Vietnam Journal of Mathematics 33:3 (2005) 335–342

Vietnam Journal of MATHEMATICS © VAST 2005

A Remark on the Dirichlet Problem^{*}

Pham Hoang Hiep

Department of Mathematics, Hanoi University of Education, 136 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

> Received October 06, 2004 Revised March 03, 2005

Abstract. Given a positive measure μ on a strongly pseudoconvex domain in \mathbb{C}^n . We study the Dirichlet problem $(dd^c u)^n = \mu$ in a new class of plurisubharmonic function. This class includes the classes \mathcal{E}_p $(p \ge 1)$ introduced by Cegrell in [5].

1. Introduction.

Let Ω be a bounded domain in \mathbb{C}^n . By $PSH(\Omega)$ we denote the set of plurisubharmonic (psh) functions on Ω . By the fundamental work of Bedford and Taylor [1, 2], the complex Monge-Ampere operator $(dd^c)^n$ is well defined over the class $PSH(\Omega) \cap L^{\infty}_{loc}(\Omega)$ of locally bounded psh functions on Ω , more precisely, if $u \in PSH(\Omega) \cap L^{\infty}_{loc}(\Omega)$ is a positive Borel measure. Furthermore, this operator is continuous with respect to increasing and decreasing sequences. Later, Demailly has extended the domain of definition of the operator $(dd^cu)^n$ to the class of psh functions which are locally bounded near $\partial\Omega$. Recently in [5, 6], Cegrell introduced the largest class of upper bounded psh functions on a bounded hyperconvex domain Ω such that the operator $(dd^cu)^n$ can be defined on it. In these papers, he also studied the Dirichlet problems for the classes \mathcal{F}_p (see Sec. 2 for details). The aim of our work is to investigate the Dirichlet problem for a new class of psh function. This class consist, in particular, the sum of a function in the class \mathcal{E}_p and a function in \mathcal{B}^a_{loc} (see Sec. 2 for the definitions of these classes).

Now we are able to formulate the main result of our work

^{*}This work was supported by the National Research Program for Natural Science, Vietnam

Main theorem.

- (i) Let Ω be a bounded strongly pseudoconvex domain in \mathbb{C}^n and let μ be a positive measure on Ω , $h \in C(\partial\Omega)$ such that there exists $v \in \mathcal{E}_p + \mathcal{B}_{loc}^a$ (resp. $\mathcal{F}_p + \mathcal{B}_{loc}^a$) with $(dd^c v)^n \ge \mu$ Then there exists $u \in \mathcal{E}_p + \mathcal{B}_{loc}^a$ (resp. $\mathcal{F}_p + \mathcal{B}_{loc}^a$) such that $(dd^c u)^n = \mu$ and $\lim_{z \to \xi} u(z) = h(\xi), \forall \xi \in \partial\Omega$.
- (ii) There exists $f \in L^1(\Omega)$ such that there exists no function $u \in \mathcal{E}_p + \mathcal{B}_{loc}^a$ which satisfying $f d\lambda \leq (dd^c u)^n$.

For the definitions of $\mathcal{E}_p + \mathcal{B}_{loc}^a$ and $\mathcal{F}_p + \mathcal{B}_{loc}^a$ see Sec. 2.

Note that the main theorem for the subclass \mathcal{B} of \mathcal{B}^a_{loc} consisting of psh functions which are bounded near $\partial\Omega$ was proved by Xing in [13] and for the classes \mathcal{E}_p and \mathcal{F}_p , $p \geq 1$ by Cegrell in [5].

The key element in the proof of our main theorem is a comparison principle (Theorem 3.1), which is an extension of Lemma 4.4, Theorem 4.5 in [5].

2. Preliminaries

In this section we recall some elements and results of pluripotential theory that will be used through out the paper. All this can be found in [2, 3, 5, 6, 11...].

2.0. Unless otherwise specified, Ω will be a bounded hyperconvex domain in \mathbb{C}^n meaning that there exists a negative exhaustive psh function for Ω .

