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Abstract. Yen and Phuong (2000) have shown that the efficient solution set of a

linear fractional vector optimization problem can be regarded as the image of the

solution map of a specific parametric monotone affine variational inequality. This

paper establishes some facts about the domain, the image and the continuity of this

solution map (called the basic multifunction), provided that the linear fractional vector

optimization problem under consideration satisfies an additional assumption. The

results can lead to some upper estimates for the number of components in the solution

sets of linear fractional vector optimization problems.

1. Introduction

The problem of minimizing or maximizing several linear fractional objective
functions on a polyhedral convex set is called a linear fractional vector optimiza-
tion problem (LFVO problem for short). LFVO problems have a significant role
both in the management science and in the theory of vector optimization.

Linear fractional (ratio) criteria are frequently encountered in finance. The
reader is referred to [15, p. 337] for concrete examples of linear fractional criteria
in Corporate Planning and Bank Balance Sheet Management. Fractional objec-
tives also occur in other areas of management (for example, in transportation
management, education management, and medicine management).

In the theory of vector optimization, LFVO problems are important examples
of the so-called strictly quasiconvex vector minimization problems (or, the same,
strictly quasiconcave vector maximization problems) which have attracted much
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attention from researchers during the last two decades (see [1, 8, 16], and the
references therein). Meanwhile, the class of the LFVO problems encompasses
the class of the linear vector optimization problems.

Topological properties of the solution sets of LFVO problems were studied
in [1–3, 6, 8, 15, 17]. It is well known that the efficient solution set and the
weakly efficient solution set of a LFVO problem with a bounded feasible set are
connected [1, 3, 17]. Recently, it has been shown that the efficient solution set
and the weakly efficient solution sets of LFVO problems may be not contractible
even if they are path connected [7]. The example given by Choo and Atkins [3]
demonstrates that the efficient solution set and the weakly efficient solution set
of a LFVO problem may be disconnected if the feasible set is unbounded. In [6],
the authors have proved that for any integer m there exist LFVO problems with
m objective criteria whose efficient solution set and weakly efficient solution set
have exactly m components.

Algorithms for solving LFVO problems and/or the related post-optimization
problems have been proposed in [2, 12, 13].

Using the first-order necessary and sufficient optimality conditions for LFVO
problems, which were established by Malivert [12], Yen and Phuong [17] have
shown that the efficient solution set of any LFVO problem can be represented as
the image of the solution map of a specific parametric monotone affine variational
inequality. A similar representation is also valid for the weakly efficient solution
set. This parametric affine variational inequality approach to LFVO problems
has proved to be useful for studying topological properties of the solution sets
and solution stability of LFVO problems.

The aim of this paper is to develop furthermore the parametric affine varia-
tional inequality approach to LFVO problems given in [17]. Using the solution
existence theorem for affine variational inequalities due to Gowda and Pang [4],
we will obtain an upper estimate for the number of components in the domain of
the basic multifunction in the formulae for computing the solution sets of a cer-
tain type of LFVO problems. We will discuss the two conjectures related to the
upper continuity and the image of the basic multifunction, which were stated
in our preprint paper [5]. Further investigations in this direction can lead to
establishing tight upper estimates for the number of components in the solution
sets of LFVO problems.

The rest of the paper is organized as follows. Sec. 2 presents some prelim-
inaries. Sec. 3 gives an estimate for the number of components in the domain
of the basic multifunction. In Sec. 4 we construct a counterexample for the two
conjectures proposed in [5]. It demonstrates the striking facts that the basic
multifunction might not be upper semicontinuous on a component of its do-
main, and the image of a line segment though the basic multifunction might be
disconnected. Some concluding remarks and proposals for further investigations
are given in Sec. 5.

