Vietnam Journal of MATHEMATICS © VAST 2005

On the Continuity of Julia Sets and Hausdorff Dimension of Polynomials

Zhuang Wei

Institute of Mathematics, Chinese Academy of Sciences, Beijing, 100080, China,

> Received March 5, 2004 Revised April 22, 2005

Abstract. We study the continuity of Julia set of some rational maps and the stability of the Hausdorff dimension of the Julia set of polynomials $z^d + c$ ($d \ge 2$) for some semi-hyperbolic parameters c in the boundary of the generalized Mandelbrot set.

1. Introduction and Main Results

We say rational maps f_n converge to f algebraically if $\deg f_n = \deg f$ and, when f_n is expressed as the quotient of two polynomials, the coefficients can be chosen to converge to those of f. Equivalently, $f_n \to f$ uniformly in the spherical metric.

Recall that compact sets $K_n \to K$ in the Hausdorff topology if

- (1) Every neighborhood of a point $x \in K$ meets all but finitely many K_n ; and
- (2) If every neighborhood of x meets infinitely many K_n , then $x \in K$.

We define $\liminf K_n$ as the largest set satisfying (1), and $\limsup K_n$ as the smallest set satisfying (2). Then $K_n \to K$ is equivalent to $\limsup K_n = \liminf K_n = K$.

 J_c denotes the Julia sets of polynomials $P_c = z^d + c$ and let $M_d = \{c | J_c$ is connected} be the connectedness locus; for d = 2 it is called the Mandelbrot set and HD denotes the Hausdorff dimension.

In this paper we study the stability of the Hausdorff dimension of polynomials $P_c = z^d + c$, $d \ge 2$, such that the critical point 0 is not recurrent and $0 \in J_c$. These polynomials are *semi-hyperbolic* in the sense of [3].

Let J(f) be the Julia sets of rational maps f. Recall that the equilibrium measure $\mu(f)$ of f supported in J(f) depends continuously on f; see [7]. $n \gg 0$

284 Zhuang Wei

means for all n sufficiently large. We have the following theorems:

Theorem 1. Let $f_n \to f$ algebraically. Assume that f has no Siegel disc, Herman ring nor parabolic cycles, then

$$J(f_n) \to J(f)$$

in the Hausdorff topology.

Theorem 2. Let $P_{c_0} = z^d + c_0$ $(d \ge 2)$ be semi-hyperbolic. If there is $B_1 = B_1(c_0) > 0$ such that for a sequence $c_n \to c_0$ from the interior of M_d ,

$$dist(c_n, \partial M_d) \ge B_1 |c_n - c_0|^{1+1/d},$$

then $HD(J_{c_n}) \to HD(J_{c_0})$.

2. Preliminaries

Definition 2.1. The definition of conformal measures for rational maps was first given by Sullivan (see [6]) as a modification of the Patterson measures for limit sets of Fuchsian groups. Let t > 0. A probability measure m on J(f) is called t-conformal for $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ if

$$m(f(A)) = \int_{A} |f^{'}|^{t} dm$$

for every Borel set $A \subset J(f)$ such that $f|_A$ is injective.

A more general definition, showing the connection to ergodic theory, has been given by Denker and Urbański earlier (see [9]). It follows from topological exactness of $f|_{J(f)}$ that a conformal measure m is positive on non-empty sets and therefore

$$M(r) = \inf\{m(B(z,r)) : z \in J(f)\} > 0$$

for every r > 0; see [8].

Consider $c_0 \in \partial M_d$ so that P_{c_0} is semihyperbolic, then all (finite) periodic points of P_{c_0} are repelling. Moreover, the set $\omega(0)$ of accumulation points of the orbit of 0 is a hyperbolic set of P_{c_0} . Thus by the expansive property, there is m>1 such that $P_{c_0}^m(0)\in \omega(0)$. We suppose m>1 is the least integer with this property, usually set $z_0=P_{c_0}^m(0)$.

