Vietnam Journal of MATHEMATICS © VAST 2006

A Fixed Point Theorem for Nonexpansive Mappings in Locally Convex Spaces

Ha Duc Vuong

Ministry of Education and Training, 49 Dai Co Viet, Hanoi, Vietnam

Received February 22, 2005 Revised June 20, 2005

Abstract. In this note, first we establish a fixed point theorem for a nonexpansive mapping in a locally convex space, then we apply it to get a fixed point theorem in probabilistic normed spaces.

2000 Mathematics subject classification: 54H25, 90D13, 46N10

Keywords: Fixed point, nonexpansive mapping, normal structure, probabilistic normed space.

1. Introduction

After the work [2] a lot of fixed point theorems for semigroups of mappings in Banach spaces were obtained. However, for such results in locally convex spaces up to now there is only one paper [4] with a restrictive condition: compactness of the domain. In Sec. 2 slightly modifying the method in [3] we get a fixed point theorem for a nonexpansive mapping in a locally convex space and apply it to get an analogous result for probabilistic normed spaces.

2. Fixed Point Theorems

2.1. A Fixed Point Theorem for Nonexpansive Mappings in Locally Convex Spaces

Let us first give some definitions.

150 Ha Duc Vuong

Definition 1. [4] Let E be a Hausdorff locally convex topological vector space and P a family of continuous seminorms which generates the topology of E.

For any $p \in P$ and $A \subset E$, let $\delta_p(A)$ denote the p-diameter of A, i.e., $\delta_p(A) = \sup\{p(x-y) : x, y \in A\}.$

A convex subset K of E is said to have normal structure with respect to P if for each nonempty bounded convex subset H of K and for each $p \in P$ with $\delta_p(H) > 0$, there is a point x_p in H such that

$$\sup\{p(x_p - y) : y \in H\} < \delta_p(H).$$

Definition 2. [4] Let E and P be as in Definition 1, and $K \subset E$. A mapping $T: K \to K$ is said to be P-nonexpansive if for all $x, y \in K$ and $p \in P$,

$$p(Tx - Ty) \le p(x - y).$$

Definition 3. Let E and P be as in Definition 1. E is said to be strictly convex if the following implication holds for all $x, y \in E$ and $p \in P$:

$$p(x) = 1, p(y) = 1, x \neq y \Longrightarrow p(\frac{x+y}{2}) < 1.$$

Proposition 1. Let (E, P) be a strictly convex space and $p(x + y) = p(x) + p(y), p(x) \neq 0, p(y) \neq 0$. Then $x = \lambda_p y$ for some $\lambda_p > 0$.

Proof. Suppose $p(x) \le p(y)$. Put $x' = \frac{x}{p(x)}$, $y' = \frac{y}{p(y)}$, then p(x') = p(y') = 1. We have

$$\begin{split} 2 &= p(x') + p(y') \ge p(x' + y') = p(\frac{x}{p(x)} + \frac{y}{p(y)}) \\ &= p(\frac{x}{p(x)} + \frac{y}{p(x)} - \frac{y}{p(x)} + \frac{y}{p(y)}) \ge p(\frac{x + y}{p(x)}) - (\frac{1}{p(x)} - \frac{1}{p(y)})p(y) \\ &= \frac{p(x) + p(y)}{p(x)} - \frac{p(y)}{p(x)} + \frac{p(y)}{p(y)} = 2. \end{split}$$

So p(x'+y')=2, hence $p(\frac{x'+y'}{2})=1$. Since E is strictly convex, we have x'=y'. From this it follows that $x=\frac{p(x)}{p(y)}y$ and the proof is complete.

Theorem 1. Let C be a nonempty weakly compact convex subset of a Hausdorff locally convex space (E, P) which has normal structure, and $T: C \to C$ a P-nonexpansive mapping. Then T has a fixed point.

Moreover, if E is a strictly convex space, then the set FixT of fixed points of T is nonempty and convex.

Proof. We first prove that T has a fixed point.

Denote by \mathcal{F} the family of all nonempty closed convex subsets of C and invariant under T, i.e.,

 $\mathcal{F} = \{K \subset C : K \text{ is a nonempty closed convex set and } T(K) \subset K\}.$

Clearly \mathcal{F} is a nonempty family, since $C \in \mathcal{F}$. By weakly compactness of C and Zorn's Lemma, \mathcal{F} has a minimal element H.

Now we shall show that H consists of a single point. Assume on the contrary that there exists $p_o \in P$ such that $\delta_{p_o}(H) = d > 0$. Since C has normal structure, there exists $z_o \in H$ such that $r = \sup_{x \in H} p_o(z_o - x) < d$.