We now recall some standard notions and notation which will be used later
on. Let X, Y be some subsets of Euclidean spaces. A multifunction G : X → 2Y

is upper semicontinuous (usc) at x ∈ X if for every open set V ⊂ Y satisfying
G(x) ⊂ V there exists a neighborhood U of x, such that G(x′) ⊂ V for all
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x′ ∈ U. If G is upper semicontinuous at every x ∈ X , then it is said that G is an
upper semicontinuous multifunction. A subset Z of an Euclidean space is said
to be connected if one cannot find any pair (Z1, Z2) of disjoint nonempty open
subsets Z1, Z2 of Z in the induced topology such that Z = Z1 ∪ Z2. One says
that Z is path connected if for any a, b ∈ Z there exists a continuous mapping
γ : [0, 1] → Z such that γ(0) = a, γ(1) = b. If for any given points a, b ∈ Z
there exists a sequence of line segments [zi, zi+1] ⊂ Z (i = 0, . . . , k − 1) such
that z0 = a and zk = b, then Z is said to be connected by line segments. If Z is
disconnected, then we denote by χ(Z) the (cardinal) number of components of Z.
By definition, a subset M ⊂ Z is said to be a component of Z if M is connected
and it is not a proper subset of any connected subset of Z. The cone generated
by Z and the convex hull of Z are denoted by coneZ and coZ, respectively. For
any w, w′ ∈ R

m, the inequality w � w′ (resp., w < w′) means wi � w′
i (resp.,

wi < w′
i) for all i = 1, . . . , m. If M ⊂ R

n is a convex set, then dim M denotes
the dimension of M , i.e., the dimension of the affine hull of M . If M is a cone,
then we say that M is pointed if M ∩ (−M) = {0}.

2. Preliminaries

Let fi : R
n → R (i = 1, 2, . . . , m) be m linear fractional functions, that is

fi(x) =
aT

i x + αi

bT
i x + βi

for some ai ∈ R
n, bi ∈ R

n, αi ∈ R, and βi ∈ R. (Here and in the sequel, T

denotes the matrix transposition.) Let

Λ = {λ ∈ R
m
+ :

m∑
i=1

λi = 1},

where R
m
+ = {λ = (x1, . . . , λm) ∈ R

m : λi � 0 for all i}. Then

riΛ = {λ ∈ R
m
+ :

m∑
i=1

λi = 1, λi > 0 for all i}

is the relative interior of Λ.
Consider the linear fractional vector optimization problem

(P)
{

Minimize f(x) = (f1(x), . . . , fm(x)) subject to
x ∈ D := {x ∈ R

n : Cx � d},
where C is an (r× n)-matrix, d is an r-dimensional column vector. Throughout
this paper, it is assumed that bT

i x + βi �= 0 for every i and for every x ∈ D.

Definition 2.1. A vector x ∈ D is said to be an efficient solution of (P) if there
exists no y ∈ D such that f(y) � f(x) and f(y) �= f(x). If x ∈ D and there
does not exist y ∈ D such that f(y) < f(x), then x is called a weakly efficient
solution of (P).
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The set of the efficient solutions (resp., the weakly efficient solutions) of (P)
is denoted by E(P) (resp., Ew(P)).

Theorem 2.1 (see [12]). For any x ∈ D, the following assertions hold:
(i) x ∈ E(P) if and only if there exists λ = (λ1, . . . , λm) ∈ ri Λ such that〈 m∑

i=1

λi

[(
bT
i x + βi

)
ai −

(
aT

i x + αi)bi

]
, y − x

〉
� 0 ∀y ∈ D, (2.1)

where 〈·, ·〉 denotes the scalar product in R
n.

(ii) x ∈ Ew(P) if and only if there exists λ = (λ1, . . . , λm) ∈ Λ such that (2.1)
holds.

(iii) Condition (2.1) is satisfied if and only if there exists μ = (μ1, . . . , μr), μj � 0
for all j = 1, . . . , r, such that

m∑
i=1

λi

[(
bT
i x + βi

)
ai −

(
aT

i x + αi)bi

]
+

∑
j∈I(x)

μjC
T
j = 0, (2.2)

where Cj denotes the j-th row of the matrix C and I(x) = {j : Cjx = dj}.