2.1. Let Ω be a bounded domain in \mathbb{C}^n . The C_n -capacity in the sense of Bedford and Taylor on Ω is the set function given by

$$C_n(E) = C_n(E, \Omega) = \sup\left\{\int_E (dd^c u)^n : u \in PSH(\Omega), -1 \le u \le 0\right\}$$

for every Borel set E in Ω .

2.2. According to Xing (see [13]), a sequence of positive measures $\{\mu_j\}$ on Ω is called uniformly absolutely continuous with respect to C_n in a subset E of Ω if

$$\forall \epsilon > 0, \; \exists \delta > 0 \; : \; F \subset E, \; C_n(F) < \delta \Rightarrow \mu_j(F) < \epsilon, \; \; \forall j \ge 1$$

We write $\mu_j \ll C_n$ in E uniformly for $j \ge 1$.

2.3. By $\mathcal{B}_{loc}^a = \mathcal{B}_{loc}^a(\Omega)$ we denote the set of upper bounded psh functions u which are locally bounded near $\partial\Omega$ such that $(dd^c u)^n \ll C_n$ in every $E \subset \subset \Omega$. **2.4.** The following classes of psh functions were introduced by Cegrell in [5] and [6]

$$\mathcal{E}_{0} = \mathcal{E}_{0}(\Omega) = \Big\{ \varphi \in PSH(\Omega) \cap L^{\infty}(\Omega) : \lim_{z \to \partial\Omega} \varphi(z) = 0, \ \int_{\Omega} (dd^{c}\varphi)^{n} < +\infty \Big\},$$
$$\mathcal{E}_{p} = \mathcal{E}_{p}(\Omega) = \Big\{ \varphi \in PSH(\Omega) : \exists \mathcal{E}_{0} \ni \varphi_{j} \searrow \varphi, \ \sup_{j \ge 1} \int_{\Omega} (-\varphi_{j})^{p} (dd^{c}\varphi_{j})^{n} < +\infty \Big\},$$

336

$$\begin{aligned} \mathcal{F}_p &= \mathcal{F}_p(\Omega) = \left\{ \varphi \in PSH(\Omega) : \exists \mathcal{E}_0 \ni \varphi_j \searrow \varphi, \ \sup_{j \ge 1} \int_{\Omega} (-\varphi_j)^p (dd^c \varphi_j)^n, \\ &< +\infty, \sup_{j \ge 1} \int_{\Omega} (dd^c \varphi_j)^n < +\infty \right\} \end{aligned}$$

 $\mathcal{E} = \mathcal{E}(\Omega) = \Big\{ \varphi \in PSH(\Omega) : \forall z_0 \in \Omega \exists \text{ a neighborhood } \omega \ni z_0, \mathcal{E}_0 \ni \varphi_j \searrow \\ \varphi \text{ on } \omega, \sup_{j \ge 1} \int_{\Omega} (dd^c \varphi_j)^n < +\infty \Big\}.$

The following inclusions are obvious $\mathcal{E}_0 \subset \mathcal{F}_p \subset \mathcal{E}_p \subset \mathcal{E}$. It is also known that these inclusion are strict (see [5, 6]).

The interesting theorem below was proved by Cegrell (see [6])

Theorem 2.5. The class \mathcal{E} has the following properties

- 1. \mathcal{E} is a convex cone.
- If u ∈ E, v ∈ PSH⁻(Ω) = {φ ∈ PSH(Ω) : φ ≤ 0}, then max(u, v) ∈ E.
 If u ∈ E, PSH(Ω) ∩ L[∞]_{loc}(Ω) ∋ u_j ∖ u, then (dd^cu_j)ⁿ is weakly convergent. Conversely if K ⊂ PSH⁻(Ω) satisfies 2 and 3, then K ⊂ E

Since $\mathcal{B}_{loc}^{-} = \mathcal{B}_{loc}^{a} \cap PSH^{-}(\Omega)$ satisfies 2 and 3 we have by [8] $\mathcal{B}_{loc}^{-} \subset \mathcal{E}$.

