Vietnam Journal of MATHEMATICS © VAST 2005

Some Remarks on Weak Amenability of Weighted Group Algebras

A. Pourabbas and M.R. Yegan

Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran

Received December 19, 2004

Abstract. In [1] the authors consider the sufficient condition $\omega(n)\omega(-n) = o(n)$ for weak amenability of Beurling algebras on the integers. In this paper we show that this characterization does not generalize to non-abelian groups.

1. Introduction

The Banach algebra \mathcal{A} is amenable if $\mathcal{H}^1(\mathcal{A}, \mathcal{X}') = 0$ for every Banach \mathcal{A} -bimodule \mathcal{X} , that is, every bounded derivation $D: \mathcal{A} \to \mathcal{X}'$ is inner. This definition was introduced by Johnson in (1972) [5]. The Banach algebra \mathcal{A} is weakly amenable if $\mathcal{H}^1(\mathcal{A}, \mathcal{A}') = 0$. This definition generalizes the one which was introduced by Bade, Curtis and Dales in [1], where it was noted that a commutative Banach algebra \mathcal{A} is weakly amenable if and only if $\mathcal{H}^1(\mathcal{A}, \mathcal{X}) = 0$ for every symmetric Banach \mathcal{A} -bimodule \mathcal{X} .

In [7] Johnson showed that $L^1(G)$ is weakly amenable for every locally compact group. In [9] Pourabbas proved that $L^1(G,\omega)$ is weakly amenable whenever $\sup\{\omega(g)\omega(g^{-1}):g\in G\}<\infty$. Grønbæk [3] proved that the Beurling algebra $\ell^1(\mathbb{Z},\omega)$ is weakly amenable if and only if

$$\sup \left\{ \frac{|n|}{\omega(n)\omega(-n)} : n \in \mathbb{Z} \right\} = \infty.$$

In [3] he also characterized the weak amenability of $\ell^1(G,\omega)$ for abelian group G. He showed that

(*) The Beurling algebra $\ell^1(G,\omega)$ is weakly amenable if and only if

$$\sup \left\{ \frac{|f(g)|}{\omega(g)\omega(g^{-1})} : g \in G \right\} = \infty$$

for all $f \in \operatorname{Hom}_{\mathbb{Z}}(G,\mathbb{C})\setminus\{0\}$. The first author [8] generalizes the 'only if' part of (*) for non-abelian groups. Borwick in [2] showed that Grønbæk's characterization does not generalize to non-abelian groups by exhibiting a group with non-zero additive functions but such that $\ell^1(G,\omega)$ is not weakly amenable.

For non-abelian groups, Borwick [2] gives a very interesting classification of weak amenability of Beurling algebras in term of functions defined on G.

Theorem 1.1. [2, Theorem 2.23] Let $\ell^1(G, \omega)$ be a weighted non-abelian group algebra and let $\{C_i\}_{i\in I}$ be the partition of G into conjugacy classes. For each $i\in I$, let F_i denote the set of nonzero functions $\psi: G \to \mathbb{C}$ which are supported on C_i and such that

$$\sup \left\{ \frac{\left| \psi(XY) - \psi(YX) \right|}{\omega(X)\omega(Y)} : X, Y \in G, XY \in C_i \right\} < \infty.$$

Then $\ell^1(G,\omega)$ is weakly amenable if and only if for each $i \in I$ every element of F_i is contained in $\ell^{\infty}(G,\omega^{-1})$, that is, if and only if every $\psi \in F_i$ satisfies

$$\sup_{X \in G} \left\{ \frac{\left| \psi(XYX^{-1}) \right|}{\omega(XYX^{-1})} \right\} < \infty, \quad (Y \in \mathcal{C}_i).$$

In [1] the authors consider the sufficient condition $\omega(n)\omega(-n) = 0(n)$ for weak amenability of Beurling algebras on the integers. For abelian groups we have the following result:

Proposition 1.2. Let G be a discrete abelian group and let ω be a weight on G such that $\lim_{n\to\infty} \frac{\omega(g^n)\omega(g^{-n})}{n} = 0$ for every $g \in G$. Then $\ell^1(G,\omega)$ is weakly amenable.