A detailed proof of Theorem 2.1 can be found also in [10].
The problem of finding x ∈ D satisfying (2.1) can be rewritten in the form

of a parametric affine variational inequality problem as follows

(VI)λ Find x ∈ D such that 〈M(λ)x + q(λ), y − x〉 � 0 for all y ∈ D.

We put M(λ) = (Mkj(λ)) ,

Mkj(λ) =
m∑

i=1

λi

(
bi,jai,k − ai,jbi,k

)
, 1 � k � n, 1 � j � n,

and

q(λ) =
(
qk(λ)

)
, qk(λ) =

m∑
i=1

λi(βiai,k − αibi,k), 1 � k � n,

where ai,k and bi,k are the k-th components of ai and bi, respectively.
As it has been noted in [17], since

(
M(λ)

)T = −M(λ), 〈M(λ)v, v〉 = 0 for
every v ∈ R

n. Hence M(λ) is a positive semidefinite matrix. (Recall that an
(n × n)-matrix M is said to be positive semidefinite if 〈Mv, v〉 � 0 for every
v ∈ R

n.) Denote by F (λ) the solution set of (VI)λ. By the Minty lemma (see
[9]), F (λ) is a closed convex set (possibly empty). By Theorem 2.1 we have

E(P) =
⋃

λ∈ri Λ

F (λ) (2.3)

and
Ew(P) =

⋃
λ∈Λ

F (λ). (2.4)
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Definition 2.2. The multifunction F : Λ → 2R
n

, λ → F (λ), is said to be the
basic multifunction associated to the problem (P).

Using (2.3), (2.4), and the following lemma, one can show that E(P) and
Ew(P) are connected if D is bounded (see [17]).

Lemma 2.1 (see [16]). Suppose that X ⊂ R
k is a connected set, and Y is a

subset of R
s. If a multifunction G : X → 2Y is upper semicontinuous at every

x ∈ X and, for every x ∈ X, the set G(x) is nonempty and connected, then the
set G(X) :=

⋃
x∈X

G(x) is connected.

Choo and Atkins [3] showed that if D is bounded, then Ew(P) is connected
by line segments. Up to now it is still not clear whether E(P) is also connected
by line segments if D is bounded. If D is unbounded, then E(P) and Ew(P)
may be disconnected.

Example 2.1 (see [3]). Consider problem (P) with

D =
{
x = (x1, x2) ∈ R

2 : x1 � 2, 0 � x2 � 4
}
,

f1(x) = −x1/(x1 + x2 − 1), f2(x) = −x1/(x1 − x2 + 3).

Then E(P) = Ew(P) = {(x1, 0) : x1 � 2} ∪ {(x1, 4) : x1 � 2}.
It is of interest to know whether the estimates

χ(E(P)) � m, χ(Ew(P)) � m (2.5)

hold true, or not. In our opinion, the parametric affine variational inequality
approach can help to study these estimates.

The following solution existence theorem for monotone affine variational in-
equality problems will be needed in the sequel.

Theorem 2.2. (see [4, p. 432] and [10, p. 103]). Let M be an (n × n)-matrix,
q ∈ R

n a given vector, and D ⊂ R
n a nonempty polyhedral convex set. Suppose

that M is positive semidefinite. Then the affine variational inequality problem

Find x ∈ D such that 〈Mx + q, y − x〉 � 0 for all y ∈ D

has a solution if and only if there exists x ∈ D such that

〈Mx + q, v〉 � 0 ∀v ∈ 0+D,

where 0+D = {v ∈ R
n : x+ tv ∈ D for all x ∈ D and t ∈ R+} is the recession

cone of D.

Note that for the case D = {x ∈ R
n : Cx � d}, we have 0+D = {v ∈ R

n :
Cv � 0} (see [14, p. 62]).
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3. Domain of the Basic Multifunction

In this section we establish some facts about the domain

domF := {λ ∈ Λ : F (λ) �= ∅}
of the basic multifunction F : Λ → 2R

n

, which plays a key role in the formulae
(2.3) and (2.4). If F is usc on Λ, then combining these facts with Lemma 2.1 we
get some upper estimates for the number of components in the solution sets of
LFVO problems.