2.6. Cegrell also studied the following Dirichlet problem: Given μ a positive measure on Ω , find $u \in \mathcal{F}_p$ such that $(dd^c u)^n = \mu$. He gave a necessary and sufficient condition for this problem to have a solution (Theorem 5.2 in [5]).

2.7. We define

$$\widehat{\mathcal{E}_p + \mathcal{B}_{loc}^a} = \left\{ u \in PSH(\Omega) : \exists \varphi \in \mathcal{E}_p, \ f \in \mathcal{B}_{loc}^a : \varphi + f \le u \le \sup_{\Omega} u < +\infty \right\},$$

$$\widehat{\mathcal{F}_p + \mathcal{B}_{loc}^a} = \left\{ u \in PSH(\Omega) : \exists \varphi \in \mathcal{F}_p, \ f \in \mathcal{B}_{loc}^a : \ \varphi + f \le u \le \sup_{\Omega} u < +\infty \right\}.$$

It follows that if $\varphi + f \leq u < \sup_{\Omega} u < +\infty, \ \varphi \in \mathcal{E}, \ f \in \mathcal{B}^a_{loc}$ then

$$u-c = \max(u-c, \varphi+f-c) \in \mathcal{E}, \text{ because } \varphi+(f-c) \in \mathcal{E},$$

where $c = \max(\sup_{\Omega} f, \sup_{\Omega} u)$.

Thus we can define $(dd^c u)^n$ for $u \in \mathcal{E}_p + B_{loc}^a$.

2.8. The aim of this work is to study a Dirichlet problem similar to the one considered by Cegrell but for the classes $\mathcal{E}_p + \mathcal{B}_{loc}^a$ and $\mathcal{F}_p + \mathcal{B}_{loc}^a$. Namely, given a positive measure μ on Ω and $h \in C(\partial\Omega)$, find $u \in \mathcal{E}_p + \mathcal{B}_{loc}^a$ (resp. $\mathcal{F}_p + \mathcal{B}_{loc}^a$) such that $(dd^c u)^n = \mu$ and $\overline{\lim_{z \to \xi} u(z)} = h(\xi) \ \forall \xi \in \partial\Omega$.

2.9. Let μ be a positive measure on Ω and $h \in C(\partial \Omega)$. Following Cegrell, we define

$$\begin{split} B(\mu,h) &= \{ v \in PSH(\Omega) \cap L^\infty_{loc}(\Omega) \ : \ (dd^c v)^n \geq \mu, \ \overline{\lim_{z \to \xi}} v(z) \leq h(\xi) \}, \\ U(\mu,h)(z) &= \sup\{ v(z) \ : \ v \in B(\mu,h) \}, \ z \in \Omega. \end{split}$$

Observe that $B(\mu, h) \neq \emptyset$ implies that μ vanishes on pluripolar sets. The function $U(\mu, h)$ plays a crucial role in solving the Dirichlet problem.

3. The Comparison Principle for $\widehat{\mathcal{E}_p + \mathcal{B}_{loc}^a}$

In order to prove the main theorem, in this section we prove the following comparison principle

Theorem 3.1. Let u, v be functions in $\mathcal{E}_p + \mathcal{B}_{loc}^a$ satisfying

$$\lim_{z \to \partial \Omega} \left[u(z) - v(z) \right] \ge 0.$$

Then

$$\int_{\{u < v\}} (dd^c v)^n \le \int_{\{u < v\}} (dd^c u)^n.$$

We need the following result

Lemma 3.2. Let
$$PSH(\Omega) \cap L^{\infty}(\Omega) \ni u_j \searrow u$$
. Assume that
$$\lim_{s \to +\infty} s^n C_n(\{u < -s\} \cap D) = 0, \quad \forall D \subset \subset \Omega.$$

Then $(dd^{c}u_{j})^{n} \ll C_{n}$ in every $D \subset \subset \Omega$ uniformly for $j \geq 1$.