Proof. If $\ell^1(G,\omega)$ is not weakly amenable, then by [3, Corollary 4.8] there exists a $\phi \in \operatorname{Hom}(G,\mathbb{C}) \setminus \{0\}$ such that $\sup_{g \in G} \frac{|\phi(g)|}{\omega(g)\omega(g^{-1})} = K < \infty$. Hence for every $g \in G$

$$\frac{|\phi(g^n)|}{\omega(g^n)\omega(g^{-n})} = \frac{n|\phi(g)|}{\omega(g^n)\omega(g^{-n})} \leq K,$$

or equivalently $\frac{\omega(g^n)\omega(g^{-n})}{n} \geq \frac{|\phi(g)|}{K}.$ Therefore

$$\lim_{n\to\infty}\frac{\omega(g^n)\omega(g^{-n})}{n}=0\geq\frac{|\phi(g)|}{K},$$

which is a contradiction.

Example 1.3. Let G be a subgroup of $GL(2,\mathbb{R})$ defined by

$$G = \left\{ \begin{bmatrix} e^{t_1} & t_2 \\ 0 & e^{t_1} \end{bmatrix} : t_1, t_2 \in \mathbb{R} \right\}$$

and let $\omega_{\alpha}: G \to \mathbb{R}^+$ be defined by

$$\omega_{\alpha}(T) = (e^{t_1} + |t_2|)^{\alpha} \qquad (\alpha > 0).$$

To show that ω_{α} is a weight, let us consider

$$T = \begin{bmatrix} e^{t_1} & t_2 \\ 0 & e^{t_1} \end{bmatrix} \quad S = \begin{bmatrix} e^{s_1} & s_2 \\ 0 & e^{s_1} \end{bmatrix}.$$

Then

$$\omega_{\alpha}(TS) = (e^{t_1+s_1} + |t_2e^{s_1} + s_2e^{t_1}|)^{\alpha}$$

$$\leq (e^{t_1+s_1} + |t_2|e^{s_1} + |s_2|e^{t_1} + |s_2||t_2|)^{\alpha}$$

$$= (e^{t_1} + |t_2|)^{\alpha}(e^{s_1} + |s_2|)^{\alpha} = \omega_{\alpha}(T)\omega_{\alpha}(S),$$

it is clear that $\omega_{\alpha}(I) = 1$. Also for $0 < \alpha < \frac{1}{2}$ we have

$$\frac{\omega_{\alpha}(T^n)\omega_{\alpha}(T^{-n})}{n} = \frac{(e^{nt_1} + n|t_2|e^{(n-1)t_1})^{\alpha}(e^{-nt_1} + n|t_2|e^{-(n+1)t_1})^{\alpha}}{n}$$
$$= \frac{(1 + n|t_2|e^{-t_1})^{2\alpha}}{n} \to 0 \quad \text{as} \quad n \to \infty.$$

Therefore $\ell^1(G,\omega_\alpha)$ is weakly amenable for $0<\alpha<\frac{1}{2}$. Note that in this example, we have

$$\sup_{T \in G} \{ \omega_{\alpha}(T) \omega_{\alpha}(T^{-1}) \} = \sup_{t_1, t_2 \in \mathbb{R}} \{ (e^{t_1} + |t_2|)^{\alpha} (e^{-t_1} + |t_2|e^{-2t_1})^{\alpha} \}
= \sup_{t_1, t_2 \in \mathbb{R}} \{ (1 + |t_2|e^{-t_1})^{2\alpha} \} = \infty, \quad (\alpha > 0).$$

So by [4, Corollary 3.3] $\ell^1(G, \omega_\alpha)$ is not amenable.

Question 1.4. Is the condition

$$\lim_{n \to \infty} \frac{\omega(g^n)\omega(g^{-n})}{n} = 0 \tag{1.1}$$

sufficient for weak amenability of Beurling algebras on the not necessarily abelian group G?

It has been considered in [8] and [9].

Note that the condition $\sup\{\omega(g)\omega(g^{-1}):g\in G\}<\infty$ implies the condition (1.1).

2. Main Results

Our aim in this section is to answer negatively the question 1.4 by producing an example of a group G which satisfies the condition (1.1), but it is not weakly amenable.

