A Remark on the Dirichlet Problem*

Pham Hoang Hiep

Department of Mathematics, Hanoi University of Education,
136 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Received October 06, 2004
Revised March 03, 2005

Abstract. Given a positive measure μ on a strongly pseudoconvex domain in \mathbb{C}^n. We study the Dirichlet problem $(dd^cu)^n = \mu$ in a new class of plurisubharmonic function. This class includes the classes E_p ($p \geq 1$) introduced by Cegrell in [5].

1. Introduction.

Let Ω be a bounded domain in \mathbb{C}^n. By $PSH(\Omega)$ we denote the set of plurisubharmonic (psh) functions on Ω. By the fundamental work of Bedford and Taylor [1, 2], the complex Monge-Ampere operator $(dd^cu)^n$ is well defined over the class $PSH(\Omega) \cap L^\infty_{loc}(\Omega)$ of locally bounded psh functions on Ω, more precisely, if $u \in PSH(\Omega) \cap L^\infty_{loc}(\Omega)$ is a positive Borel measure. Furthermore, this operator is continuous with respect to increasing and decreasing sequences. Later, Demailly has extended the domain of definition of the operator $(dd^cu)^n$ to the class of psh functions which are locally bounded near $\partial \Omega$. Recently in [5, 6], Cegrell introduced the largest class of upper bounded psh functions on a bounded hyperconvex domain Ω such that the operator $(dd^cu)^n$ can be defined on it. In these papers, he also studied the Dirichlet problems for the classes F_p (see Sec. 2 for details). The aim of our work is to investigate the Dirichlet problem for a new class of psh function. This class consist, in particular, the sum of a function in the class E_p and a function in B^c_{loc} (see Sec. 2 for the definitions of these classes).

Now we are able to formulate the main result of our work

*This work was supported by the National Research Program for Natural Science, Vietnam
Main theorem.
(i) Let Ω be a bounded strongly pseudoconvex domain in \mathbb{C}^n and let μ be a positive measure on Ω, $h \in C(\partial \Omega)$ such that there exists $v \in \mathcal{E}_p + \mathcal{B}_{lo}^a$ (resp. $\mathcal{F}_p + \mathcal{B}_{lo}^a$) with $(dd^c v)^n \geq \mu$
Then there exists $u \in \mathcal{E}_p + \mathcal{B}_{lo}^a$ (resp. $\mathcal{F}_p + \mathcal{B}_{lo}^a$) such that $(dd^c u)^n = \mu$ and $\lim_{z \to \xi} u(z) = h(\xi), \forall \xi \in \partial \Omega$.
(ii) There exists $f \in L^1(\Omega)$ such that there exists no function $u \in \mathcal{E}_p + \mathcal{B}_{loc}$ which satisfying $fd\lambda \leq (dd^c u)^n$.

For the definitions of $\mathcal{E}_p + \mathcal{B}_{loc}$ and $\mathcal{F}_p + \mathcal{B}_{loc}$ see Sec. 2.

Note that the main theorem for the subclass \mathcal{B} of \mathcal{B}_{loc} consisting of psh functions which are bounded near $\partial \Omega$ was proved by Xing in [13] and for the classes \mathcal{E}_p and \mathcal{F}_p, $p \geq 1$ by Cegrell in [5].

The key element in the proof of our main theorem is a comparison principle (Theorem 3.1), which is an extension of Lemma 4.4, Theorem 4.5 in [5].

2. Preliminaries

In this section we recall some elements and results of pluripotential theory that will be used throughout the paper. All this can be found in [2, 3, 5, 6, 11...].

2.0. Unless otherwise specified, Ω will be a bounded hyperconvex domain in \mathbb{C}^n meaning that there exists a negative exhaustive psh function for Ω.

2.1. Let Ω be a bounded domain in \mathbb{C}^n. The C_n-capacity in the sense of Bedford and Taylor on Ω is the set function given by

$$C_n(E) = C_n(E, \Omega) = \sup \left\{ \int_E (dd^c u)^n : u \in PSH(\Omega), -1 \leq u \leq 0 \right\}$$

for every Borel set E in Ω.

2.2. According to Xing (see [13]), a sequence of positive measures $\{\mu_j\}$ on Ω is called uniformly absolutely continuous with respect to C_n in a subset E of Ω if

$$\forall \epsilon > 0, \exists \delta > 0 : F \subset E, C_n(F) < \delta \Rightarrow \mu_j(F) < \epsilon, \forall j \geq 1$$

We write $\mu_j \ll C_n$ in E uniformly for $j \geq 1$.

