Vietnam Journal of MATHEMATICS © VAST 2006

The Embedding of Haagerup L^p Spaces

Phan Viet Thu

Faculty of Math., Mech. and Inform., Hanoi University of Science 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Received April 18, 2006

Abstract. The aim of this paper is to give a proof for a theorem due to S. Goldstein that: If there is a σ - weakly continuous faithful projection of norm one from a von Neumann algebra M onto its von Neumann subalgebra N, then $L^p(N)$ can be canonically embedded into $L^p(M)$. Here $L^p(A)$ [6] denotes the Haagerup L^p space over the von Neumann algebra A.

2000 Mathematics Subject Classification: 46L52, 81R15.

Keywords: von Neumann algebras, Haagerup spaces, conditional expection for von Neumann algebras.

Let M be a von Neumann algebra acting in a Hilbert space H and ψ a normal faithful semifinite weight on M. Let $\{\sigma_t^{\psi}\}_{t\in\mathbb{R}}$ denote the modular automorphism group on M associated with ψ . The crossed product $\mathbb{M} = M \rtimes_{\sigma_t} \mathbb{R}$ is a von Neumann algebra acting on $\overline{H} = L^2(\mathbb{R}, H)$ generated by

$$(\pi_M(a)\xi)(t) = \sigma_{-t}^{\psi}(a)\xi(t),$$

$$(\lambda_M(s)\xi)(t) = \xi(t-s) \quad \xi \in \overline{H}, t \in \mathbb{R}.$$
(1)

Theorem. Let N be a von Neumann subalgebra of M. Suppose that $\psi|N$ is semifinite and $\sigma_t^{\psi}|N = \sigma_t^{\psi|N}$ for each $t \in \mathbb{R}$. Then \mathbb{N} , the crossed product of N, is canonically embeded into \mathbb{M} and for each $p \in [1, \infty]$ the space $L^p(N)$ can be canonically embeded into $L^p(M)$, so that for any $k \in L^p(N)$

$$||k||_p^N = ||k||_p^M,$$

where $\|.\|_p^N$ and $\|.\|_p^M$ denote the norms of $L^p(N)$ and $L^p(M)$ respectively.

354 Phan Viet Thu

Proof. The condition $\sigma_t^{\psi}|_N = \sigma_t^{\psi|N}$ means that $\forall b \in N$, $\sigma_t^{\psi}(b) = \sigma_t^{\psi|N}(b) \in N$, i.e. σ_t^{ϕ} leaves N invariant; Together with the condition that $\psi|N$ is semifinite, it implies, by a theorem of Takesaki [5], that there is a σ -weakly continuous projection E of norm one of M onto N such that $\psi = (\psi|_N) \circ E$. It is not hard to show that $E \circ \sigma^{\psi} = \sigma^{\psi} \circ E$ (see for example, [4, Proposition 3.2]).

Let $\mathbb{N} = N \rtimes_{\sigma_t^{\psi|N}} \mathbb{R}$, it is a von Neumann algebra acting on $L^2(\mathbb{R}, H) = \overline{H}$, generated by operators $\pi_N(b), b \in \mathbb{N}$ and $\lambda_N(s), s \in \mathbb{R}$; defined by

$$(\pi(b)\xi(t) = \sigma_{-t}^{\psi|N}(b)\xi(t)),$$

$$(\lambda(s)\xi(t) = \xi(t-s)) \quad \xi \in \overline{H}, t \in \mathbb{R}.$$
(2)

Sine $\sigma_{-t}^{\psi|N}(b) = (\sigma_{-t}^{\psi}|N)(b)$ for $b \in N$; (1) and (2) imply

$$\pi_M | N = \pi_N,$$

$$\lambda_M = \lambda_N,$$
(3)

and M, N act on the same Hilbert space \overline{H} .