Example 2.1. Let H be a Heisenberg group of matrices of the form

$$a = \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{bmatrix},$$

where $a_1, a_2, a_3 \in \mathbb{R}$. Let

$$a = \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 & b_1 & b_2 \\ 0 & 1 & b_3 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then we see that

$$ab = \begin{bmatrix} 1 & a_1 + b_1 & a_2 + b_2 + a_1 b_3 \\ 0 & 1 & a_3 + b_3 \\ 0 & 0 & 1 \end{bmatrix}, \quad a^{-1} = \begin{bmatrix} 1 & -a_1 & a_1 a_3 - a_2 \\ 0 & 1 & -a_3 \\ 0 & 0 & 1 \end{bmatrix},$$

and for every $n \geq 2$

$$a^n = \begin{bmatrix} 1 & na_1 & \sum_{i=1}^n ia_1a_3 + na_2 \\ 0 & 1 & na_3 \\ 0 & 0 & 1 \end{bmatrix}, \quad a^{-n} = \begin{bmatrix} 1 & -na_1 & \sum_{i=1}^n ia_1a_3 - na_2 \\ 0 & 1 & -na_3 \\ 0 & 0 & 1 \end{bmatrix}.$$

Let define $\omega_{\alpha}: H \to \mathbb{R}^+$ by

$$\omega_{\alpha}(a) = (1 + |a_3|)^{\alpha}, \quad (\alpha > 0).$$

Since

$$\omega_{\alpha}(ab) = (1 + |a_3 + b_3|)^{\alpha}$$

$$\leq (1 + |a_3| + |b_3| + |a_3||b_3|)^{\alpha}$$

$$= (1 + |a_3|)^{\alpha} (1 + |b_3|)^{\alpha} = \omega_{\alpha}(a)\omega_{\alpha}(b),$$

then ω_{α} is a weight on H, which satisfies the condition (1.1), because for every $0 < \alpha < \frac{1}{2}$, we have

$$\lim_{n \to \infty} \frac{\omega_{\alpha}(a^n)\omega_{\alpha}(a^{-n})}{n} = \lim_{n \to \infty} \frac{\left(1 + |na_3|\right)^{\alpha} (1 + |-na_3|)^{\alpha}}{n}$$
$$= \lim_{n \to \infty} \frac{\left(1 + |na_3|\right)^{2\alpha}}{n} = 0.$$

Lemma 2.2. Suppose that $0 < \alpha < \frac{1}{2}$. Then $\ell^1(H, \omega_\alpha)$ is not weakly amenable.

Proof. Let $e=\begin{bmatrix}1&e_1&e_2\\0&1&e_3\\0&0&1\end{bmatrix}$. The conjugacy class of e is denoted by \tilde{e} and has the following form

$$\tilde{e} = \left\{ aea^{-1} : a \in H \right\} = \left\{ \begin{bmatrix} 1 & e_1 & -a_3e_1 + e_2 + a_1e_3 \\ 0 & 1 & e_3 \\ 0 & 0 & 1 \end{bmatrix} : a_1, a_2, a_3 \in \mathbb{R} \right\}.$$

In particular if
$$E = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then $\widetilde{E} = \left\{ \begin{bmatrix} 1 & 1 & 1 - a_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : a_3 \in \mathbb{R} \right\}$

If $a, b \in H$, then $ab \in \widetilde{E}$ if and only if $a_1 + b_1 = 1$ and $a_3 + b_3 = 0$. Note also that if $ab \in \widetilde{E}$, then $ba = a^{-1}(ab)a \in \widetilde{E}$.

Now define $\psi: H \to \mathbb{C}$ by $\psi(a) = |a_2|^{\alpha}$, where $a = \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{bmatrix}$. Then since $a_1 + b_1 = 1$ and $a_3 + b_3 = 0$, by replacing a_3 by $-b_3$ and a_1 by $1 - b_1$ respectively, we get

$$\sup_{a,b \in H} \left\{ \frac{|\psi(ab) - \psi(ba)|}{\omega_{\alpha}(a)\omega_{\alpha}(b)} : ab \in \tilde{E} \right\} = \sup \left\{ \frac{||a_2 + b_2 + a_1b_3|^{\alpha} - |a_2 + b_2 + b_1a_3|^{\alpha}|}{(1 + |a_3|)^{\alpha}(1 + |b_3|)^{\alpha}} \right\}
= \sup \left\{ \frac{||a_2 + b_2 + b_3 - b_1b_3|^{\alpha} - |a_2 + b_2 - b_1b_3|^{\alpha}|}{(1 + |b_3|)^{2\alpha}} \right\}
\leq \sup \left\{ \frac{|b_3|^{\alpha}}{(1 + |b_3|)^{2\alpha}} : b_3 \in \mathbb{R} \right\} < \infty.$$
(2.1)