2.3. By $\mathcal{B}_{loc}^a = \mathcal{B}_{loc}^a(\Omega)$ we denote the set of upper bounded psh functions u which are locally bounded near $\partial \Omega$ such that $(dd^c u)^n \ll C_n$ in every $E \subset \subset \Omega$.

2.4. The following classes of psh functions were introduced by Cegrell in [5] and [6]

$$\mathcal{E}_0 = \mathcal{E}_0(\Omega) = \left\{ \varphi \in PSH(\Omega) \cap L^\infty(\Omega) : \lim_{z \to \partial \Omega} \varphi(z) = 0, \int_{\Omega} (dd^c \varphi)^n < +\infty \right\},$$

$$\mathcal{E}_p = \mathcal{E}_p(\Omega) = \left\{ \varphi \in PSH(\Omega) : \exists \mathcal{E}_0 \ni \varphi_j \searrow \varphi, \sup_{j \geq 1} \int_{\Omega} (-\varphi_j)^p (dd^c \varphi_j)^n < +\infty \right\},$$
A Remark on the Dirichlet Problem

\[\mathcal{F}_p = \mathcal{F}_p(\Omega) = \left\{ \varphi \in PSH(\Omega) : \exists \mathcal{E}_0 \ni \varphi_j \searrow \varphi, \sup_{j \geq 1} \int_{\Omega} (-\varphi_j)^p (dd^c \varphi_j)^n, \right. \\
\left. < + \infty, \sup_{j \geq 1} \int_{\Omega} (dd^c \varphi_j)^n < +\infty \right\} \]

\[\mathcal{E} = \mathcal{E}(\Omega) = \left\{ \varphi \in PSH(\Omega) : \forall z_0 \in \Omega \exists \text{ a neighborhood } \omega \ni \varphi_j \searrow \varphi \text{ on } \omega, \sup_{j \geq 1} \int_{\Omega} (dd^c \varphi_j)^n < +\infty \right\}. \]

The following inclusions are obvious \(\mathcal{E}_0 \subset \mathcal{F}_p \subset \mathcal{E} \). It is also known that these inclusion are strict (see [5, 6]).

The interesting theorem below was proved by Cegrell (see [6])

Theorem 2.5. The class \(\mathcal{E} \) has the following properties
1. \(\mathcal{E} \) is a convex cone.
2. If \(u \in \mathcal{E}, v \in PSH^{-}(\Omega) = \{ \varphi \in PSH(\Omega) : \varphi \leq 0 \}, \) then \(\max(u, v) \in \mathcal{E} \).
3. If \(u \in \mathcal{E}, PSH(\Omega) \cap L^\infty_{\text{loc}}(\Omega) \ni u_j \searrow u, \) then \((dd^c u_j)^n \) is weakly convergent.

Conversely if \(K \subset PSH^{-}(\Omega) \) satisfies 2 and 3, then \(K \subset \mathcal{E} \).

Since \(B^-_{\text{loc}} = B^a_{\text{loc}} \cap PSH^{-}(\Omega) \) satisfies 2 and 3 we have by [8] \(B^-_{\text{loc}} \subset \mathcal{E} \).

2.6. Cegrell also studied the following Dirichlet problem: Given a positive measure on \(\Omega \), find \(u \in \mathcal{F}_p \) such that \((dd^c u)^n = \mu \). He gave a necessary and sufficient condition for this problem to have a solution (Theorem 5.2 in [5]).

2.7. We define

\[\mathcal{E}_p + B^a_{\text{loc}} = \{ u \in PSH(\Omega) : \exists \varphi \in \mathcal{E}_p, f \in B^a_{\text{loc}} : \varphi + f \leq u \leq \sup_{\Omega} u < +\infty \}, \]

\[\mathcal{F}_p + B^a_{\text{loc}} = \{ u \in PSH(\Omega) : \exists \varphi \in \mathcal{F}_p, f \in B^a_{\text{loc}} : \varphi + f \leq u \leq \sup_{\Omega} u < +\infty \}. \]

It follows that if \(\varphi + f \leq u < \sup_{\Omega} u < +\infty, \varphi \in \mathcal{E}, f \in B^a_{\text{loc}} \) then

\[u - c = \max_{\Omega} (u - c, \varphi + f - c) \in \mathcal{E}, \text{ because } \varphi + (f - c) \in \mathcal{E}, \]

where \(c = \max_{\Omega} (sup f, sup u) \).