Proof. Given $D \subset \subset \Omega$. Without loss of generality we may assume that D is hyperconvex and $u_j \leq 0$ on D. By [6] for each $j \geq 1$ there exists $u_j^k \in PSH(D) \cap C(\bar{D})$ such that $u_j^k \searrow u_j$ on D and $u_j^k = 0$ on ∂D . As in [9] for every $k, j \geq 1$ and s > 0 put

$$D_{kj}(s) = \{u_j^k < -s\} \cap D, \ D_j(s) = \{u_j < -s\} \cap D, \ D(s) = \{u < -s\} \cap D, \ a_{kj}(s) = C_n(D_{kj}(s)), \ a_j(s) = C_n(D_j(s)), \ a(s) = C_n(D(s)), \ b_{kj}(s) = \int_{D_{kj}(s)} (dd^c u_j^k)^n, \ b_j(s) = \int_{D_j(s)} (dd^c u_j)^n.$$

For 0 < s < t we have $\max(u_j^k, -t) = u_j^k$ on $\{u_j^k > -t\}$ an open neighborhood of $\partial D_{kj}(s)$. It follows that

$$a_{kj}(s) \ge t^{-n} \int_{D_{kj}(s)} (dd^c \max(u_j^k, -t))^n = t^{-n} \int_{D_{kj}(s)} (dd^c u_j^k)^n = t^{-n} b_{kj}(s).$$

Letting $t \searrow s$ we get

$$s^n a_{kj}(s) \ge b_{kj}(s) \text{ for } k, j \ge 1 \text{ and } s > 0.$$

$$\tag{1}$$

Given $\epsilon > 0$. By the hypothesis there exists $s_0 > 0$ such that

$$s_0^n a(s_0) < \epsilon. \tag{2}$$

Let $E \subset D$ with $C_n(E) < \frac{\epsilon}{s_0^n}$. Take an open neighborhood G of E such that $C_n(G) < \frac{\epsilon}{s_0^n}$. Since $(dd^c u_j^k)^n \to (dd^c u_j)^n$ weakly as $k \to \infty$ we have

$$\begin{split} \int_{E} (dd^{c}u_{j})^{n} &\leq \int_{G} (dd^{c}u_{j})^{n} \leq \underbrace{\lim}_{k \to \infty} \int_{G} (dd^{c}u_{j}^{k})^{n} \\ &\leq \underbrace{\lim}_{k \to \infty} [\int_{D_{kj}(s_{0})} (dd^{c}u_{j}^{k})^{n} + \int_{G \setminus D_{kj}(s_{0})} (dd^{c}u_{j}^{k})^{n}] \\ &\leq \underbrace{\lim}_{k \to \infty} [s_{0}^{n}a_{kj}(s_{0}) + s_{0}^{n}C_{n}(G)] \leq s_{0}^{n}a(s_{0}) + \epsilon < 2\epsilon \end{split}$$

for $j \ge 1$. Hence $(dd^c u_j)^n \ll C_n$ in D uniformly for $j \ge 1$.

Proof of Theorem 3.1. We may assume that $u, v \leq 0$ and $\lim_{z \to \partial \Omega} [u(z) - v(z)] > \delta > 0$. By hypothesis $u, v \in \widehat{\mathcal{E}_p + \mathcal{B}^a_{loc}}$ it is easy to find $\varphi \in \mathcal{E}_p$, $g \in \mathcal{B}^-_{loc}$ such that $\varphi + g \leq \min(u, v)$. Let $\varphi_j \searrow \varphi$ be a sequence decreasing to φ as in the definition of \mathcal{E}_p . For each $j \geq 1$ put

$$g_j = \max(g, -j), \ u_j = \max(u, \varphi_j + g_j), \ v_j = \max(v, \varphi_j + g_j).$$

It follows that g_j, u_j, v_j are bounded and $g_j \searrow g, u_j \searrow u, v_j \searrow v$. By the comparison principle for bounded psh functions we have

$$\int_{\{u_j < v_k\}} (dd^c v_k)^n \le \int_{\{u_j < v_k\}} (dd^c u_j)^n$$

for $k \ge j \ge 1$.