The main result of this section can be stated as follows.

Theorem 3.1. For problem (P), the following assertions are valid:
(i) If there exists v ∈ R

n \ {0} such that 0+D = cone{v}, then domF is a
compact subset of Λ, χ(domF ) � m. Moreover, each point in domF can be
joined with at least one vertex of Λ by a line segment which is contained in
domF .

(ii) If for each i ∈ {1, . . . , m} either bT
i x+βi ≡ 1 (i.e., fi is an affine function)

or aT
i x+αi ≡ 1 (i.e., 1/fi is an affine function), then domF is a polyhedral

convex set.

The assumption stated in (i) is equivalent to saying that the cone 0+D =
{v ∈ R

n : Cv � 0} is pointed and dim 0+D = 1. There are many examples of
sets D satisfying this rather strict assumption. For the set D in Example 2.1,
we have 0+D = cone {v̄}, where v = (0, 1). If

D =
{
x ∈ R

2 : −1 � x2 − x1 � 1
}
,

then 0+D = cone {v̄}, where v = (1, 1). If

D=
{
x ∈ R

3:x1+x2–2x3 � 1, x1–2x2+x3 � 1, –2x1+x2+x3 � 1, x1+x2+x3 � 1
}
,

then 0+D = cone {v̄}, where v = (1, 1, 1).
For proving Theorem 3.1, we first establish two lemmas. Let Ω = Λ \domF .

The next lemma shows that Ω is a convex set if the recession cone 0+D has a
simple structure.

Lemma 3.1. If there exists v ∈ R
n \ {0} such that 0+D = cone{v}, then Ω is

a convex set, which is open in the induced topology of Λ.

Proof. Applying Theorem 2.2 to the problem (VI)λ, where λ ∈ Λ, we deduce
that F (λ) = ∅ if and only if

∀x ∈ D ∃v ∈ 0+D such that 〈M(λ)x + q(λ), v〉 < 0. (3.1)

Since 0+D = cone{v}, (3.1) is equivalent to the following property:

∀x ∈ D it holds 〈M(λ)x + q(λ), v〉 < 0. (3.2)
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From the formulae of M(λ) and q(λ) given in the preceding section it follows
that

M(tλ1 + (1 − t)λ2) = tM(λ1) + (1 − t)M(λ2)

and
q(tλ1 + (1 − t)λ2) = tq(λ1) + (1 − t)q(λ2)

for all t ∈ [0, 1] and λ1, λ2 ∈ Λ. Combining this with the fact that λ ∈ Ω if and
only if (3.2) is valid, we conclude that Ω is a convex set.

We now show that Ω is open in the induced topology of Λ. As D is a
polyhedral convex set, by [14, Theorem 19.1] there exist k ∈ N and z1, . . . , zk ∈
D such that

D =
{

x =
k∑

i=1

ηiz
i + ρv : ηi � 0 for i = 1, . . . , k,

k∑
i=1

ηi = 1, ρ � 0
}
.

Then, from (3.2) and the property 〈M(λ)v, v〉 = 0 it follows that

Ω =
{
λ ∈ Λ : 〈M(λ)zi + q(λ), v〉 < 0 ∀i = 1, . . . , k

}
.

This formula and the continuity of the functions

λ �→ 〈M(λ)zi + q(λ), v〉 (i = 1, . . . , k)

imply that Ω is an open subset of Λ in the induced topology. �

In connection with Lemma 3.1, we would like to raise the following open
question:

Question 1. Without any additional assumption on the recession cone 0+D, is
it true that Ω is a convex set, which is open in the induced topology of Λ?

Lemma 3.2. If Ω ⊂ Λ is a convex set, then χ(Λ \ Ω) � m. Moreover, each
point in Λ \ Ω can be joined with at least one of the vertices

ei = (0, . . . , 1︸︷︷︸
i−th

, 0, . . . , 0) (i = 1, . . . , m)

of Λ by a line segment, which is contained in Λ \ Ω.
Proof. (This is a refined version of the proof given in [5]). It suffices to prove
that each point in Λ \Ω can be joined with at least one of the vertices of Λ by a
line segment contained in Λ \Ω, because the inequality χ(Λ \Ω) � m is a direct
consequence of this property.