Thus we can define \((dd^c u^n) \) for \(u \in \mathcal{E}_p + B^a_{\text{loc}} \).

2.8. The aim of this work is to study a Dirichlet problem similar to the one considered by Cegrell but for the classes \(\mathcal{E}_p + B^a_{\text{loc}} \) and \(\mathcal{F}_p + B^a_{\text{loc}} \). Namely, given a positive measure \(\mu \) on \(\Omega \) and \(h \in C(\partial \Omega) \), find \(u \in \mathcal{E}_p + B^a_{\text{loc}} \) (resp. \(\mathcal{F}_p + B^a_{\text{loc}} \)) such that \((dd^c u)^n = \mu \) and \(\lim_{z \rightarrow \xi} u(z) = h(\xi) \forall \xi \in \partial \Omega \).

2.9. Let \(\mu \) be a positive measure on \(\Omega \) and \(h \in C(\partial \Omega) \). Following Cegrell, we define
\[B(\mu, h) = \{ v \in PSH(\Omega) \cap L^\infty_{\text{loc}}(\Omega) : (dd^c v)^n \geq \mu, \lim_{z \to \xi} v(z) \leq h(\xi) \}, \]

\[U(\mu, h)(z) = \sup \{ v(z) : v \in B(\mu, h) \}, \quad z \in \Omega. \]

Observe that \(B(\mu, h) \neq \emptyset \) implies that \(\mu \) vanishes on pluripolar sets. The function \(U(\mu, h) \) plays a crucial role in solving the Dirichlet problem.

3. The Comparison Principle for \(\mathcal{E}_p + \mathcal{B}_{\text{loc}}^0 \)

In order to prove the main theorem, in this section we prove the following comparison principle

Theorem 3.1. Let \(u, v \) be functions in \(\mathcal{E}_p + \mathcal{B}_{\text{loc}}^0 \) satisfying

\[\lim_{z \to \partial \Omega} [u(z) - v(z)] \geq 0. \]

Then

\[\int_{\{u < v\}} (dd^c v)^n \leq \int_{\{u < v\}} (dd^c u)^n. \]

We need the following result

Lemma 3.2. Let \(PSH(\Omega) \cap L^\infty(\Omega) \ni u_j \searrow u \). Assume that

\[\lim_{s \to +\infty} s^n C_n(\{u < -s\} \cap D) = 0, \quad \forall D \subset \subset \Omega. \]

Then \((dd^c u_j)^n \ll C_n \) in every \(D \subset \subset \Omega \) uniformly for \(j \geq 1 \).

Proof. Given \(D \subset \subset \Omega \). Without loss of generality we may assume that \(D \) is hyperconvex and \(u_j \leq 0 \) on \(D \). By [6] for each \(j \geq 1 \) there exists \(u_j^k \in PSH(D) \cap C(\overline{D}) \) such that \(u_j^k \searrow u_j \) on \(D \) and \(u_j^k = 0 \) on \(\partial D \). As in [9] for every \(k, j \geq 1 \) and \(s > 0 \) put

\[D_{kj}(s) = \{ u_j^k < -s \} \cap D, \quad D_j(s) = \{ u_j < -s \} \cap D, \quad D(s) = \{ u < -s \} \cap D, \]

\[a_{kj}(s) = C_n(D_{kj}(s)), \quad a_j(s) = C_n(D_j(s)), \quad a(s) = C_n(D(s)), \]

\[b_{kj}(s) = \int_{D_{kj}(s)} (dd^c u_j^k)^n, \quad b_j(s) = \int_{D_j(s)} (dd^c u_j)^n. \]

For \(0 < s < t \) we have \(\max(u_j^k, -t) = u_j^k \) on \(\{ u_j^k > -t \} \) an open neighborhood of \(\partial D_{kj}(s) \). It follows that

\[a_{kj}(s) \geq t^{-n} \int_{D_{kj}(s)} (dd^c \max(u_j^k, -t))^n = t^{-n} \int_{D_{kj}(s)} (dd^c u_j^k)^n = t^{-n} b_{kj}(s). \]
A Remark on the Dirichlet Problem

Letting \(t \searrow s \) we get

\[
s^n a_{kj}(s) \geq b_{kj}(s) \quad \text{for } k, j \geq 1 \text{ and } s > 0. \tag{1}
\]