Denoting $D = \{z \in H : p_o(z - x) \le r \text{ for all } x \in H\}$, it is easy to prove that D is a nonempty closed convex subset in C, since $z_0 \in D$ and p_o is a convex continuous function.

Now we show that D is invariant under T. For any z in D, we have $p_o(z-x) \le r$ for all $x \in H$. Since T is a nonexpansive mapping, we get

$$p_o(Tz - Tx) \le p_o(z - x) \le r,$$

for all $x \in H$. Hence $p_o(Tz-x) \leq r, \forall x \in T(H)$. So we have $p_o(Tz-x) \leq r, \forall x \in \overline{co}T(H)$, because p_o is a convex continuous function, where $\overline{co}T(H)$ denotes the closed convex hull of T(H). Since $T(H) \subset H$, this implies $\overline{co}(T(H)) \subset \overline{co}(H) = H$. Hence $T(\overline{co}(T(H))) \subset T(H) \subset \overline{co}(T(H))$. Thus $\overline{co}T(H) \in \mathcal{F}$. From this and the minimality of H we get $\overline{co}T(H) = H$ and hence

$$p_o(Tz - x) \le r, \forall x \in H.$$

So $Tz \in D$, and $T(D) \subset D$. Hence $D \in \mathcal{F}$. By the minimality of H in \mathcal{F} , we get H = D. Thus for every u, v in H, we have $p_o(u - v) \leq r$. It follows that $d = \delta_{p_o}(H) = \delta_{p_o}(D) = \sup_{u,v \in D} p_o(u - v) \leq r$. This is a contradiction, so $\delta_p(H) = 0, \forall p \in P$; thus $H = \{z\}$ and Tz = z.

Lastly we prove that FixT is a convex set.

For any $u, v \in FixT$, i.e., u = Tu, v = Tv, we put $z = \lambda u + (1 - \lambda)v$ with any $\lambda \in (0, 1)$. We have $u - z = (1 - \lambda)(u - v)$ and $v - z = \lambda(v - u)$.

Since T is a P-nonexpansive mapping, we have

$$p(u - Tz) + p(Tz - v) \le p(u - z) + p(z - v) = p(u - v).$$

On the other hand, since u - v = (u - Tz) + (Tz - v), we get

$$p(u-v) < p(u-Tz) + p(Tz-v).$$

From these we get

$$p(u-v) = p(u-Tz) + p(Tz-v).$$

We claim that $p(u-Tz) \neq 0$ and $p(v-Tz) \neq 0$. Indeed, if p(u-Tz) = 0 then we get

$$p(u-v) = p(v-Tz) = p(Tv-Tz).$$

On the other hand,

$$p(Tv - Tz) \le p(v - z) = \lambda p(v - u) < p(v - u).$$

We have a contradiction, so $p(u-Tz) \neq 0$. Similarly, we have $p(v-Tz) \neq 0$. Putting x = u - Tz, y = Tz - v, we have

$$p(x) + p(y) = p(x + y).$$

152 Ha Duc Vuong

Since E is strictly convex Proposition 1 implies that $\exists \alpha_p > 0$ such that $x = \alpha_p y$,

$$u - Tz = \alpha_p(Tz - v)$$

from this

$$Tz = \frac{1}{1 + \alpha_p} u + \frac{\alpha_p}{1 + \alpha_p} v.$$

We claim that $\lambda = \frac{1}{1+\alpha_p}$. Indeed, supposing $\lambda < \frac{1}{1+\alpha_p}$, we have

$$p(v - Tz) = p(Tv - Tz) = p(u - v) - p(u - Tz) = p(u - v) - \alpha_p p(Tz - v).$$

It follows that $p(u-v) = (1+\alpha_p)p(Tz-v)$. Hence

$$p(Tz - Tv) = p(Tz - v) = \frac{1}{1 + \alpha_p} p(u - v) > \lambda p(u - v) = p(z - v).$$

This is a contradiction, because T is a P-nonexpansive mapping. In the same way, if $\lambda > \frac{1}{1+\alpha_p}$ then we also have a contradiction. Thus we get Tz = z, hence $z \in FixT$ and the proof is complete.

2.2. Application to Probabilistic Normed Spaces

Definition 4. [5] A probabilistic normed space is a triple (X, \mathcal{F}, \min) , where X is a linear space, $\mathcal{F} = \{F_x : x \in X\}$ is a family of distribution functions satisfying.