But for every $a \in H$ and $b \in \tilde{E}$ we have

$$aba^{-1} = \begin{bmatrix} 1 & 1 & b_2 - a_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

SO

$$\sup \left\{ \frac{|\psi(aba^{-1})|}{\omega_{\alpha}(aba^{-1})} : a \in H \right\} = \sup \left\{ |b_2 - a_3|^{\alpha} : a_3 \in \mathbb{R} \right\} = \infty.$$

Thus by Theorem 1.1 if $0 < \alpha < \frac{1}{2}$, then $\ell^1(H, \omega_\alpha)$ is not weakly amenable.

Borwick in [2] showed that Grønbæk's characterization (*) does not generalize to non-abelian groups. Here we will give a simple example of a non-abelian group that satisfies condition of (*), but $\ell^1(G,\omega)$ is not weakly amenable.

Example 2.3. Let H be a Heisenberg group on the integers. Consider the weight function ω_{α} that was defined in the previous Example. Suppose $\phi \in$

Hom
$$(H,\mathbb{C})\setminus\{0\}$$
, and let $a=\begin{bmatrix}1&r&s\\0&1&t\\0&0&1\end{bmatrix}$. Then $a=E_1^rE_2^tE_3^{s-rt}$, where

$$E_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Therefore

$$\sup_{a \in H} \frac{|\phi(a)|}{\omega_{\alpha}(a)\omega_{\alpha}(a^{-1})} = \sup_{r,s,t \in \mathbb{Z}} \frac{|r\phi(E_1) + t\phi(E_2) + (s - rt)\phi(E_3)|}{(1 + |t|)^{2\alpha}}.$$
 (2.2)

Since $\phi \neq 0$ without loss of generality we can assume that $\phi(E_2) \neq 0$, then for r = s = 0 the equation (2.2) reduces to

$$\sup_{t \in \mathbb{Z}} \frac{|t\phi(E_2)|}{(1+|t|)^{2\alpha}} = \infty, \quad \left(0 < \alpha < \frac{1}{2}\right).$$

Thus $\sup\left\{\frac{|\phi(a)|}{\omega_{\alpha}(a)\omega_{\alpha}(a^{-1})}:a\in H\right\}=\infty.$ But by Lemma 2.2, $\ell^1(H,\omega_{\alpha})$ is not weakly amenable for $0<\alpha<\frac{1}{2}.$

In the following theorem we will determine the connection between derivations and a family of additive maps for every discrete weighted group algebra.

Theorem 2.4. Let G be a not necessarily abelian discrete group. Then every bounded derivation $D: \ell^1(G, \omega) \to \ell^{\infty}(G, \omega^{-1})$ is described uniquely by a family $\{\phi_t\}_{t\in Z(G)} \subset Hom_{\mathbb{Z}}(G,\mathbb{C})$ such that

$$\sup \left\{ \frac{|\phi_t(g)|}{\omega(g)\omega(g^{-1}t)} : g \in G, t \in Z(G) \right\} < \infty.$$

Proof. Suppose that $D: \ell^1(G, \omega) \to \ell^{\infty}(G, \omega^{-1})$ is a bounded derivation. Then D corresponds via the equation $\tilde{D}(g, h) = D(\delta_g)(\delta_h)$ to an element \tilde{D} of $\ell^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})$ which satisfies

$$\tilde{D}(gh,k) = \tilde{D}(g,hk) + \tilde{D}(h,kg), \quad (g,h,k \in G). \tag{2.3}$$

Now for every t in Z(G) (the center of G) we define

$$\phi_t(g) = \tilde{D}(g, g^{-1}t), \quad (g \in G).$$

For every g and h in G we have

$$\phi_t(gh) = \tilde{D}(gh, h^{-1}g^{-1}t)$$

$$= \tilde{D}(g, hh^{-1}g^{-1}t) + \tilde{D}(h, h^{-1}g^{-1}tg)$$

$$= \phi_t(g) + \phi_t(h)$$

and

$$\sup \left\{ \frac{|\phi_t(g)|}{\omega(g)\omega(g^{-1}t)} : g \in G, t \in Z(G) \right\} = \sup \left\{ \frac{|\tilde{D}(g, g^{-1}t)|}{\omega(g)\omega(g^{-1}t)} : g \in G, t \in Z(G) \right\}$$

$$\leq \|\tilde{D}\|_{\infty}^{\infty}.$$

So D corresponds to the family $\{\phi_t\}_{t\in Z(G)}\subset \operatorname{Hom}_{\mathbb{Z}}(G,\mathbb{C})$.