Given \(\epsilon > 0 \). By the hypothesis there exists \(s_0 > 0 \) such that

\[
s_0^n a(s_0) < \epsilon. \tag{2}
\]

Let \(E \subset D \) with \(C_n(E) < \frac{\delta}{s_0} \). Take an open neighborhood \(G \) of \(E \) such that \(C_n(G) < \frac{\delta}{s_0} \). Since \((dd^c u_j^n) \to (dd^c u^n) \) weakly as \(k \to \infty \) we have

\[
\int_E (dd^c u_j^n) \leq \int_G (dd^c u_j^n) \leq \lim_{k \to \infty} \int_G (dd^c u_j^n) \]

\[
\leq \lim_{k \to \infty} \left(\int_{D_{kj}(s_0)} (dd^c u_j^n) + \int_{G \setminus D_{kj}(s_0)} (dd^c u_j^n) \right) \]

\[
< \lim_{k \to \infty} \left[s_0^n a_{kj}(s_0) + s_0^n C_n(G) \right] \leq s_0^n a(s_0) + \epsilon < 2\epsilon
\]

for \(j \geq 1 \). Hence \((dd^c u_j^n) \ll C_n \) in \(D \) uniformly for \(j \geq 1 \).

Proof of Theorem 3.1. We may assume that \(u, v \leq 0 \) and \(\lim_{z \to \partial \Omega} [u(z) - v(z)] > \delta > 0 \). By hypothesis \(u, v \in \mathcal{E}_p + \mathcal{B}_n^{\text{loc}} \) it is easy to find \(\varphi \in \mathcal{E}_p, g \in \mathcal{B}_n^{\text{loc}} \) such that \(\varphi + g \leq \min(u, v) \). Let \(\varphi_j \searrow \varphi \) be a sequence decreasing to \(\varphi \) as in the definition of \(\mathcal{E}_p \). For each \(j \geq 1 \) put

\[
g_j = \max(g, -j), \quad u_j = \max(u, \varphi_j + g_j), \quad v_j = \max(v, \varphi_j + g_j).
\]

It follows that \(g_j, u_j, v_j \) are bounded and \(g_j \searrow g, u_j \searrow u, v_j \searrow v \). By the comparison principle for bounded psh functions we have

\[
\int_{\{u_j < v_k\}} (dd^c v_k)^n \leq \int_{\{u_j < v_k\}} (dd^c u_j^n)
\]

for \(k \geq j \geq 1 \).

On the other hand, since

\[
s^n C_n(\{u < -s\} \cap D) \leq s^n C_n(\{\varphi < -\frac{s}{2}\} \cap D) + s^n C_n(\{g < -\frac{s}{2}\} \cap D) \to 0
\]

as \(s \to +\infty \) (see [5, 9])

By Lemma 3.2 \((dd^c u_j^n) + (dd^c v_j)^n \ll C_n \) in every \(D \subset \subset \Omega \) uniformly for \(j \geq 1 \). Thus by the quasicontinuity of psh functions as Theorem 2.2.6 in [4] we obtain

\[
\int_{\{u \leq v\}} (dd^c v)^n \leq \int_{\{u \leq v\}} (dd^c u)^n.
\]

By replacing \(u \) by \(u + \delta \), \(\delta > 0 \) and then let \(\delta \searrow 0 \), we have
\[
\int_{\{u < v\}} (dd^c v)^n \leq \int_{\{u < v\}} (dd^c u)^n.
\]
This is the desired conclusion.

From Theorem 3.1, as Corollary 2.2.8 in [4], we get the following dominant principle.

Corollary 3.3. Assume that \(u \) and \(v \) are as in Theorem 3.1 and \((dd^c u)^n \leq (dd^c v)^n\). Then \(u \geq v \).

4. Proof of the Main Theorem

(i) We can assume \(v \leq 0 \). Since \((dd^c v)^n\) vanishes on every pluripolar set in \(\Omega \), by Theorem 6.3 in [5] we can find \(\psi \in E_0 \) and \(0 \leq f \in L_1^{loc}(dd^c \psi)^n \) such that \(\mu = f(dd^c \psi)^n \). Put \(\mu_k = \min(f,k)(dd^c \psi)^n \). Then \(\mu_k \leq (dd^c \psi)^n \).