On the other hand, since

$$s^{n}C_{n}(\{u < -s\} \cap D) \leq s^{n}C_{n}(\{\varphi < -\frac{s}{2}\} \cap D) + s^{n}C_{n}\left(\left\{g < -\frac{s}{2}\right\} \cap D\right) \to 0$$

as $s \to +\infty$ (see [5, 9])

By Lemma 3.2 $(dd^c u_j)^n + (dd^c v_j)^n \ll C_n$ in every $D \subset \subset \Omega$ uniformly for $j \geq 1$. Thus by the quasicontinuity of psh functions as Theorem 2.2.6 in [4] we obtain

$$\int_{\{u < v\}} (dd^c v)^n \le \int_{\{u \le v\}} (dd^c u)^n.$$

By replacing u by $u + \delta$, $\delta > 0$ and then let $\delta \searrow 0$, we have

$$\int_{\{u < v\}} (dd^{c}v)^{n} \le \int_{\{u < v\}} (dd^{c}u)^{n}.$$

This is the desired conclusion.

From Theorem 3.1, as Corollary 2.2.8 in [4], we get the following dominant principle.

Corollary 3.3. Assume that u and v are as in Theorem 3.1 and $(dd^c u)^n \leq (dd^c v)^n$. Then $u \geq v$.

4. Proof of the Main Theorem

(i) We can assume $v \leq 0$. Since $(dd^c v)^n$ vanishes on every pluripolar set in Ω , by Theorem 6.3 in [5] we can find $\psi \in \mathcal{E}_0$ and $0 \leq f \in L^1_{loc}((dd^c \psi)^n)$ such that $\mu = f(dd^c \psi)^n$. Put $\mu_k = \min(f, k)(dd^c \psi)^n$. Then $\mu_k \leq (dd^c k \frac{1}{n} \psi)^n$. By Theorem 2 in [13] there exists $\omega_k \in \mathcal{E}_0$ such that $(dd^c \omega_k)^n = \mu_k$. The comparison principle implies that $0 \geq \omega_k \searrow \omega \geq v$. Hence $\omega \in \mathcal{E}_p + \mathcal{B}^a_{loc}$ and $(dd^c \omega)^n = \mu$. We show that $\lim_{z \to \xi} \omega(z) = 0$ for $\xi \in \partial\Omega$. Assume the contrary, then $\lim_{z \to \xi_0} \omega(z) < -\epsilon$ for some $\xi_0 \in \partial\Omega$, $\epsilon > 0$. Take $\delta > 0$ such that $\omega(z) < -\epsilon$ for $z \in B(\xi_0, \delta) \cap \Omega$. Let $\tau \in C(\partial\Omega)$ such that $\tau|_{B(\xi_0, \frac{\delta}{2}) \cap \partial\Omega} = \epsilon$, $\sup p\tau \subset B(\xi_0, \delta) \cap \partial\Omega$. By [2] there exists $\phi \in PSH(\Omega) \cap C(\overline{\Omega})$ such that $(dd^c \omega)^n = 0$ and $\phi|_{\partial\Omega} = \tau$. Since $\lim_{z \to \xi} [\omega_k(z) - (\omega(z) + \phi(z))] \geq 0$ for $\xi \in \partial\Omega$ and $(dd^c \omega_k)^n = \mu_k \leq \mu = (dd^c \omega)^n \leq (dd^c(\omega + \phi))^n$, we have $\omega_k \geq \omega + \phi$ on Ω for $k \geq 1$. Thus $\omega \geq \omega + \phi$ on Ω . This is impossible, because $\phi(\xi) = \tau(\xi) = \epsilon$ for $\xi \in B(\xi_0, \frac{\delta}{2}) \cap \partial\Omega$. Hence $\lim_{z \to \xi} \omega(z) = 0$ for $\xi \in \partial\Omega$. From the relations $\int U((dd^c(\omega_k + U(0, h)))^n, h) = \omega_k + U(0, h)$,

$$\Big\} \ (dd^c(\omega + U(0,h)))^n \ge \mu_k,$$

and from Theorem 8.1 in [5] it follows that

$$\begin{cases} (dd^c U(\mu_k, h))^n = \mu_k, \\ U(0, h) \ge U(\mu_k, h) \ge \omega_k + U(0, h). \end{cases}$$