Given any point λ ∈ Λ \ Ω, we consider the line segments

[λ, ei] = {tλ + (1 − t)ei : t ∈ [0, 1]} (i = 1, . . . , m).

To obtain a contradiction, suppose that [λ, ei] ∩ Ω �= ∅ for all i = 1, . . . , m.
Then for each i we can find a point λi ∈ [λ, ei] ∩ Ω. Of course, λi �= λ. Hence
λi = tiλ + (1 − ti)ei for some ti ∈ [0, 1). From this we deduce that
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ei =
1

1 − ti
λi − ti

1 − ti
λ. (3.3)

As λ ∈ co{e1, e2, . . . , em}, there exist μi � 0,
m∑

i=1

μi = 1, such that λ =
m∑

i=1

μie
i.

Combining this with (3.3) we obtain

λ =
(
1 +

m∑
i=1

μiti
1 − ti

)−1 m∑
i=1

μi

1 − ti
λi. (3.4)

Since μi/(1 − ti) � 0 for all i and
m∑

i=1

μi

1 − ti
=

m∑
i=1

(
μi +

μiti
1 − ti

)
= 1 +

m∑
i=1

μiti
1 − ti

,

(3.4) shows that λ ∈ co{λ1, λ2, . . . , λm}. By the convexity of Ω, from this we
conclude that λ ∈ Ω, a contradiction. The proof is complete. �

It is likely that under the assumption of Lemma 3.2 the property “χ(ri Λ \
Ω) � m and each component of ri Λ \ Ω is connected by line segments” is valid.
But we still do not have any proof for this fact.

Proof of Theorem 3.1. Since assertion (i) is immediate from Lemmas 3.1 and
3.2, we have to show only that (ii) is valid. If for each i ∈ {1, . . . , m} either
bT
i x + βi ≡ 1 or aT

i x + αi ≡ 1, then from the formulae

M(λ) = (Mkj(λ)) , Mkj(λ) =
m∑

i=1

λi (bi,jai,k − ai,jbi,k)

for all 1 � k � n, 1 � j � n it follows that, for every λ ∈ Λ, M(λ) collapses to
the zero matrix. Hence, by Theorem 2.2, an element λ ∈ Λ belongs to domF if
and only if

〈q(λ), v〉 � 0 ∀v ∈ 0+D.

Since q(λ) is a linear function and 0+D is a polyhedral convex cone, this implies
that domF is a polyhedral convex set. �

Theorem 3.1 shows that χ(dom F ) � 1 provided that every objective func-
tion is either an affine function or the reverse of an affine function. Note that
connectedness of the efficient set of a vector optimization problem with linear
objective functions and a polyhedral convex feasible set, which is called a linear
vector optimization problem, is a classical result (see [11]).

Example 3.1. Let us consider once again the problem given in Example 2.1 and
observe that the assumption of Lemma 3.1 is satisfied for this problem. Indeed,
since 0+D = {(α, 0) : α ∈ R+}, one can choose v = (1, 0). An elementary
investigation on the parametric affine variational inequality (VI)λ shows that

Ω = (λ, λ̂) := {tλ + (1 − t)λ̂ : 0 < t < 1},
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where λ =
(1

4
,
3
4

)
and λ̂ =

(3
4
,
1
4

)
. Therefore,

dom F = Λ \ Ω = co{(0, 1), (1, 0)} \ Ω

= co{(0, 1), λ} ∪ co {λ̂, (1, 0)}.
We see that dom F has two components.

In connection with the first assertion of Theorem 3.1, the following open
question seems to be interesting.

Question 2. Is it true that the conclusion of the first part of Theorem 3.1 is still
valid without the additional assumption on the recession cone 0+D?.

In order to derive information about the numbers χ(Ew(P)) and χ(E(P))
from the information about the number χ(domF ), one has to investigate fur-
thermore the behavior of the basic multifunction. The following two conjectures
were stated in our preprint paper [5].