By Theorem 2 in [13] there exists \(\omega_k \in E_0 \) such that \((dd^c \omega_k)^n = \mu_k\). The comparison principle implies that \(0 \geq \omega_k \searrow \omega \geq v \). Hence \(\omega \in E_p + B^a_{loc} \) and \((dd^c \omega)^n = \mu\). We show that \(\lim_{z \to \xi} \omega(z) = 0 \) for \(\xi \in \partial \Omega \). Assume the contrary, then \(\lim_{z \to \xi} \omega(z) < -\epsilon \) for some \(\xi_0 \in \partial \Omega \), \(\epsilon > 0 \). Take \(\delta > 0 \) such that \(\omega(z) < -\epsilon \) for \(z \in B(\xi_0, \delta) \cap \Omega \). Let \(\tau \in C(\partial \Omega) \) such that \(\tau|_{B(\xi_0, \delta) \cap \partial \Omega} = \epsilon \), \(\text{supp} \tau \subset B(\xi_0, \delta) \cap \partial \Omega \). By [2] there exists \(\phi \in PSH(\Omega) \cap C(\Omega) \) such that \((dd^c \phi)^n = 0 \) and \(\phi|_{\partial \Omega} = \tau \). Since \(\lim_{z \to \xi} [\omega_k(z) - (\omega(z) + \phi(z))] \geq 0 \) for \(\xi \in \partial \Omega \) and \((dd^c \omega_k)^n = \mu_k \leq \mu = (dd^c \omega)^n \leq (dd^c (\omega + \phi))^n\), we have \(\omega_k \geq \omega + \phi \) on \(\Omega \) for \(k \geq 1 \). Thus \(\omega \geq \omega + \phi \) on \(\Omega \). Hence \(\phi \leq 0 \) on \(\Omega \setminus \{\omega = -\infty\} \). Since \(\phi \) is plurisubharmonic, \(\phi \leq 0 \) on \(\Omega \). This is impossible, because \(\phi(\xi) = \tau(\xi) = \epsilon \) for \(\xi \in B(\xi_0, \delta) \cap \partial \Omega \). Hence \(\lim_{z \to \xi} \omega(z) = 0 \) for \(\xi \in \partial \Omega \). From the relations

\[
\begin{cases}
U((dd^c (\omega_k + U(0,h)))^n, h) = \omega_k + U(0,h), \\
(dd^c (\omega + U(0,h)))^n \geq \mu_k,
\end{cases}
\]

and from Theorem 8.1 in [5] it follows that

\[
\begin{cases}
(dd^c U(\mu_k, h))^n = \mu_k, \\
U(0,h) \geq U(\mu_k, h) \geq \omega_k + U(0,h).
\end{cases}
\]

Theorem 3.1 implies that \(U(\mu_k, h) \searrow u \in E_p + B^a_{loc} \) with \((dd^c u)^n = \mu\) and \(U(0,h) \geq u \geq \omega + U(0,h) \). Thus for \(\xi \in \partial \Omega \) we have

\[
h(\xi) = \lim_{z \to \xi} U(0,h) \geq \lim_{z \to \xi} u(z) \geq \lim_{z \to \xi} [\omega(z) + U(0,h)(z)]
= \lim_{z \to \xi} \omega(z) + \lim_{z \to \xi} U(0,h)(z) = h(\xi).
\]

Consequently \(u \in E_p + B^a_{loc} \) such that \((dd^c u)^n = \mu\) and \(\lim_{z \to \xi} u(z) = h(\xi) \forall \xi \in \partial \Omega \).
(ii) Let \(\{ \Omega_j \} \) be an increasing exhaustion sequence of strongly pseudoconvex subdomains of \(\Omega \). For each \(j \geq 1 \) take a sequence of distinguished points \(z_{jm} \subset \Omega_j \setminus \overline{\Omega}_{j-1} \) converging to \(\xi_j \in \partial \Omega_j \) as \(m \to \infty \) and a sequence \(s_j \searrow 0 \) such that \(B(z_{jm}, s_{jm}) \subset \Omega_j \setminus \overline{\Omega}_{j-1} \) and \(B(z_{jt}, s_{jt}) \cap B(z_{jt}, s_{jt}) = \emptyset \) for \(m \neq t \). Let \(a_{jm} > 0 \) with \(\sum_{j=1}^{\infty} a_{jm} < \infty \). Put
\[
 f = \sum_{j,m \geq 1} a_{jm} \chi_{B(z_{jm}, r_{jm})},
\]
where \(0 < r_{jm} < s_{jm} \) are chosen such that
\[
 \frac{1}{a_{jm}} (C_n(B(z_{jm}, r_{jm}), \Omega))^{\frac{1}{n + p}} \to 0 \text{ as } m \to \infty,
\]
for \(j \geq 1 \) and \(d_n \) is the volume of the unit ball in \(\mathbb{C}^n \).