- 1) $F_x(0) = 0 \text{ for all } x \in X$,
- 2) $F_x(t) = 1$ for all $t > 0 \Leftrightarrow x = 0$,
- 3) $F_{\alpha x}(t) = F_x\left(\frac{t}{|\alpha|}\right), \forall t \ge 0, \forall \alpha \in \mathbb{C} \text{ or } \mathbb{R}, \alpha \ne 0, \forall x \in X.$ 4) $F_{x+y}(s+t) \ge \min\{F_x(s), F_y(t)\}, \forall x, y \in X, \forall t, s \ge 0.$

The topology in X is defined by the system of neighborhoods of $0 \in X$:

$$U(0,\epsilon,\lambda) = \{x \in X : F_x(\epsilon) > 1 - \lambda\}, \epsilon > 0, \lambda \in (0,1).$$

This is a locally convex Hausdorff topology, called the (ϵ, λ) -topology. To see this we define for each $\lambda \in (0,1)$

$$p_{\lambda}(x) = \sup\{t \in \mathbb{R} : F_x(t) \le 1 - \lambda\}.$$

From properties 1) - 4) of F_x one can verify that p_λ is a seminorm on X and $p_{\lambda}(x) = 0, \forall \lambda \in (0,1) \Rightarrow x = 0$, and the topology on X defined by the family of seminorms $\{p_{\lambda} : \lambda \in (0,1)\}$ coincides with the (ϵ, λ) -topology. In particular, we have

$$F_x(p_\lambda(x)) \le 1 - \lambda, \forall x \in X, \forall \lambda \in (0,1)$$
(1)

and

$$p_{\lambda}(x) < \epsilon \Leftrightarrow F_x(\epsilon) > 1 - \lambda.$$
 (2)

(For details, see [5]). In the sequel all topological notions (boundedness, compactness, weak compactness,...) in a probabilistic normed space are understood as those in the corresponding locally convex space.

Definition 5. A mapping T in (X, \mathcal{F}, \min) is said to be probabilistic nonexpansive if for all $x, y \in X$ and $t \in \mathbb{R}$ we have

$$F_{Tx-Ty}(t) \ge F_{x-y}(t)$$
.

Definition 6. A subset C of a probabilistic normed space (X, \mathcal{F}, \min) is said to have probabilistic uniformly normal structure if for every convex closed bounded subset H of C containing more than one point, there exists $x_o \in H$ and 0 < k < 1 such that

$$\inf_{y \in H} F_{x_0 - y}(kt) \ge \inf_{x, y \in H} F_{x - y}(t)$$

for all $t \geq 0$.

Definition 7. A probabilistic normed space (X, \mathcal{F}, \min) is said to be probabilistic strictly convex if $\forall x, y \in X, x \neq y, \exists k > 1$ such that

$$F_{\frac{x+y}{2}}(t) \ge \min\{F_x(kt), F_y(kt)\}, \forall t \ge 0.$$

Before stating another fixed point theorem we establish three following lemmas.

Lemma 1. Every probabilistic nonexpansive mapping in a probabilistic normed space (X, \mathcal{F}, \min) is P-nonexpansive in the corresponding locally convex space $(X, \{p_{\lambda}\})$.

Proof. Suppose on the contrary that there exist $\lambda \in (0,1)$ and $x,y \in X$ such that

$$p_{\lambda}(Tx - Ty) > p_{\lambda}(x - y).$$

Putting $t_o = p_{\lambda}(Tx - Ty)$ we have $p_{\lambda}(x - y) < t_o$, and by (2), $F_{x-y}(t_o) > 1 - \lambda$. On the other hand, it follows from (1) that

$$F_{Tx-Ty}(t_o) = F_{Tx-Ty}(p_{\lambda}(Tx - Ty)) \le 1 - \lambda.$$

So we get

$$F_{x-y}(t_o) > 1 - \lambda \ge F_{Tx-Ty}(t_o),$$

a contradiction and the proof is complete.

Lemma 2. Let a probabilistic normed space (X, \mathcal{F}, \min) satisfy the following condition:

For each fixed $t \in \mathbb{R}$, the function $F_x(t): X \to [0,1]$ is weakly lower semi-continuous in $x \in X$.

154 Ha Duc Vuong

Then every weakly compact set $C \subset X$ having probabilistic uniformly normal structure has normal structure in the corresponding locally convex space $(X, \{p_{\lambda}\})$.

