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Abstract. Given a positive measure p on a strongly pseudoconvex domain in C™. We
study the Dirichlet problem (ddu)™ = u in a new class of plurisubharmonic function.
This class includes the classes £, (p > 1) introduced by Cegrell in [5].

1. Introduction.

Let Q be a bounded domain in C™. By PSH(Q2) we denote the set of plurisub-
harmonic (psh) functions on 2. By the fundamental work of Bedford and Taylor
[1, 2], the complex Monge-Ampere operator (dd®)™ is well defined over the class
PSH(2) N LS. (92) of locally bounded psh functions on 2, more precisely, if
u € PSH(Q) N LY. () is a positive Borel measure. Furthermore, this operator
is continuous with respect to increasing and decreasing sequences. Later, De-
mailly has extended the domain of definition of the operator (dd®u)™ to the class
of psh functions which are locally bounded near 9. Recently in [5, 6], Cegrell
introduced the largest class of upper bounded psh functions on a bounded hyper-
convex domain € such that the operator (dd“u)™ can be defined on it. In these
papers, he also studied the Dirichlet problems for the classes F, (see Sec. 2 for
details). The aim of our work is to investigate the Dirichlet problem for a new
class of psh function. This class consist, in particular, the sum of a function in

the class £, and a function in Bf . (see Sec. 2 for the definitions of these classes).

Now we are able to formulate the main result of our work
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Main theorem.
(i) Let Q be a bounded strongly pseudoconvex domain in C"™ and let p be a

—

positive measure on Q, h € C(0Q) such that there exists v € &, + B

loc
(resp. Fp+ BiL..) with (dd°v)™ > -

Then there exists u € Sp/-l—Ffoc (resp. Fp+ Be.) such that (dd°u)™ = p
and 1in2 u(z) = h(§), V& e .

—

(ii) There exists f € L*() such that there exists no function u € &, + B{,
which satisfying fd\ < (dd°u)™.

For the definitions of 8,,:?1“0 . and fmaoc see Sec. 2.

Note that the main theorem for the subclass B of B}  consisting of psh

functions which are bounded near 9Q was proved by Xing in [13] and for the
classes &, and F,, p > 1 by Cegrell in [5].

The key element in the proof of our main theorem is a comparison principle
(Theorem 3.1), which is an extension of Lemma 4.4, Theorem 4.5 in [5].

2. Preliminaries

In this section we recall some elements and results of pluripotential theory that
will be used through out the paper. All this can be found in [2, 3, 5, 6, 11...].

2.0. Unless otherwise specified, €2 will be a bounded hyperconvex domain in C"
meaning that there exists a negative exhaustive psh function for 2 .

2.1. Let © be a bounded domain in C™. The C,,-capacity in the sense of Bedford
and Taylor on € is the set function given by

Cn(E)=C,(E,Q) = sup{/(ddcu)” cu€e PSH(Y), -1<u< 0}
E
for every Borel set F in ).

2.2. According to Xing (see [13]), a sequence of positive measures {p;} on Q is
called uniformly absolutely continuous with respect to C,, in a subset E of Q if

Ve>0,30>0: FCE, Cpo(F)<d=pi(F)<e, Vji>1
We write p; < Cp, in E uniformly for j > 1.

2.3. By B, = B} .(Q2) we denote the set of upper bounded psh functions u

which are locally bounded near 92 such that (dd“u)"™ < C,, in every E CC .

2.4. The following classes of psh functions were introduced by Cegrell in [5]
and [6]

o = E(Q) = {gp € PSH(Q)NL™(Q): lim (z) =0, /(dd“ap)" < +oo},
Q

&= £ = { € PSH(@) 3803 5\ sup [ (-, (ddFy)" < o0},
1=
Q
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Fp=Fp(Q) = {so € PSH(Q): 3 2 v; \\ ¢, sg}f/(—wj)”(ddcwj)",
J=

< + oo,sup/(ddcgoj)” < —l—oo}

j>1

E=E(Q) = {gp € PSH(Q) : Vzy € Q 3 aneighborhood w 3 2,& 3 ¢; \
¢ on w, sup [(ddp;)" < +o0}.
i>1 0

The following inclusions are obvious & C F, C &, C €. It is also known
that these inclusion are strict (see [5, 6]).
The interesting theorem below was proved by Cegrell (see [6])

Theorem 2.5. The class € has the following properties
1. £ is a convex cone.

2. Ifue&, ve PSH () ={p e PSH(Q) : ¢ <0}, then max(u,v) € &.
3. Ifue &, PSH(Q)NLY.(Q) 5 u; \, u, then (dd°u;)"™ is weakly convergent.

loc

Conversely if K C PSH~(Q) satisfies 2 and 3, then K C &

Since B,

loc

:Ba

loc

N PSH— () satisfies 2 and 3 we have by [8] B, . C £.

loc

2.6. Cegrell also studied the following Dirichlet problem: Given p a positive
measure on €2, find u € F, such that (dd°u)™ = u. He gave a necessary and
sufficient condition for this problem to have a solution (Theorem 5.2 in [5]).