In [3] it is proved that there are constants $\varepsilon > 0$, $B_0 > 0$ and $\theta \in (0,1)$ such that for all $x \in J_{c_0}$ and any connected component V of $P_{c_0}^{-n}(V_{\varepsilon}(x))$ for $n \geq 0$, the map $P_{c_0}^n: V \to V_{\varepsilon}(x)$ has degree at most d and $\operatorname{diam}(V) < B_0 \theta^n$. Moreover the complement of J_{c_0} is a *John domain*; this means that J_{c_0} is locally connected and there is $\delta > 0$ such that if $z \in J_{c_0}$ and w belongs to a ray landing at z, then $V_{\delta|z-w|}(w) \cap J_{c_0} = \emptyset$. In particular, by Carathéodory's theorem, the map $\phi_{c_0}^{-1}$, defined in $\overline{\mathbb{C}} - \overline{D}$, extends continuously to ∂D , so every ray lands at some point in J_{c_0} .

We construct a Markov partition for $\omega(0)$ with puzzles; a *puzzle* is a set bounded by a finite number of (closures of) rays and an equipotential. Recall that by [3] all rays land at some point in J_{c_0} . Puzzles are homeomorphic to a disc. We have the following propositions; see [2].

Proposition 2.1. (Markov Partitions) There is a Markov partition for $\omega(0)$ with puzzles. That is, there is a finite collection of disjoint puzzles U_i , (i = 1, 2, ...), that cover $\omega(0)$ so that P_{c_0} is univalent in U_i and if $U_i \cap P_{c_0}(U_j) \neq \emptyset$, then $U_i \subset P_{c_0}(U_j)$.

Consider the Markov partition U_i , (i = 1, 2, ...), given by the Proposition 2.1. For $n \geq 0$, the preimages of the sets U_i under $P_{c_0}^n$ that intersect $\omega(0)$ are called the *nth step pieces* of the Markov partition. Note that for $n \geq 1$ the collection of all the *nth* step pieces is a Markov partition; we call it a *refinement* of the Markov partition U_i , (i = 1, 2, ...).

Proposition 2.2. (Bounded Distortion Property). For any $k \geq 0$ the distortion of $P_{c_0}^k$ in each of the kth step pieces of the Markov partition is bounded by some constant K, independent of k.

Since P_{c_0} is uniformly expanding in $\omega(0)$ there is a holomorphic motion $j: B_{\sigma}(c_0) \times \omega(0) \to \mathbb{C}$, for some $\sigma > 0$, which is compatible with dynamics; see [4]. This means that for each $c \in B_{\sigma}(c_0)$ the map $j_c: \omega(0) \to \mathbb{C}$ is injective and for each $z \in \omega(0)$ the function $c \to j_c(z)$ is holomorphic. Being compatible with dynamics means that for every $c \in B_{\sigma}(c_0)$ the map j_c conjugates P_{c_0} on $\omega(0)$ to P_c on $j_c(\omega(0))$.

Proposition 2.3. Consider a Markov partition U_a , $a \in A$, of $\omega(0)$. Then there is $\sigma > 0$ and a holomorphic motion $j : B_{\sigma}(c_0) \times \bigcup_{a \in A} U_a \to \mathbb{C}$ compatible with dynamics. Moreover there is R > 0 such that $j(B_{\sigma}(c_0) \times \bigcup_{a \in A} U_a) \subset B_R(0)$.

3. Proof of the Theorems

In this section we prove the theorems; the proof is divided into 2 parts. Let f, f_n be rational functions. We have the following lemma; see [1].

Lemma 3.1. If $f_n \to f$ algebraically, then $J(f) \subset \liminf J(f_n)$.

Proof of Theorem 1. By assumption, f has no Siegel disc, Herman ring nor parabolic cycles. Since $f_n \to f$ algebraically, it follows by Lemma 3.1 that $J(f) \subset \liminf J(f_n)$. So to prove $J(f_n) \to J(f)$, we need only show $\limsup J(f_n) \subset J(f)$. This amounts to showing, for each $x \in F(f)$ (the Fatou set of f), there exists a neighborhood U of x such that $U \subset F(f_n)$, $\forall n \gg 0$. Since the Fatou set is totally invariant, we can replace x with a finite iteration $f^i(x)$ at any stage of the argument.