Conjecture 1. The basic multifunction F : Λ → 2Rn

is upper semicontinuous on
Λ.

Conjecture 2. If λ1, λ2 ∈ Λ are such that [λ1, λ2] ⊂ domF , then the set
F ([λ1, λ2]) is connected by line segments.

Note that both the conjectures are valid for the problem considered in Ex-
ample 3.1. If Conjecture 1 is true, then from Theorem 3.1 and Lemma 2.1
it follows that “If there exists v ∈ Rn \ {0} such that 0+D = cone{v}, then
χ(Ew(P )) � m”. If Conjecture 2 is true, by Theorem 3.1 one can assert that
“If 0+D = cone{v} for some v ∈ Rn \ {0}, then χ(Ew(P )) � m. Moreover, each
component of Ew(P ) is connected by line segments”.

Unfortunately, the counterexample given in the next section shows that both
the conjectures are not true. We believe that the counterexample not only solves
the conjectures, but it is also very useful for understanding the behavior of the
basic multifunction.

4. Image of a Line Segment through the Basic Multifunction

To analyze the behavior of the basic multifunction λ �→ F (λ), we consider prob-
lem (P) with the following data:

D =
{
x ∈ R2 : x1 � 0, x2 � 0, x1 + x2 � 1

}
,

f1(x) =
x1 + 1

2x1 + x2
, f2(x) =

−x1 − 2
x1 + x2

.

Then, in the notation of Sec. 2, we have

C =

⎛
⎝−1 0

0 −1
−1 −1

⎞
⎠ , d =

⎛
⎝ 0

0
−1

⎞
⎠ .
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Claim 1. The following formula is valid:

F (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} × [2, +∞) if λ =
(2

3
,
1
3

)
{(2 − 3λ1

2λ1 − 1
, 2
)}

if λ = (λ1, 1 − λ1),
1
2

< λ1 <
2
3

[1, +∞) × {0} if λ =
(1

2
,
1
2

)
{(1, 0)} if λ = (λ1, 1 − λ1), 0 � λ1 <

1
2

∅ if λ = (λ1, 1 − λ1),
2
3

< λ1 � 1.

(4.1)

Proof. Let x ∈ D. By Theorem 2.1, x ∈ Ew(P) if and only if there exist λ1 � 0,
λ2 � 0, λ1 + λ2 = 1, μ1 � 0, μ2 � 0, μ3 � 0, such that

λ1

[
(2x1 + x2)

(
1
0

)
− (x1 + 1)

(
2
1

)]

+ λ2

[
(x1 + x2)

(−1
0

)
− (−x1 − 2)

(
1
1

)]
+

∑
j∈I(x)

μjC
T
j = 0

or, equivalently,(
(λ1 − λ2)(x2 − 2)

−λ1(x1 + 1) + λ2(x1 + 2)

)
+

∑
j∈I(x)

μjC
T
j = 0. (4.2)

Case 1. I(x) = ∅. Then we have x1 > 0, x2 > 0, x1 + x2 > 1. In this case, (4.2)
is equivalent to the system of two conditions: x2 = 2, λ2 = λ1[1 − 1/(x1 + 2)].
Taking into account the equality λ1 +λ2 = 1, we obtain λ1 = (x1 +2)/(2x1 +3),

λ2 = 1 − λ1. Since x1 ∈ (0, +∞), it holds
1
2

< λ1 <
2
3
. We can express

x = (x1, x2) via λ = (λ1, λ2) as follows

x1 =
2 − 3λ1

2λ1 − 1
, x2 = 2.

Case 2. I(x) = {1}. In this case we have x1 = 0, x2 > 1. The equation (4.2)
can be rewritten as the following(

(λ1 − λ2)(x2 − 2)
−λ1 + 2λ2

)
+ μ1

(−1
0

)
= 0.

Combining this with the equality λ1 + λ2 = 1, we obtain x2 � 2, λ1 = 2/3,

λ2 = 1/3, μ1 =
1
3
λ1(x2 − 2).

