$$= \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} \int_{(T=k)} X_{j} dP = \sum_{j=1}^{\infty} \int_{(T \ge j)} X_{j} dP = \sum_{j=1}^{\infty} [EX_{j} - \int_{(T < j)} X_{j} dP]$$

$$= \sum_{j=1}^{m-1} [EX_{j} - \int_{(T < j)} X_{j} dP]$$

$$+ \sum_{j=m}^{\infty} \left[EX_{j} - \left(\int_{(T=1)} X_{j} dP + \dots + \int_{(T=j-m)} X_{j} dP \right) - \left(\int_{(T=j-m+1)} X_{j} dP + \dots + \int_{(T=j-1)} X_{j} dP \right) \right]$$

From the above equality we have

$$ES_T \le (m-1)EX_1 + \sum_{j=m}^{\infty} [EX_j - \int_{(T \le j-m)} X_j dP].$$

Note that X_j is independent with respect to \mathcal{F}_{j-m} , so we have

$$\int_{(T \le j - m)} X_j dP = E[X_j . 1_{T \le j - m}] = EX_j . P\{T \le j - m\}.$$

Combining the above inequalities, we get

$$ES_T \le (m-1)EX_1 + EX_1 \sum_{j=m}^{\infty} P(T > j-m) = (m-1)EX_1 + EX_1ET.$$

On the other hand we can get the lower bound for ES_T as follows:

$$ES_T \ge \sum_{j=m}^{\infty} \left[EX_j - \int_{T \le j-m} X_j dP \right] - (m-1)EX_j = EX_1 \sum_{j=m}^{\infty} P(T > j-m) - (m-1)EX_1 = EX_1ET - (m-1)EX_1$$

So the lemma is proved.

Now we are ready to prove the Theorem.

Proof of Theorem 2.2. Since $P(X_1 = 0) < 1$ we can choose a number a > 0 such that $P(X_1 > a) = p > 0$. By virtue of Theorem 2.1. we have $P(T(t) < \infty) = 1$ and $ET(t) < \infty$. (Note that T(t) = N(t) + 1). For a given number λ with $0 < \lambda < \mu$ we choose a number K to ensure $EX_1I_{(X_n < K)} > \lambda$.

We define $\tilde{X}_n = X_n I_{(X_n \leq K)}$, $\tilde{S}_n = \sum_{i=1}^n \tilde{X}_i$ and a stopping time $\nu(t) = \inf\{n : t \in X_n\}$

 $\tilde{S}_n > t$ }. Then $\{\tilde{X}_n; n \geq 1\}$ are (m-1)-independent, identically distributed random variables and $E\nu(t) < \infty$. We get the upper bound on the term $E\tilde{S}_{\nu}$ as follows:

$$E\tilde{S}_{\nu(t)} = E\tilde{S}_{\nu(t)-1} + E\tilde{X}_{\nu(t)} \le t + K.$$

On the other hand, using Lemma 2.2 we write

$$E\tilde{S}_{\nu(t)} \ge E\nu(t).E\tilde{X}_1 - (m-1)E\tilde{X}_1.$$

Combining the two above inequalities, we obtain (note that $T(t) \leq \nu(t)$)

$$\frac{ET(t)}{K+t} \leq \frac{E\nu(t)}{K+t} \leq \frac{1}{K+t} \cdot \frac{E\tilde{S}_{\nu} + (m-1)E\tilde{X}_1}{E\tilde{X}_1} \leq \frac{1}{E\tilde{X}_1} + \frac{m-1}{K+t} \leq \frac{1}{\lambda} + \frac{m-1}{K+t}.$$

This implies that

$$\overline{\lim_{t \to \infty}} \frac{ET(t)}{t} \le \frac{1}{\lambda} \le \frac{1}{\mu}.$$

Conversely, we have

$$t < ES_{T(t)} \le ET(t).EX_1 + (m-1)EX_1.$$

This implies that

$$\frac{ET(t)}{t} \ge \frac{1}{t} \cdot \frac{t - (m-1)EX_1}{EX_1} = \frac{1}{EX_1} - \frac{m-1}{t}.$$

From this inequality, we obtain

$$\underline{\lim_{t \to \infty}} \frac{ET(t)}{t} \ge \frac{1}{\mu}.$$

Finally we have proved that

$$\lim_{t \to \infty} \frac{ET(t)}{t} = \frac{1}{EX_1}.$$

This ends our proof.