For each $x \in F(f)$, under iterating $f^{i}(x)$ converge to an attracting (super-

286 Zhuang Wei

attracting) fixed-point d of f.

Suppose d is attracting (super-attracting). Then this behavior persists under algebraic perturbation of f. In fact there is a small neighborhood U of d such that $f_n(U) \subset U$, for all $n \gg 0$. Thus $U \subset F(f_n)$. Choosing i such that $f^i(x) \in U$, from [1] there exists a neighborhood of x persisting in the Fatou set for large n.

Therefore the original sequence satisfies

$$J(f_n) \to J(f)$$
.

The proof of Theorem 1 is complete.

Proof of Theorem 2. Since P_{c_0} is semi-hyperbolic, it follows by [2] that there exists exactly one conformal measure μ in J_{c_0} which has exponent $d_{c_0} = HD(J_{c_0})$ or is atomic, supported in $\{P_{c_0}^{-n}(0)\}_{n\geq 0}$. (μ is not atomic if the measure μ of a point is zero). For $c_n \in M_d$, there is a unique conformal probability measure μ_{c_n} for P_{c_n} supported in J_{c_n} which has exponent $d_{c_n} = HD(J_{c_n})$ or is an atomic measure living on the inverse orbit of the critical point if 0 is in J_{c_n} ; see [1, 6]. Thus to prove that

$$\lim_{n \to \infty} HD(J_{c_n}) = HD(J_{c_0})$$

it is enough to prove that

$$\lim_{r \to 0} \lim_{n \to \infty} \mu_{c_n}(V_r(0)) = 0.$$

In fact, if μ is any weak limit of $\{\mu_{c_n}\}_{n\geq 1}$, then μ is a conformal probability measure supported in J_{c_0} , by convergence of Julia sets. The previous limit implies that the measure μ is not atomic at 0, so it has exponent d_{c_0} and it follows that $d_{c_n} \to d_{c_0}$.

Consider a Markov partition U_i as in Sec. 2 and consider a holomorphic motion $j: V_{\sigma}(c_0) \times \bigcup U_i \to \mathbb{C}$ given by Proposition 2.3. Taking $\sigma > 0$ small if necessary we may assume that there are constants $B_0 > 0$ and $\theta_0 \in (0,1)$ such that for all $m \geq 1$, all $c \in V_{\sigma}(c_0)$ and all $w \in j_c(\omega(0))$, we have $|(P_c^m)'(w)|^{-1} \leq B_0 \theta_0^m$. We suppose that there is a uniform bounded distortion property: There is a constant K > 1 so that for every $c \in V_{\sigma}(c_0)$, every $k \geq 1$ and every kth step piece W of the Markov partition $j_c(U_i)$, the distortion of P_c^k in W is bounded by K.

Recall that U_n is the nth step piece containing $P^m_{c_0}(0) \in \omega(0)$ and Y_n is the pull-back of U_n by $P^m_{c_0}$ containing 0. It follows that for r > 0 small there is $n = n(r) \to \infty$, as $r \to 0$ so that $V_r(0) \subset Y^c_n$ for all c sufficiently close c_0 . So we only need to prove that

$$\lim_{n \to \infty} \lim_{s \to \infty} \mu_{c_s}(Y_n^{c_s}) = 0.$$

Let D be a disc containing 0, small enough so that for $c \in V_{\sigma}(c_0)$, $P_c^m|_D$ is at most of degree d. Refining the Markov partition if necessary, suppose that $U_1^c \subset P_c^m(D)$ for all $c \in V_{\sigma}(c_0)$.