Case 3. I(x) = {2}. In this case we have x2 = 0, x1 > 1. We rewrite (4.2)
equivalently as follows(

2(λ2 − λ1)
−λ1(x1 + 1) + λ2(x1 + 2)

)
+ μ2

(
0
−1

)
= 0.
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As λ1 + λ2 = 1, this implies λ1 = λ2 = 1/2, μ2 = 1/2.

Case 4. I(x) = {3}. In this case we have x1 > 0, x2 > 0, x1 + x2 = 1. The
equation (4.2) now becomes(

(λ2 − λ1)(x1 + 1)
−λ1(x1 + 1) + λ2(x1 + 2)

)
+ μ3

(−1
−1

)
= 0.

This implies
μ3 = (λ2 − λ1)(x1 + 1), μ3 = (λ2 − λ1)(x1 + 1) + λ2.

It is clear that one cannot find multipliers λ1 � 0, λ2 � 0, λ1 + λ2 = 1, and
μ3 � 0, which satisfy these two conditions.

Case 5. I(x) = {1, 3}. Since x1 = 0 and x2 = 1, we can rewrite (4.2) as follows(
λ2 − λ1

2λ2 − λ1

)
+ μ1

(−1
0

)
+ μ3

(−1
−1

)
= 0.

It is easily seen that there exist no multipliers λ1 � 0, λ2 � 0, λ1 + λ2 = 1,
μ1 � 0 and μ3 � 0, which satisfy this equation.
Case 6. I(x) = {2, 3}. Since x1 = 1 and x2 = 0, (4.2) becomes(

2(λ2 − λ1)
3λ2 − 2λ1

)
+ μ2

(
0
−1

)
+ μ3

(−1
−1

)
= 0,

which yields
μ2 = λ2, μ3 = 2(λ2 − λ1), λ2 � λ1.

As λ2 + λ1 = 1, we deduce that 0 � λ1 � 1/2, λ2 = 1 − λ1. (The cases
I(x) = {1, 2} and I(x) = {1, 2, 3} are excluded, because we assume that x ∈ D).

Summarizing the above results, we obtain (4.1). �

Claim 2. The basic multifunction F is not upper semicontinuous on the line
segment

L := co
{(

2
3
,
1
3

)
, (0, 1)

}
, (4.3)

which coincides with the set domF .

Proof. Formula (4.1) shows that F is not upper semicontinuous at the point
(1/2, 1/2) ∈ L. �

Claim 3. The image of the line segment L through F is disconnected.

Proof. By (4.1) we have

F (L) =
(
[1, +∞)× {0}

)
∪
(
[0, +∞) × {2}

)
∪
(
{0} × [2, +∞)

)
.

So F (L) has two components. �

The above example shows that the properties of the basic multifunction
stated in Conjecture 1 and Conjecture 2 (see Section 3), are not available for
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general LFVO problems. However, if we decompose the set L = dom F into the
union of the two disjoint subsets

L1 :=

{
t(0, 1) + (1 − t)

(1
2
,
1
2

)
: 0 � t � 1

}
,

L2 :=

{
t
(1

2
,
1
2

)
+ (1 − t)

(2
3
,
1
3

)
: 0 � t < 1

}

then, by virtue of (4.1), the following assertions hold true:
(i) Each subset Li (i = 1, 2) is connected by line segments.
(ii) The restriction of F on each subset Li (i = 1, 2) is an upper semicontinuous

multifunction.
(iii) The image of each subset Li (i = 1, 2) through F is connected by line

segments.
Concerning the basic function F figured in (2.3) and (2.4), we say that

λ ∈ dom F is a regular point if F (λ) is bounded. If F (λ) is unbounded, we
say that λ is an irregular point. In order to make the above decomposition
L = L1 ∪ L2, we have used the irregular points

λ1 :=
(1

2
,
1
2

)
, λ2 :=

(2
3
,
1
3

)
.

Observe that the sets F (L1) and F (L2) are just the two components of the
weakly efficient solution set Ew(P). Here we have m = 2 and E(P) = Ew(P),
so the estimates in (2.5) are valid for the problem considered in this section.