Theorem 3.1 implies that $U(\mu_k, h) \searrow u \in \widehat{\mathcal{E}_p + \mathcal{B}_{loc}^a}$ with $(dd^c u)^n = \mu$ and $U(0, h) \ge u \ge \omega + U(0, h)$. Thus for $\xi \in \partial \Omega$ we have

$$\begin{split} h(\xi) &= \overline{\lim_{z \to \xi}} U(0,h) \geq \overline{\lim_{z \to \xi}} u(z) \geq \overline{\lim_{z \to \xi}} [\omega(z) + U(0,h)(z)] \\ &= \overline{\lim_{z \to \xi}} \omega(z) + \lim_{z \to \xi} U(0,h)(z) = h(\xi). \end{split}$$

Consequently $u \in \widehat{\mathcal{E}_p + \mathcal{B}_{loc}^a}$ such that $(dd^c u)^n = \mu$ and $\overline{\lim_{z \to \xi} u(z)} = h(\xi) \ \forall \xi \in \partial \Omega$.

340

A Remark on the Dirichlet Problem

(ii) Let $\{\Omega_j\}$ be an increasing exhaustion sequence of strongly pseudoconvex subdomains of Ω . For each $j \geq 1$ take a sequence of distinguished points $z_{jm} \subset \Omega_j \setminus \overline{\Omega}_{j-1}$ converging to $\xi_j \in \partial \Omega_j$ as $m \to \infty$ and a sequence $s_j \searrow 0$ such that $B(z_{jm}, s_{jm}) \subset \Omega_j \setminus \overline{\Omega}_{j-1}$ and $B(z_{jm}, s_{jm}) \cap B(z_{jt}, s_{jt}) = \emptyset$ for $m \neq t$. Let $a_{jm} > 0$ with $\sum_{j,m=1}^{\infty} a_{jm} < \infty$. Put

$$f = \sum_{j,m \ge 1} \frac{a_{jm}}{d_n r_{jm}^{2n}} \chi_{B(z_{jm},r_{jm})},$$

where $0 < r_{jm} < s_{jm}$ are chosen such that

$$\frac{1}{a_{jm}}(C_n(B(z_{jm}, r_{jm}), \Omega))^{\frac{p}{n+p}} \to 0 \text{ as } m \to \infty,$$

for $j \ge 1$ and d_n is the volume of the unit ball in \mathbf{C}^n .

Assume that $fd\lambda \leq (dd^c u)^n$ for some $u \in \mathcal{E}_p + \mathcal{B}^a_{loc}$. Take $\varphi \in \mathcal{E}_p$, $g \in \mathcal{B}^a_{loc}$ such that $\varphi + g \leq u \leq \sup_{\Omega} u < +\infty$. We may assume that g and u are negative.

Let $j_0 \ge 2$ and M > 0 such that g > -M on $\Omega_{j_0} \setminus \overline{\Omega}_{j_0-1}$. Put M

$$\tilde{g} = \max(g, Ah_{\Omega_{j_0}}) \text{ where } A = -\frac{M}{\sup_{\bar{\Omega}_{j_0}} h_{\Omega_{j_0}}} > 0.$$

It follows that $\tilde{g} \in \mathcal{E}_0$, $\tilde{g} = g$ on $\Omega_{j_0} \setminus \overline{\Omega}_{j_0-1}$.

Let $\tilde{u} = \max(u, \varphi + \tilde{g})$. Since $\varphi + \tilde{g} \leq \tilde{u} \leq 0$ and $\varphi + \tilde{g} \in \mathcal{E}_p + \mathcal{E}_0 = \mathcal{E}_p$, by [5] we have $\tilde{u} \in \mathcal{E}_p$.

