
Vietnam Journal of Mathematics 33:2 (2005) 183–188 ������� 	
����



 �

�����������

� ���� ���	

Uniqueness Theorems for Harmonic and
Separately Harmonic Entire Functions on C

N

Bachir Djebbar

Department of Computer Sciences,
University of Sciences and Technology “M.B” of Oran,

B.P 1505, El M’naouer Oran 31000, Algeria

Received May 24, 2004

Abstract. For harmonic and separately harmonic functions, we give results similar to

the Carlson-Boas theorem. We give also harmonic analogous of the Polya and Guelfond

theorems.

1. Introduction

The well known classical theorem of Carlson (see [2, p.153]) states that an entire
holomorphic function of exponential type< π (i.e. f satisfies an inequality of
the form |f(z)| ≤ A exp(τ |z|) with τ < π ) must vanish identically if it vanishes
on N.

In [3] Boas extended Carlson’s theorem to harmonic functions and proved
the following theorem:

Theorem 1.1. (Boas theorem) Let h be an entire harmonic function on C of
exponential type < π.
If

h(z) = 0 for z = 0,±1,±2, . . . , i, i ± 1, i ± 2, . . . (1)

Then h ≡ 0.
Similarly, Ching in [5] showed that the same conclusion holds under the con-

ditions
i) h is of exponential type < π.
ii) h(z) = 0 for z = 0,±1,±2, . . . ,±i,±2i, . . .
iii) h(z) = −h(−z) for all complex z.
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In [1] Armitage gives a similar result for harmonic entire function in RN .
Let us recall the classical:

Theorem 1.2. (Polya Theorem [2]) Let f be an entire function on C, of
exponential type < log 2. If {f(n), n ∈ N} ⊂ Z, then f is a polynomial.

Guelfond gives in [7] a similar result for an entire function that takes integers
values on a sequence (βn) under some growth condition near infinity.

Theorem 1.3. (Guelfond Theorem [7]) Let g be an entire function on C, β an
integer greater than one. If g(βn) are integers for n = 1, 2, . . . and g satisfies
the inequality:

log |g(z)| � log2 |z|
4 logβ

− 1
2

log |z| − ω
(|z|),

where ω : R
+ → R satisfies lim

r−→∞ω (r) = ∞ then g is a polynomial.

In this paper we give a result similar to Boas theorem but under different
conditions. Our proof is based on the properties of a polynomial basis estab-
lished in [6]. We extend this result to separately harmonic functions. We give
also a Guelfond and Polya type theorem in the case of harmonic function.

2. Notations and Results

For all z = reiθ ∈ C and n ∈ N we put:

e1(z) ≡ 1, en(z) =
{

rk cos kθ, if n = 2k k ≥ 1,

rk sinkθ, if n = 2k + 1 k ≥ 1.
(2)

The sequence (ej)j≥1 of harmonic polynomials with deg(ej) = [j/2] ([ ] des-
ignates the entire part ) is a basis for the space H(C) of all entire harmonic
functions. Moreover for all function h ∈ H(C), we have the following relation
between the growth of h and its coefficients in the basis (ej).

Theorem 2.1. [6] Let h be an entire harmonic function, and let h(z) =
∞∑

j=1

ajej(z) be an expansion according to the basis (ej)j≥1.Then the growth order

ρ of h is given as follows

ρ = lim sup
j→∞

[j/2] log[j/2]
− log |aj | . (3)

When ρ ∈]0, +∞[, the growth type τ of h is given by

τ = lim sup
j→∞

[j/2]
eρ

(|aj |)
ρ

[j/2] . (4)

We will prove the following results.
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Theorem 2.2. Let h be an entire harmonic function on C of exponential type
< π. If h(z) = 0 for z = 0, 1, 2, . . . and h(z) = h(z) then h ≡ 0 on C.