5. Concluding Remarks

In this paper we investigate furthermore the parametric affine variational in-
equality approach to linear fractional vector optimization problems, which can
help to obtain tight upper estimates for the number of components in the so-
lution sets of these problems. Some results on the domain, the image, and the
continuity of the basic multifunction have been obtained.

Although the two conjectures stated in [5] are not true, the following claims
might be valid: 1) The set domF can be decomposed into the union of not more
than m subsets, each of them is connected by line segments; 2) The restriction
of F on each of the subsets is an upper semicontinuous multifunction; 3) The
image of each of the subsets through F is connected by line segments.

Thus, further efforts are needed to prove (or disprove) the estimates in (2.5).
New results, even for the case m = 2, would be of interest.

Acknowledgement. Financial support from the Vietnam National Program in Basic

Sciences is gratefully acknowledged. The authors thank Dr. Nguyen Quang Huy for

proposing a proof for Lemma 3.2 in this paper, and the anonymous referee for several

valuable remarks.



Parametric Affine Variational Inequality to LFVO Problems 489

References

1. J. Benoist, Connectedness of the efficient set for strictly quasiconcave sets, J.

Optim. Theory Appl. 96 (1998) 627–654.

2. E. U. Choo and D. R. Atkins, Bicriteria linear fractional programming, J. Optim.

Theory Appl. 36 (1982) 203–220.

3. E.U. Choo and D.R. Atkins, Connectedness in multiple linear fractional pro-

gramming, Management Science 29 (1983) 250–255.

4. M. S. Gowda and J. -S. Pang, On the boundedness and stability of solutions to

the affine variational inequality problem, SIAM J. Control Optim. 32 (1994)

421–441.

5. T. N. Hoa, T. D. Phuong, and N.D. Yen, Number of Connected Components of

the Solution Sets in Linear Fractional Vector Optimization, Preprint, 2002/41,

Institute of Mathematics, Hanoi.

6. T. N. Hoa, T. D. Phuong, and N.D. Yen, Linear Fractional Vector Optimization

Problems with many Components in the Solution Sets, Preprint 2004/05, Institute

of Mathematics, Hanoi; J. Industrial and Management Optim.(to appear).

7. N.Q. Huy and N.D. Yen, Remarks on a conjecture of J. Benoist, Nonlinear

Analysis Forum 9 (2004) 109–117.

8. N.Q. Huy and N.D. Yen, Contractibility of the solution sets in strictly quasicon-

cave vector maximization on noncompact domains, J. Optim. Theory Appl. 24

(2005) 615–635.

9. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities

and Their Applications, Academic Press, New York, 1980.

10. G. M. Lee, N.N. Tam, and N.D. Yen, Quadratic Programming and Affine Varia-

tional Inequalities: A Qualitative Study, Series: Nonconvex Optimization and Its

Applications, Vol. 78, Springer–Verlag, 2005.

11. D.T. Luc, Theory of Vector Optimization, Springer–Verlag, Berlin, 1989.

12. C. Malivert, Multicriteria fractional programming, Proceedings of the Catalan

Days on Applied Mathematics, Presses of Universitaires de Perpinan, 1995, pp.

189–198.

13. C. Malivert and N. Popovici, Bicriteria linear fractional optimization, In: Opti-

mization, Lecture Notes in Economic and Mathematical Systems, 481, Springer,

Berlin, 2000, pp. 305–319.

14. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New

Jersey, 1970.

15. R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applica-

tion, John Wiley & Sons, New York, 1986.

16. A.R. Warburton, Quasiconcave vector maximization: Connectedness of the set

of Pareto-optimal and weak Pareto-optimal alternatives, J. Optim. Theory Appl.

40 (1983) 537–557.

17. N.D. Yen and T. D. Phuong, Connectedness and Stability of the Solution Sets in

Linear Fractional Vector Optimization Problems, In: Vector Variational Inequal-

ities and Vector Equilibria, F. Giannessi (Ed.), Kluwer Academic Publishers,

2000, pp. 479–489.