We treat a behavior of the renewal function N(t) and show that the sequence of random variables $\{X_n, n \geq 1\}$ obeys Strong law of large numbers if and only if its renewal function satisfies the condition

80 Bui Khoi Dam

$$P\left(\lim_{t \to \infty} \frac{N(t)}{t} = 1/a\right) = 1 \quad \forall t > 0.$$

Theorem 2.3. Let $(X_n)_{n\geq 0}$ be a sequence of nonnegative random variables. Then the following statements are equivalent

(i)
$$P\left(\lim_{n\to\infty} \frac{S_n}{n} = a\right) = 1;$$

(i)
$$P\left(\lim_{n\to\infty} \frac{S_n}{n} = a\right) = 1;$$

(ii) $P\left(\lim_{t\to\infty} \frac{N(t)}{t} = 1/a\right) = 1.$

Proof.

(i) Let Ω_0 be a subset of Ω such that $P(\Omega_0) = 1$ and $\lim_{n \to \infty} \frac{S_n(\omega)}{n} = a$. Fix $\omega \in \Omega_0$. For a given positive number ϵ $(\epsilon < a)$, there exists a number $n_{\epsilon} = n(\epsilon, a)$ such that

$$a - \epsilon < \lim_{n \to \infty} \frac{S_n(\omega)}{n} < a + \epsilon \text{ for all } n \ge n_{\epsilon}.$$
 (1)

From (1) we have

$$n(a - \epsilon) < S_n(\omega) < n(a + \epsilon).$$
 (2)

From (2) and the definitions of the functions N(t), T(t) we get

$$N(n(a - \epsilon)) < T(n(a - \epsilon)) < n, \tag{3}$$

$$n < N(n(a+\epsilon)) < T(n(a+\epsilon)). \tag{4}$$

For $t \ge t_{\epsilon} = n_{\epsilon}(a + \epsilon)$ we have $N(t) \ge N(t_{\epsilon}) \ge n_{\epsilon}$. So (1) implies that

$$a - \epsilon < \frac{S_{N(t)}}{N(t)} < a + \epsilon. \tag{5}$$

Since $\frac{S_{N(t)}}{t} \leq 1$ we obtain

$$\frac{S_{N(t)}}{N(t)} \cdot \frac{N(t)}{t} = \frac{S_{N(t)}}{t} \le 1.$$

So

$$\frac{N(t)}{t} \le \frac{1}{\frac{S_{N(t)}}{N(t)}} \le \frac{1}{a - \epsilon}.$$

This implies that

$$\overline{\lim_{t \to \infty} \frac{N(t)}{t}} \le \frac{1}{a - \epsilon}.$$
 (6)

Since (6) holds for any $\epsilon > 0$ we deduce

$$\overline{\lim_{t \to \infty}} \frac{N(t)}{t} \le \lim_{\epsilon \to 0} \frac{1}{a - \epsilon} = \frac{1}{a}. \tag{7}$$

Similarly, for $t \geq t_{\epsilon}$ we have

$$T(t) \ge T(t_{\epsilon}) \ge N(t_{\epsilon}) \ge t_{\epsilon}.$$

Therefore for every $\epsilon > 0$ we get

$$a - \epsilon \le \frac{S_{T(t)}}{T(t)} \le a + \epsilon.$$

From the last inequality and $\frac{S_{T(t)}}{t} \ge 1$, it follows that $1 \le \frac{S_{T(t)}}{t} = \frac{S_{T(t)}}{T(t)} \cdot \frac{T(t)}{t}.$

$$1 \le \frac{S_{T(t)}}{t} = \frac{S_{T(t)}}{T(t)} \cdot \frac{T(t)}{t}$$

Hence the following inequality holds

$$\frac{T(t)}{t} \ge \frac{1}{\frac{S_{T(t)}}{T(t)}} \ge \frac{1}{a+\epsilon}.$$

Letting $t \to \infty$ we get

$$\underline{\lim_{t\to\infty}}\frac{T(t)}{t}\geq \frac{1}{a+\epsilon}.$$

Note that T(t) = N(t) + 1, the last inequality implies that

$$\lim_{t \to \infty} \frac{N(t)}{t} \ge \frac{1}{a+\epsilon}.$$
(8)

(8) guaranteies that (when letting $\epsilon \to \infty$)

$$\lim_{t \to \infty} \frac{N(t)}{t} \ge \frac{1}{a}.$$
(9)