2.7. We define

—

& + B} Z{’U,EPSH(Q):HQOEEP, fEBfOC:<p+f§u§8upu<+oo},
Q

loc

—

F, + B

loc

={uePSH(Q):3pEF,, fEB,: ga+f§u§supu<+oo}.
Q

It follows that if p + f <u <supu < +o00, p € E, f € B  then
Q

loc

u—c=max(u—c,p+ f—c) €E, because ¢+ (f —c) € &,

where ¢ = max(sup f, supu).
Q Q

—

Thus we can define (ddu)™ for u € &, + By

loc*

2.8. The aim of this work is to study a Dirichlet problem similar to the one

—

considered by Cegrell but for the classes Ep/—l—Fl“O . and Fp, + Bjt . Namely, given

a positive measure p on 2 and h € C(09), find u € &, + Bf,. (resp. F, + By, )
such that (dd°u)™ = p and liné u(z) = h(§) V& € 09.

2.9. Let p be a positive measure on 2 and h € C(9N2). Following Cegrell, we
define
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Blu,h) = {v € PSH(Q) N L5,(Q) : (dd°v)" > p, T v(z) < h(9)),

z—E&

Ulp, h)(2) = sup{o(z) = v e B(u,h)}, z €

Observe that B(u,h) # () implies that p vanishes on pluripolar sets. The
function U(u, h) plays a crucial role in solving the Dirichlet problem.

——

3. The Comparison Principle for &, + By

loc

In order to prove the main theorem, in this section we prove the following
comparison principle

o —

Theorem 3.1. Let u,v be functions in &, + By . satisfying

loc

lim [u(2) — v(2)] > 0.
z—00N

fhen / (dd°vo)" < / (ddeu)".

{u<v} {u<v}
We need the following result

Lemma 3.2. Let PSH(Q) N L>*(Q) 3 u; \, u. Assume that
11111 s"Cp{u< —s}ND)=0, VD CCQ.

Then (dd°u;)™ < Cy, in every D CC Q uniformly for j > 1.

Proof. Given D CC ). Without loss of generality we may assume that D
is hyperconvex and u; < 0 on D. By [6] for each j > 1 there exists u¥

s

_ J
PSH(D) N C(D) such that u¥ \, u; on D and u% = 0 on dD. As in [9] for
every k,j > 1 and s > 0 put

Dy;(s) = {uéc < —=s}ND, Dj(s) ={u; < —s}ND, D(s) ={u< —s}ND,
ar;j(s) = Cn(Dy;j(s)), aj(s) = Cn(Dj(s)), als) = Cn(D(s)),
o) = [ Gy vy = [ )
Diiy(s) D;(s)

For 0 < s < t we have max(u¥, —t) = u¥ on {u¥ > —t} an open neighborhood

] )
of 0Dy, (s). It follows that

() > £ / (dd° max(u, —£))" =t / (ddeuk)™ = £ by (s).

Dij (s) Dyj (s)
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Letting ¢ \, s we get
s"ag;(s) > by;(s) for k,5 > 1 and s > 0. (1)
Given € > 0. By the hypothesis there exists so > 0 such that
sga(so) < €. (2)
Let E C D with C,(E) < é Take an open neighborhood G of E such that
Cn(G) < é Since (ddcug?)" — (dd°u;)"™ weakly as k — oo we have

Jaawy < [y < i [@rdy
E G — 00

i [ [ @y [ )
k—o0
ij(SO) G\ij(S[))

lim [sqak;(so) + s¢Cn(G)] < sga(so) + € < 2¢

k—o0

IN

IN

for j > 1. Hence (dd°u;)" < Cy, in D uniformly for j > 1.
Proof of Theorem 3.1. We may assume that u,v < 0 and lim [u(z) —v(2)] >
z—00N

0 > 0. By hypothesis u,v € &, + B} _ it is easy to find ¢ € &,, g € B, such

that ¢ + g < min(u,v). Let ¢; \, ¢ be a sequence decreasing to ¢ as in the
definition of £,. For each j > 1 put

gj = max(g, —j), u; = max(u, p; +g;), v; = max(v, ; + g;)-

It follows that gj,u;,v; are bounded and g; \, g, u; \, u, v; \, v. By the
comparison principle for bounded psh functions we have

/ (dd°vg)"™ < / (dduj;)"
{uj<vi} {uj<vi}

for k> j>1.
On the other hand, since

s"C({u < —s}y N D) < s"C({g < —%} N D)+ S"Cn({g < —g} N D) =0

as s — 400 (see [5, 9])
By Lemma 3.2 (dd®u;)™ + (dd®v;)™ < Cy, in every D CC 2 uniformly for
j > 1. Thus by the quasicontinuity of psh functions as Theorem 2.2.6 in [4] we

obtain
/ (dd°vo)" < / (ddeu)",
fuzo) {u%o)

By replacing v by u +§, 6 > 0 and then let § \, 0, we have
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/ (dd°vo)" < / (dd°u)".

{u<v} {u<v}

This is the desired conclusion.

From Theorem 3.1, as Corollary 2.2.8 in [4], we get the following dominant
principle.