Assume that \(f \lambda \leq (\dd \bar{u}^n) \) for some \(u \in \mathcal{E}_p + B^0_{\mathcal{E} \cap \mathcal{E}_p} \). Take \(\varphi \in \mathcal{E}_p, \ g \in B^0_{\mathcal{E} \cap \mathcal{E}_p} \) such that \(\varphi + \varphi \leq u \leq \sup u + +\infty \). We may assume that \(g \) and \(u \) are negative.

Let \(j_0 \geq 2 \) and \(M > 0 \) such that \(g > -M \) on \(\Omega_{j_0} \setminus \overline{\Omega}_{j_0 - 1} \).

Put
\[
 \tilde{g} = \max(g, Ah_{\Omega_{j_0}}) \text{ where } A = -M \sup_{\Omega_{j_0}} h_{\Omega_{j_0}} > 0.
\]

It follows that \(\tilde{g} \in \mathcal{E}_0, \ \tilde{g} = g \) on \(\Omega_{j_0} \setminus \overline{\Omega}_{j_0 - 1} \).

Let \(\tilde{u} = \max(u, \varphi + \tilde{g}) \). Since \(\varphi + \tilde{g} \leq \tilde{u} \leq 0 \) and \(\varphi + \tilde{g} \in \mathcal{E}_p + \mathcal{E}_0 = \mathcal{E}_p \), by [5] we have \(\tilde{u} \in \mathcal{E}_p \).

Moreover \(\tilde{u} = u \) on \(\Omega_{j_0} \setminus \overline{\Omega}_{j_0 - 1} \). Thus for \(B_m = B(z_{jm}, r_{jm}) \) we have
\[
 a_{jm} = \int_{B_m} f d\lambda = \int_{B_m} (dd^c \bar{u})^n = \int_{B_m} (dd^c \tilde{u})^n.
\]

Let \(\tilde{u}_k \searrow \tilde{u} \) as in the definition of \(\mathcal{E}_p \). Then \((dd^c \tilde{u}_k)^n \to (dd^c \tilde{u})^n \) weakly (see [5]). Applying the Holder inequality (see [7]) we have
\[
 a_{jm} = \int_{B_m} (dd^c \tilde{u})^n \leq \lim_{k \to \infty} \int_{B_m} (dd^c \tilde{u}_k)^n
 = \lim_{k \to \infty} \int_{B_m} (-h_{B_m})^p (dd^c \tilde{u}_k)^n
 \leq \alpha_1 \lim_{k \to \infty} \int_{\Omega} (-h_{B_m})^p (dd^c h_{B_m})^n)^{\frac{n}{n + p}} \int_{\Omega} (-\tilde{u}_k)^p (dd^c \tilde{u}_k)^n)^{\frac{n}{n + p}}
 \leq \alpha_2 \int_{\Omega} (dd^c h_{B_m})^n)^{\frac{n}{n + p}}
 = \alpha_2 |C_n(B_m, \Omega)|^{\frac{n}{n + p}},
\]
where \(\alpha_2 = \alpha_1 \sup_{k \geq 1} \int_{\Omega} (-\tilde{u}_k)^p (dd^c \tilde{u}_k)^n)^{\frac{n}{n + p}} < +\infty \). This is impossible, because
\[
\lim_{m \to \infty} \frac{[C_n(B_m, \Omega)]^{\frac{n}{p}}}{a_{jm}} = 0.
\]

Remark. Using Theorem 7.5 in [1] we can find \(u \in F^a \) such that \((dd^cu)^n = f d\lambda\) where \(f \) is constructed as in (ii). Hence, there exists a function \(u \) in \(F^a \setminus (\xi_p + B^a_{loc}) \).

Acknowledgements. The author is grateful to Professor Nguyen Van Khue for suggesting the problem and for many helpful discussion during the preparation of this work.

References

11. N. V. Khue, P. H. Hiep, Complex Monge–Ampere measures of plurisubharmonic functions which are locally bounded near the boundary, Preprint 2004.