Combining (7) and (9) we get finally

$$P(\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{a}) = 1.$$

Conversely, suppose that for all $\omega \in \Omega_0$ we have

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{a}.$$

For a given ϵ , we choose $\delta > 0$ such that

$$\frac{1}{a} + \delta < \frac{1}{a - \epsilon},$$

$$\frac{1}{a} - \delta < \frac{1}{a + \epsilon}.$$

Then there exists t_{δ} such that for all $t \geq t_{\delta}$ we have

$$\frac{1}{a} - \delta < \frac{N(t)}{t} < \frac{1}{a} + \delta.$$

Now we choose n_{ϵ} satisfying the conditions

$$n_{\epsilon}(a-\epsilon) > t_{\delta}, n_{\epsilon}(a+\epsilon) > t_{\delta}.$$

Then

$$\frac{N(n(a-\epsilon))}{n(a-\epsilon)} < \frac{1}{a} + \delta < \frac{1}{a-\epsilon} \text{ for } n \ge n_{\epsilon}.$$

It follows that $N(n(a - \epsilon)) < n$. Hence

$$\frac{S_n}{n} > a - \epsilon$$
.

Similarly, from $n(a + \epsilon) > t_{\delta}$ it follows that

$$\frac{N(n(a+\epsilon))}{n(a+\epsilon)} < \frac{1}{a} - \delta < \frac{1}{a+\epsilon} \text{ for } n \ge n_{\epsilon}.$$

This ensures that

$$\frac{S_n}{n} < a + \epsilon.$$

Therefore, we get finally

$$\lim_{n \to \infty} \frac{S_n}{n} = a \quad \text{for all} \quad \omega \in \Omega_0.$$

The proof of the theorem is complete.

Theorem 2.3 has the following remarkable corollary

Corollary 2.1.

(i) Let $(X_n)_{n\geq 0}$ be a (m-1)- dependent sequence of random variables $(m\geq 1)$ such that $\forall i: 0\leq i\leq m-1$ $(X_{i+km})_{k\geq 0}$ are identical distributed radom variables and $EX_0=EX_1=\ldots=EX_{m-1}=a$. Then

$$P(\lim_{t \to \infty} \frac{N(t)}{t} = 1/a) = 1.$$

(ii) Let $(X_n)_{n\geq 0}$ be a stationary, α -mixing sequence of random variables with $EX_1 = a > 0$ and $E \mid X_1 \mid^{\beta} < \infty$ with $\beta > 2$ and mixing coefficients $\alpha(n) = O(n^{-\theta})$ where $\theta > 2\beta/(\beta-2)$. Then

$$P(\lim_{t \to \infty} \frac{N(t)}{t} = 1/a) = 1 > 0.$$

Proof.

(i) From assumption, it is easy to see that for each given $i \leq m-1$, the sequence $(X_{i+km})_{k\geq 0}$ obeys the Strong law of large numbers. So the whole sequence does too. This means that

$$P(\lim_{n \to \infty} \frac{S_n}{n} = a) = 1.$$

By virtue of Theorem 2.3 we deduce

$$P(\lim_{t\to\infty}\frac{N(t)}{t}=1/a)=1>0.$$

(ii) is a direct corollary of Theorem 2.3 and [4, Theorem 2.1].

We end this work by presenting the Central limit theorem for the function N(t).

Theorem 2.4. Let $(X_n)_{n\geq 0}$ be a stationary, α -mixing sequence of positive radom variables such that $\liminf_{n\to\infty}\frac{E(S_n^2)}{n}>0$, X_1 has finite $(2+\delta)^{th}$ -order moment with $\delta>0$ and $\lim_{n\to\infty}n.\alpha_n^{\delta/(2+\delta)}=0$. Then $P\Big(\frac{N(n)-n/\mu}{(\sigma\sqrt{n})/\mu^{3/2}}< x\Big)\to\Phi(x), \ \forall x\in R,$

$$P\left(\frac{N(n) - n/\mu}{(\sigma\sqrt{n})/\mu^{3/2}} < x\right) \to \Phi(x), \ \forall x \in R,$$

where $\Phi(x)$ is the standard normal distribution.

Proof. The theorem is a direct consequence of the theorem in [5].

References

- 1. P. Billingsley, Convergence of Probability Measures, 2nd Edition, W-I Publication,
- 2. Nguyen Quy Hy and Nguyen Dinh Hoa, Renewal sequences and population, Vietnam J. Math. 24 (1996).
- 3. O. Kallenberg, Foundations of Modern Probability, 2nd Edition, Springer-Verlag, 2001.
- 4. Tze Leung Lai, Convergences rates and r-quick versions of the strong law for stationary mixing sequences, Annals of Prob. 5 (1977) 693-706.
- 5. F. Merlenvede and M. Peligrad, The functional central limit theorem under the strong mixing condition, Annals of Prob. 28 (2000) 1336-1352.