Corollary 3.3. Assume that u and v are as in Theorem 3.1 and (dd“u)" <
(ddv)™. Then u > v.

4. Proof of the Main Theorem

(i) We can assume v < 0. Since (dd°v)™ vanishes on every pluripolar set in
Q, by Theorem 6.3 in [5] we can find ¢ € & and 0 < f € Li ((dd°¥)™)

loc
such that p = f(dd“¢)™. Put pr = min(f, k)(dd¢)™. Then py < (ddkw )™,
By Theorem 2 in [13] there exists wi € & such that (dd°wg)™ = pg. The

comparison principle implies that 0 > wy \, w > v. Hence w € &, + Bf

loc

and (dd°w)™ = p. We show that h_rréw(z) = 0 for £ € 0. Assume the
contrary, then @ w(z) < —e for some & € 9N, € > 0. Take § > 0 such that
zZ—&0

w(z) < —efor z € B(&,0) N Let 7 € C(09) such that 7|p(, 5)n00 = €

suppt C B(&,d) N 0. By [2] there exists ¢ € PSH(Q) N C(Q) such that
(dd°¢)™ = 0 and ¢loa = 7. Since lim|[wi(z) — (w(z) + ¢(2))] > 0 for £ € IN
z—&
and (dd°wi)™ = p < p = (dd°w)™ < (dd°(w + ¢))™, we have wy > w + ¢ on Q
for k > 1. Thus w > w+ ¢ on Q. Hence ¢ < 0 on Q\{w = —oco}. Since ¢ is
plurisubharmonic, ¢ < 0 on . This is impossible, because ¢(§) = 7(§) = ¢ for
¢ € B(&, g) N 0. Hence lim w(z) = 0 for £ € 9. From the relations
{ U((dd®(wg, + U(0,h)))™, h) = wi, + U(0, h),
(dd*(w + U(0,h)))" = pur,
and from Theorem 8.1 in [5] it follows that
{ (dd°U (p, h))"™ = i,
U(0,h) > U(pi, h) > wi, +U(0, h).

—

Theorem 3.1 implies that U(ur, h) \, v € & + Bt with (dd°u)” = p and

loc

U(0,h) > u > w+U(0,h). Thus for £ € 9N we have
HE) = Ty U(0, ) 2 Ty u(z) > Tgfo(=) + U (0, A):)]

— li__rgw(z) + lim U(0, h)(2) = h(€).

—

Consequently u € &, + Bf . such that (dd“u)" = p and h_néu(z) = h(§) V¢ €
ofL.
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(ii) Let {€;} be an increasing exhaustion sequence of strongly pseudoconvex
subdomains of €2. For each j > 1 take a sequence of distinguished points
Zim C Q;\Q;_1 converging to & € dQ; as m — oo and a sequence s; \, 0 such
that B(2jm, $jm)C Q\Q—1and B(zjm, $jm) N B(zjt,sj1) = 0 for m # t. Let

o0

ajm >0 with Y ajm < oco. Put
j,m=1 a:
_ Jjm
f - Z d T'Q-n XB(ij,T‘jm))
gm>1 " Im

where 0 < 7, < sjm, are chosen such that

1 »
—(Cn(B(ij,ij),Q))"ﬂ — 0 as m — oo,
Qjm

for 7 > 1 and d,, is the volume of the unit ball in C™.

Assume that fd\ < (dd°u)™ for some u € Sp/—i-Fl“OC. Take ¢ € &, g € B},
such that p+¢g < u < supu < +co. We may assume that g and u are negative.
Q

Let jo > 2 and M > 0 such that g > —M on €, \Qj,—1.
Put M

§ = max(g, Ahq, ) where A= ————— > 0.

sup hq;,

Jo

It follows that g € &, g = g on Qjo\ﬁjo_l-

Let & = max(u, ¢+ §). Since p+g<a<0and ¢+ g€ &, + & =&y, by

[5] we have @ € &,.

Moreover @ = u on 2j,\Qj,—1. Thus for B,, = B(2jym, "jom) We have

o = / fdr = / (dd°u)" = / (dd°i)",

Bm Bm Bm

Let @g \, @ as in the definition of £,. Then (dd®uy)™ — (dd°a)™ weakly (see

[5]). Applying the Holder inequality (see [7]) we have

tom= [(@ray < im [ (@@ny

k—oo
= lim [ (=hp, )" (dd"a)"
k—o0

m

o lim | / (~hp,, )P (ddhp,, )"] 7

k—o0

IA

IN

x| / (ddhs,, )" 7
Q
= 3[Cp (B, Q)] 77,

P[] (=) (dd
/

n

Y|

where ag = aq[sup [(—ix)?(dd®iy,)"] 7+ < +oc. This is impossible, because

k>10
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[Cou(Bm, Q)] 77

Ajom

lim = 0.

m—0o0

Remark. Using Theorem 7.5 in [1] we can find v € F® such that (dd°u)™ =
fd\ where f is constructed as in (ii). Hence, there exists a function u in

‘Fa \ (E;D + Blaoc)'
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