For all $n \geq 1$, we have

$$\mu_c(Y_n^c) = \sum_{l > n} \mu_c(Y_l^c - Y_{l+1}^c).$$

From the Appendix 2 of [2], we have that $z(c) = j_c(c_0)$ is the dynamical continuation of the critical value c_0 and $z'(c_0) \neq 1$. The function z is defined in $V_{\sigma}(c_0)$, it satisfies $P_c^{m-1}(z(c)) = j_c(P_{c_0}^{m-1}(c_0))$. For $c \in B_{\sigma}(c_0)$ let $\xi(c) = j_c(P_{c_0}^{m-1}(c_0)) = P_c^{m-1}(z(c))$ and put $\beta_c = P_c^m(0)$. For $l \geq 1$ we have

$$\mu_c(Y_l^c - Y_{l+1}^c) \le d\mu_c(U_l^c - U_{l+1}^c) \inf_{(Y_l^c - Y_{l+1}^c) \cap J_c} |(P_c^m)'(z)|^{-d_c}.$$

By the uniform Bounded Distortion Property and considering that μ_c is a probability measure, we have

$$\mu_c(U_l^c - U_{l+1}^c) \le K^{d_c} |(P_c^l)'(\xi(c))|^{-d_c}.$$

On the other hand there is $B_1 > 0$ such that for all $c \in V_{\sigma}(c_0)$ and $z \in Y_1^c$,

$$|(P_c^m)'(z)| > B_1|P_c^m(z) - \beta_c|^{(d-1)/d}.$$
 (*)

Let k = k(c) be the greatest integer such that $\beta_c \in U_k^c$. Let $l \ge 1$. Then there are the following cases:

(1): $k-1 \le l \le k+1$. By the uniform Bounded Distortion Property and Appendix 2 of [2], we have

$$|(P_c^l)'(\xi(c))|^{-1} \sim |\xi(c) - \beta_c| \sim |z(c) - c| \sim |c - c_0|,$$

with implicit constants independent of $c \in V_{\sigma}(c_0)$. Hence $|(P_c^l)'(\xi(c))|^{-1} \le B_2|c-c_0|$ for some $B_2 > 0$ independent of c. It follows by [2] that ∂M_d and J_{c_0} are similar near c_0 ; this implies that the local structure of ∂M_d and J_{c_0} are similar near c_0 . On the other hand

$$\operatorname{dist}(\beta_{c}, (U_{l}^{c} - U_{l+1}^{c}) \cap J_{c}) \geq \operatorname{dist}(\beta_{c}, J_{c}) \geq B_{3} \operatorname{dist}(c, J_{c}) \geq B_{3}^{'} \operatorname{dist}(c, J_{c0})$$

 $\geq B_4 \operatorname{dist}(c, \partial M_d).$

So for all
$$z \in (Y_l^c - Y_{l+1}^c) \cap J_c$$

$$|(P_c^m)'(z)| > B_1 B_4^{(d-1)/d} (\operatorname{dist}(c, \partial M_d))^{(d-1)/d}$$

thus

$$\mu_c(Y_l^c - Y_{l+1}^c) \le B_5|c - c_0|^{d_c} (\operatorname{dist}(c, \partial M_d))^{-d_c(d-1)/d},$$

where $B_5 = d(KB_2(B_1B_4^{(d-1)/d})^{-1})^{d_c}$.

(2): l < k - 1. Note that

$$\operatorname{dist}(\beta_c, U_l^c - U_{l+1}^c) \ge \operatorname{dist}(\partial U_{l+1}^c, U_{l+2}^c),$$

thus by the uniform Bounded Property.

$$\operatorname{dist}(\beta_c, U_l^c - U_{l+1}^c) > B_6 |(P_c^l)'(\xi(c))|^{-1}.$$

Hence by above (*) we have

288 Zhuang Wei

$$|(P_c^m)'(z)| > B_1(\operatorname{dist}(\beta_c, U_l^c - U_{l+1}^c))^{(d-1)/d} \ge B_1 B_6^{(d-1)/d} |(P_c^l)'(\xi(c))|^{-(d-1)/d}.$$

Therefore

$$\mu_c(Y_l^c - Y_{l+1}^c) \le dK^{d_c} |(P_c^l)'(\xi(c))|^{-d_c} (B_1 B_6^{(d-1)/d})^{-d_c} |(P_c^l)'(\xi(c))|^{d_c(d-1)/d}.$$

Thus

$$\mu_c(Y_l^c - Y_{l+1}^c) \le B_7 \theta_0^{ld_c/d},$$

where $B_7 = dK^{d_c} (B_1 B_6^{(d-1)/d})^{-d_c} B_0^{d_c/d}$.