Theorem 2.3. Let h be an entire separately harmonic function on CN of
exponential type < π with respect to the norm |z| = sup

j
|zj| (i.e : |h(z)| ≤

A exp(τ |z|) with τ < π).
For m ∈ {0, 1, ..., N} ⊂ N let:
Em =

{
(z1, ..., zN) ∈ CN : zm+1 = · · · = zN = 0

}
and Lm =

{
(z1, ....zN ) ∈

Em : zj ∈ N.... for j = 1, ...m
}
.

If h ≡ 0 on Lm and h
(
z1,....zj−1, zj, zj+1,....zN

)
= h(z1, ..., zj, ...zN ); j =

1...., m, then h ≡ 0 on Em.

Corollary 2.4. Let h be an entire separately harmonic function on CNof expo-
nential type < π. If h(z1, ...., zN) = 0 for zj=0, 1...., and h

(
z1, ...zj−1, zj,j+1 , ...,

zN

)
= h

(
z1, ..zj−1, zj , zj+1,...., zN

)
; j = 1, .., N then h ≡ 0 on CN .

Corollary 2.4 is a direct consequence of Theorem 2.3.

Theorem 2.5. [The harmonic analogous of Guelfond theorem] Let h be an
entire harmonic function on R2 ≈ C and q ∈ Z such that |q| > 1. Suppose that

i)
{

h(qn, 0)
∂h

∂y
(qn, 0), n ∈ N

}
⊂ Z,

ii) There is a function ω : R∗
+ −→ R+ such that: lim

r−→∞ r2ω(r) = 0 and

M(h, r) � ω(r)√
r

exp
( log2 r

4 log |q|
)
, ∀r > 0,

where M (h, r) = sup
|z|=r

|h(z)|.
Then h is a polynomial.

Theorem 2.6. (The harmonic analogous of Polya Theorem) Let h be an entire
harmonic function on R2. If h satisfies:

i)
{

h(n, 0),
∂h

∂y
(n, 0), n ∈ N

}
⊂ Z,

ii) M(h, r) � A exp(Cr), C < log 2,
then h is a polynomial.

3. Proofs

Proof of Theorem 2.2. Let h be an entire harmonic function on C of exponential

type τ < π, and let h(z) =
∞∑

j=1

ajej(z) be its expansion in (ej)j∈N. One can

write

h(z) =
∞∑

j=1

a2je2j(z) +
∞∑

j=1

a2j+1e2j+1(z).
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The condition h(z) = h(z), ∀z ∈ C implies that a2j+1 = 0 ∀j ≥ 0. However,

for all m ∈ N, we get h(m) =
∞∑

j=1

ajej(m) =
∞∑

j=1

a2jm
j = 0. Consider the

function f(z) =
∞∑

j=1

a2jz
j (z ∈ C) which is entire on C and of exponential type

β < τ < π. We have: f(m) =
∞∑

j=1

a2jm
j = h(m) = 0 for all m ∈ N, and hence

f ≡ 0 by Carlson Theorem, so a2j = 0 for j = 1, 2, . . . , which finally implies
that h ≡ 0. �

Proof of Theorem 2.3. We prove Theorem 2.3 by induction on m. The case
m = 1 is an immediate consequence of Theorem 2.2 applied to the function
v(z) = h(z, 0 . . . , 0), z ∈ C. Suppose the theorem is true for m such that 1
≤ m < N . Assume that h satisfies the hypotheses of the theorem for m + 1.
Hence h is an entire separately harmonic function of exponential type σ < π
and satisfies the condition:

if h ≡ 0 on Lm+1 and h(z1,. . ., zj, . . ., zN ) = h(z1, . . ., zj,. . . zN), j = 1,. . ., m + 1,

then h(z1, . . . , zm, 0, . . . 0) = 0, ∀(z1, . . . , zm ∈ N),

since h ≡ 0 on Lm then h ≡ 0 on Em. So h(z1, . . . , zm,0, . . . , 0) = 0, ∀(z1 , . . . ,
zm) ∈ Cm. Let k ∈ N and consider the translation:

Tk : C
N → C

N

(z1, . . . , zN ) → (z1, . . . , zm, zm+1 + k, zm+2, ..., zN)

h ◦ Tk(z1, . . . , zm, 0, . . . , 0) = h(z1,z2, . . . zm, k, 0, ....0) then h ◦ Tk ≡ 0 on
Lm.h ◦ Tk is a entire separately harmonic function of exponential type < π
which satisfies:

h ◦ Tk(z1, ..., zj, ..., zN ) = h(z1,....,zj , ....zm , zm+1 + k, ...., zN)
= h(z1, ..., zj , ..., zm, zm+1 + k, ....zN ), j = 1, .., m

then h ◦ Tk ≡ 0 on Em,

i.e. h ◦ Tk(z1,. . ., zm, 0,. . ., 0)=h(z1,. . ., zm, k, 0,. . ., 0)=0, ∀zj ∈ C; j=1,. . ., m

and, k ∈ N. For z1, . . . , zm fixed in C, we consider the function: g(z) =
h(z1, . . . , zm, z, 0, . . . , 0) z ∈ C. g is an entire separately harmonic function
of exponential type ≤ σ < π, and satisfies:

{
g(z) = h(z1, ....zm, z, 0, . . . , 0) = h(z1, . . . , zm, z, 0, . . . , 0) = g(z) ∀z ∈ C

g(k) = h(z1, . . . , zm, k, 0, . . . , 0) = h ◦ Tk(z1, ....zm, 0.....0) = 0, ∀k ∈ N.

By Theorem 2.2 we deduce that g(z) = 0, ∀z ∈ C. Since (z1, . . . , zm) is
arbitrarily fixed in Cm then
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h(z1, . . . , zm,z, 0, . . . , 0) = 0, ∀(z1, . . . , zm) ∈ C
m and ∀z ∈ C.

Consequently h(z1, . . . , zm, zm+1, 0, . . . , 0) = 0 ∀(z1, . . . , zm+1) ∈ Cm+1. So
h ≡ 0 on Em+1. The induction is complete. �

Proof of Theorem 2.5. Let h be an entire harmonic function and let f(z) =
∞∑

k=0

(ak + ibk) zk be its Taylor series expansion.

We consider the function F (z) =
1
2
[
f(z)+f(z)

]
. Then F is an holomorphic

entire function and F (z) =
∑∞

k=0 ak zk, F (qn) = Re f(qn) = h(qn, 0) ∈ Z. By
the following Carathéodory’s inequality [2]

M(f, r) ≤ ∣∣f(0)
∣∣ +

2r

R − r

[
M(Re f, R) − Re f(0)

]
, 0 < r < R,

we deduce that F satisfies conditions of the theorem of Gurelfond in the holo-
morphic case, so F is a polynomial.

There is an integer N such that ak = 0, ∀k > N. Consider now the
holomorphic entire function H defined by:

H(z) =
1
2
[
if

′
(z) + if ′(z)

]
=

∞∑
k=1

−2kbkzk−1.

Then

H(qn) =
1
2
[
if

′
(qn) + if ′(qn)

]
= −2

∂h

∂y
(qn, 0) ∈ Z, ∀ n ∈ N.

The classical result⎧⎨
⎩

if g is holomorphic in |z| < R + ε then we have :

|g′
(z)| ≤ R

(R − r)2
M(g, R) for |z| � r < R,

gives
M(f

′
, r) � (r + 1)M(f, r + 1), ∀r > 0.

H satisfies the Gurelfond’s Theorem conditions in the holomorphic case, so H
is a polynomial; there exist N ′ such bk = 0, ∀k > N ′. Then f is a polynomial,
and consequently h is also a polynomial. �

Proof of Theorem 2.6. Very similar to the proof of Theorem 2.5.

Remark. It would certainly be interesting to give Gelfond and Polya type
theorems in the general case of harmonic entire functions in R

N .
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