Proof. Let D be any closed convex subset of C, then D is also weakly compact. We show that for each $\lambda \in (0,1)$

$$\sup_{x \in D} \sup \{ t : F_x(t) \le 1 - \lambda \} = \sup \{ t : \inf_{x \in D} F_x(t) \le 1 - \lambda \}.$$
 (4)

Since $F(t) = \inf_{x \in D} F_x(t) \le F_x(t)$ for each $x \in D$, we have

$$a = \sup\{t : F(t) \le 1 - \lambda\} \ge \sup_{x \in D} \sup\{t : F_x(t) \le 1 - \lambda\} = b.$$

If a > b, then we have $F_x(a) > 1 - \lambda$ for each $x \in D$. The condition (3) shows that $F(a) > 1 - \lambda$, this implies a > a, a contradiction. Thus a = b, so (4) is proved.

Now we prove the assertion of the lemma. From the inequality

$$\inf_{y \in D} F_{x_0 - y}(kt) \ge \inf_{x, y \in D} F_{x - y}(t)$$

we get

$$\{t : \inf_{y \in D} F_{x_0 - y}(kt) \le 1 - \lambda\} \subset \{t : \inf_{x, y \in D} F_{x - y}(t) \le 1 - \lambda\},$$

hence

$$\frac{1}{k} \{ t : \inf_{y \in D} F_{x_0 - y}(t) \le 1 - \lambda \} \subset \{ t : \inf_{x, y \in D} F_{x - y}(t) \le 1 - \lambda \},$$

so

$$\{t : \inf_{y \in D} F_{x_0 - y}(t) \le 1 - \lambda\} \subset k\{t : \inf_{x, y \in D} F_{x - y}(t) \le 1 - \lambda\}.$$

This implies

$$\sup\{t : \inf_{y \in D} F_{x_0 - y}(t) \le 1 - \lambda\} \le k \sup\{t : \inf_{x, y \in D} F_{x - y}(t) \le 1 - \lambda\}.$$

From this and (4) we get

$$\sup_{y \in D} \sup \{ t : F_{x_0 - y}(t) \le 1 - \lambda \} \le k \sup_{x, y \in D} \sup \{ t : F_{x - y}(t) \le 1 - \lambda \},$$

and finally

$$\sup_{y \in D} p_{\lambda}(x_0 - y) \le k \sup_{x, y \in D} p_{\lambda}(x - y) = k\delta_{p_{\lambda}}(D) < \delta_{p_{\lambda}}(D)$$

if $\delta_{p_{\lambda}}(D) > 0$, as desired. The proof is complete.

Lemma 3. If (X, \mathcal{F}, \min) is probabilistic strictly convex then its corresponding $(X, \{p_{\lambda}\})$ is strictly convex.

Proof. Putting t = 1 in Definition 7 we get

$$F_{\frac{x+y}{2}}(1) \ge \min\{F_x(k), F_y(k)\}.$$
 (5)

Let $p_{\lambda}(x) = p_{\lambda}(y) = 1$ then $p_{\lambda}(x) < k$, $p_{\lambda}(y) < k$. By (2) this is equivalent to $F_x(k) > 1 - \lambda$ and $F_y(k) > 1 - \lambda$, hence, by (5), $F_{\frac{x+y}{2}}(1) > 1 - \lambda$. But this is equivalent to $p_{\lambda}(\frac{x+y}{2}) < 1$ as desired. The proof is complete.

Now we state an analogous result to Theorem 1 for probabilistic normed spaces.

Theorem 2. Let C be a nonempty weakly compact convex set having probabilistic uniformly normal structure in a probabilistic normed space (X, \mathcal{F}, \min) satisfying condition (3). Let T be a probabilistic nonexpansive mapping from C into C. Then T has a fixed point. Moreover, if X is a probabilistic strictly convex space, then the set FixT of fixed points of T is convex.

Proof. By Lemmas 1, 2 and 3, T satisfies all conditions in Theorem 1 with $E = (X, \{p_{\lambda}\})$ corresponding to (X, \mathcal{F}, \min) , so T has a fixed point and the set FixT of fixed points of T is convex and the theorem follows.

Acknowledgements. The author would like to take this opportunity to thank Prof. Do Hong Tan for his suggestion.

References

- K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge, 1990.
- 2. K. Goebel, W. A. Kirk, and R. L. Thele, Uniformly lipschitzian families of transformations in Banach spaces, *Canad. J. Math.* **26** (1974) 1245–1256.
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965) 1004–1006.
- 4. J. M. Ling, Fixed points of nonexpansive maps on locally convex spaces, *Bull. Korean Math. Soc.* **37** (2000) 21–36.
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier North Holland, 1983
- Do Hong Tan and Ha Duc Vuong, A common fixed point theorem for nonexpansive mappings in probabilistic normed spaces, Hanoi Institute of Mathematics. Preprint 2002 - 31, Hanoi, 2002.