Conversely, we consider a family $\{\phi_t\}_{t\in Z(G)}\subset \operatorname{Hom}_{\mathbb{Z}}(G,\mathbb{C})$ such that

$$\sup \left\{ \frac{|\phi_t(g)|}{\omega(g)\omega(g^{-1}t)} : g \in G, t \in Z(G) \right\} < \infty.$$

We define a function \tilde{D} by

$$\tilde{D}(g,h) = \sum_{t \in Z(G)} \phi_t(g) \chi_t(gh), \quad (g,h \in G),$$

where χ_t is the characteristic function. We show that $\tilde{D} \in \ell^{\infty}(G \times G, \omega^{-1} \times \omega^{-1})$:

$$\begin{split} \sup \left\{ \frac{|\tilde{D}(g,h)|}{\omega(g)\omega(h)} : g,h \in G \right\} &= \sup \left\{ \frac{|\sum_{t \in Z(G)} \phi_t(g)\chi_t(gh)|}{\omega(g)\omega(h)} : g,h \in G \right\} \\ &= \sup \left\{ \frac{|\phi_{t'}(g)|}{\omega(g)\omega(g^{-1}t')} : g \in G, t' \in Z(G) \right\} < \infty. \end{split}$$

Also \tilde{D} corresponds to the derivation $D: \ell^1(G, \omega) \to \ell^{\infty}(G, \omega^{-1})$ which satisfies equation (2.3). Since gh = t if and only if hg = t for every $t \in Z(G)$, then

$$\begin{split} \tilde{D}(gh,k) &= \sum_{t \in Z(G)} \phi_t(gh) \chi_t(ghk) \\ &= \sum_{t \in Z(G)} \phi_t(g) \chi_t(ghk) + \sum_{t \in Z(G)} \phi_t(h) \chi_t(hkg) \\ &= \tilde{D}(g,hk) + \tilde{D}(h,kg). \end{split}$$

Finally let $\{\phi_t\}_{t\in Z(G)}$ correspond to \tilde{D}' and let \tilde{D}' correspond to $\{\phi_t'\}_{t\in Z(G)}$. Then

$$\phi'_{t'}(g) = \tilde{D}'(g, g^{-1}t') = \sum_{t \in Z(G)} \phi_t(g) \chi_t(gg^{-1}t') = \phi_{t'}(g).$$

On the other hand if \tilde{D} corresponds to $\{\phi'_t\}_{t\in Z(G)}$ and if $\{\phi'_t\}_{t\in Z(G)}$ corresponds to \tilde{D}' , then

$$\tilde{D}(g,h) = \sum_{t \in Z(G)} \phi'_t(g) \chi_t(gh) = \sum_{t \in Z(G)} \tilde{D}'(g,g^{-1}t) \chi_t(gh) = \tilde{D}'(g,h).$$

References

- W. G. Bade, P. C. Curtis, Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987) 359–377.
- 2. C. R. Borwick, Johnson-Hochschild cohomology of weighted group algebras and augmentation ideals, Ph.D. thesis, University of Newcastle upon Tyne, 2003.
- N. Grønbæk, A characterization of weak amenability, Studia Math. 94 (1989) 149–162.
- N. Grønbæk, Amenability of weighted discrete convolution algebras on cancellative semigroups, Proc. Royal Soc. Edinburgh 110 A (1988) 351–360.
- B. E. Johnson, Cohomology in Banach algebras, Mem. American Math. Soc. 127 (1972) 96.
- 6. B. E. Johnson, Derivations from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$, Lecture Notes in Math. 1359 (1988) 191–198.

- 7. B. E. Johnson, Weak amenability of group algebras, $Bull.\ London\ Math.\ Soc.$ 23 (1991) 281–284.
- 8. A. Pourabbas, Second cohomology of Beurling algebras, Saitama Math. J. 17 (1999) 87–94.
- 9. A. Pourabbas, Weak amenability of Weighted group algebras, Atti Sem. Math. Fis. Uni. Modena 48 (2000) 299–316.