(3): l > k+1. We have $\operatorname{dist}(\beta_c, U_l^c - U_{l+1}^c) \ge B_8 \operatorname{dist}(\partial U_{l-1}^c, U_l^c)$. Thus reducing $B_6 > 0$ if necessary, as in case (2), we have

$$\operatorname{dist}(\beta_c, U_l^c - U_{l+1}^c) > B_6 |(P_c^l)'(\xi(c))|^{-1},$$

and $\mu_c(Y_l^c - Y_{l+1}^c) \le B_7 \theta_0^{ld_c/d}$. So we have

$$\mu_c(Y_n^c) = \sum_{l \ge n} \mu_c(Y_l^c - Y_{l+1}^c) \le B_5 |c - c_0|^{d_c} (\operatorname{dist}(c, \partial M_d))^{-d_c(d-1)/d}$$

$$+ B_7 \sum_{l \ge n, l \ne k-1, k, k+1} \theta_0^{ld_c/d}.$$

By our assumption, there are $B_1 > 0$ and a sequence $c_n \rightarrow c_0$ from the interior of M_d such that $\operatorname{dist}(c_n, \partial M_d) \geq B_1 |c_n - c_0|^{1+1/d}$, thus,

$$B_1(\operatorname{dist}(c_n, \partial M_d))^{-1} \leq |c_n - c_0|^{(-1 - \frac{1}{d})},$$

$$B_5|c - c_0|^{d_c}(\operatorname{dist}(c, \partial M_d))^{-d_c(d-1)/d} \leq B_1 B_5|c - c_0|^{d_c}|c - c_0|^{(-1 - \frac{1}{d})\frac{d_c(d-1)}{d}}$$

$$\leq B_1 B_5|c - c_0|^{\frac{d_c}{d^2}}.$$

Since

$$\sum_{l > n} \theta_0^{ld_c/d} = \frac{(\theta_0^{d_c/d})^n}{1 - \theta_0^{d_c/d}} \to 0 \quad \text{as} \quad n \to \infty,$$

we conclude that

$$\lim_{n \to \infty} \lim_{s \to \infty} \mu_{c_s}(Y_n^{c_s}) = 0,$$

the proof of theorem 2 is complete.

Open Question. I do not know any example satisfying the hypothesis of Theorem

Acknowledgments. I am grateful to the referee and the editor for reading the first version of this paper, and for very useful suggestions and comments. They help me to improve this work.

References

- C. McMullen, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, Comment Math. Helv. 75 (2000) 535–593.
- 2. J. Rivera-Letelier, On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, *Fund. Math.* **170** (2001) 287–317.
- 3. L. Carleson, P. Jones, and J.-C. Yoccoz, Julia and John, *Bol. soc. Brasil. Mat.* **25** (1994) 1–30.
- 4. M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, *Ann. Math.* **147** (1998) 225–267.
- 5. M. Urbański, Rational functions with no recurrent critical points, *Ergod. Th. and Dynam. Sys.* **14** (1994) 391–414.
- D. Sullivan, Conformal Dynamical Systems, In: Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math. 1007, Springer, Berlin, 1983, pp. 725– 752.
- Fornaess-Sibony, Complex dynamics in higher dimensions, NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. 439 Complex potential theory (Montreal, PQ, 1993), 131-186, Kluwer Acad. Publ., Dordrecht, 1994.
- 8. M.Denker, and M.Urbański, On Hausdorff measures on Julia sets of subexpanding rational maps, *Israel J. Math.* **76** (1991) 193–214.
- 9. M. Denker and M.Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, *Nonlinearity* 4 (1991) 365–384.