Moreover $\tilde{u} = u$ on $\Omega_{j_0} \setminus \overline{\Omega}_{j_0-1}$. Thus for $B_m = B(z_{j_0m}, r_{j_0m})$ we have

$$a_{j_0m} = \int\limits_{B_m} f d\lambda = \int\limits_{B_m} (dd^c u)^n = \int\limits_{B_m} (dd^c \tilde{u})^n.$$

Let $\tilde{u}_k \searrow \tilde{u}$ as in the definition of \mathcal{E}_p . Then $(dd^c \tilde{u}_k)^n \to (dd^c \tilde{u})^n$ weakly (see [5]). Applying the Holder inequality (see [7]) we have

$$\begin{aligned} a_{j_0m} &= \int\limits_{B_m} (dd^c \tilde{u})^n \leq \varliminf_{k \to \infty} \int\limits_{B_m} (dd^c \tilde{u}_k)^n \\ &= \lim_{k \to \infty} \int\limits_{B_m} (-h_{B_m})^p (dd^c \tilde{u}_k)^n \\ &\leq \alpha_1 \lim_{k \to \infty} [\int\limits_{\Omega} (-h_{B_m})^p (dd^c h_{B_m})^n]^{\frac{p}{n+p}} [\int\limits_{\Omega} (-\tilde{u}_k)^p (dd^c \tilde{u}_k)^n]^{\frac{n}{n+p}} \\ &\leq \alpha_2 [\int\limits_{\Omega} (dd^c h_{B_m})^n]^{\frac{p}{n+p}} \\ &= \alpha_2 [C_n (B_m, \Omega)]^{\frac{p}{n+p}}, \end{aligned}$$

where $\alpha_2 = \alpha_1 [\sup_{k \ge 1} \int_{\Omega} (-\tilde{u}_k)^p (dd^c \tilde{u}_k)^n]^{\frac{n}{n+p}} < +\infty$. This is impossible, because

$$\lim_{m \to \infty} \frac{[C_n(B_m, \Omega)]^{\frac{p}{p+n}}}{a_{j_0 m}} = 0$$

Remark. Using Theorem 7.5 in [1] we can find $u \in \mathcal{F}^a$ such that $(dd^c u)^n = fd\lambda$ where f is constructed as in (ii). Hence, there exists a function u in $\mathcal{F}^a \setminus (\widehat{\xi_p + B^a_{loc}})$.

Acknowledgements. The author is grateful to Professor Nguyen Van Khue for suggesting the problem and for many helpful discussion during the preparation of this work.

References

- P. Åhag, The Complex Monge–Ampere Operator on Bounded Hyperconvex Domains, Ph. D. Thesis, Ume å University, 2002.
- 2. E. Bedford and B.A. Taylor, The Dirichlet problem for the complex Monge-Ampere operator, *Invent. Math.* **37** (1976) 1–44.
- E. Bedford and B. A.Taylor, A new capacity for plurisubharmonic function, Acta Math. 149 (1982) 1–40.
- Z. Blocki, The Complex Monge-Ampere Operator in Pluripotential Theory, Lecture Notes, 1998.
- 5. U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998) 187-217.
- U. Cegrell, The general definition of the complex Monge-Ampere operator, Ann. Inst. Fourier (Grenoble) 54 (2004) 159–179.
- U. Cegrell and L. Persson, An energy estimate for the complex Monge-Ampere operator, Annales Polonici Mathematici (1997) 96–102.
- 8. U. Cegrell, S. Kolodziej, and A.Zeriahi, Subextension of plurisubharmonic functions with weak singularities, *Math. Zeit.* (to appear).
- J-P. Demailly, Monge-Ampere operators, Lelong Numbers and Intersection theory, Complex Analysis and Geometry, Univ. Ser. Math., Plenum, New York, 1993, 115–193.
- P. H. Hiep, A characterization of bounded plurisubharmonic functions, Annales Polonici Math. 85(2005) 233–238.
- 11. N.V. Khue, P.H. Hiep, Complex Monge-Ampere measures of plurisubharmonic functions which are locally bounded near the boundary, Preprint 2004.
- 12. M. Klimek, Pluripotential Theory, Oxford, 1990.
- 13. Y. Xing, Complex Monge-Ampere measures of pluriharmonic functions with bounded values near the boundary, *Cand. J. Math.* **52** (2000) 1085–1100.