Let \mathbb{M}_0 be the * algebra generated algebraically by operators $\pi_M(a)$, $a \in M$ and $\lambda_M(s)$, $s \in \mathbb{R}$. Then \mathbb{M} is the σ -weak closure of \mathbb{M}_0 and any element $x_0 \in \mathbb{M}_0$ can be represented as

$$x_0 = \sum_{k=1}^n \lambda_M(s_k) \pi_M(a_k) \text{ for some } \{s_k\}_1^n \subset \mathbb{R}; \{a_k\}_1^n \subset M.$$

We define \mathbb{N}_0 in the same way. Thus $\forall y_0 \in \mathbb{N}_0$,

$$y_0 = \sum_{k=1}^{m} \lambda_N(s_k) \pi_N(b_k) = \sum_{k=1}^{m} \lambda_M(s_k) (\pi_M|N)(b_k) \in \mathbb{M}_0$$

for some $\{s_k\}_1^m \subset \mathbb{R}$; $\{b_k\}_1^m \subset N$. The σ -weak closure of \mathbb{N}_0 is \mathbb{N} . Then we have $\mathbb{N}_0 \subset \mathbb{M}_0$ and their σ -weak closures verify $\mathbb{N} \subset \mathbb{M}$. It is clear that $\forall x \in \mathbb{N} \subset \mathbb{M}$; $||x||^{(N)} = ||x||^{(M)}$.

Consider now the dual action θ_s of \mathbb{R} in \mathbb{M} , characterized by

$$\theta_s(\pi_M(a)) = \pi_M(a), \ \forall a \in M,$$

$$\theta_s(\lambda_M(t)) = e^{-ist} \lambda_M(t), \ \forall t, s \in \mathbb{R}.$$
 (4)

By (3), we have

$$\theta_s(\pi_N(a)) = \pi_N(a), \ \forall a \in N,$$

 $\theta_s(\lambda_N(t)) = e^{-ist} \lambda_N(t), \ \forall t, s \in \mathbb{R}.$

Thus $\theta_s(y_0) \in \mathbb{N}_0$ for $y_0 \in \mathbb{N}_0$, $\forall s \in \mathbb{R}$. So that $\theta_s(\mathbb{N}_0) \subset \mathbb{N}_0 \subset \mathbb{N}$. Since θ_s is σ -weakly continuous on \mathbb{M} ; for all $s \in \mathbb{R}$ we have

$$\theta_s(\mathbb{N}) \subset \mathbb{N}$$
.

The continuity of θ_s in measure implies also

$$\theta_s(\widetilde{\mathbb{N}}) \subset \widetilde{\mathbb{N}}$$

and

$$\theta_s^{\mathbb{M}}|_{\mathbb{N}} = \theta_s^{\mathbb{N}}, \quad \forall s \in \mathbb{R},$$

where $\theta_s^{\mathbb{M}}$ and $\theta_s^{\mathbb{N}}$ denote the dual action θ_s of \mathbb{R} on \mathbb{M} and on \mathbb{N} respectively. By definition of $L^p(N)$ and $L^p(M)$ and the above results, it follows that

$$L^{p}(N) = \{k \in \widetilde{\mathbb{N}} | \forall s \in \mathbb{R} : \theta_{s}^{\mathbb{N}} k = e^{-\frac{s}{p}} k \}$$

$$= \{k \in \widetilde{\mathbb{N}} \subset \widetilde{\mathbb{M}} | \forall s \in \mathbb{R} : \theta_{s}^{\mathbb{M}} k = e^{-\frac{s}{p}} k \} \subset L^{p}(M).$$
(5)

Then we have $L^p(N) \subset L^p(M)$.

It remains now to show that

$$||k||_p^M = ||k||_p^N$$
 for any $k \in L^p(N) \subset L^p(M)$.

It suffices to demonstrate it for the case p=1. Note that $L^1(M) \simeq M_*; L^1(N) \simeq N_*$ and for any $\phi \in N_*; \phi \circ E \in M_*$. In [1, 2] the author has proved that E can be extended canonically to $\hat{E}: M_+^{\wedge} \to N_+^{\wedge}; \widetilde{E}: \widetilde{\mathbb{M}} \to \widetilde{\mathbb{N}}$ and $E_1: L^1(M) \to L^1(N)$, given by $h_{(\phi)} \to h_{\phi \circ E}$. It is extended also to $E_p: L^p(M) \to L^p(N)$; and for any $\phi \in N_*$

$$\overline{\phi} = (\phi \circ E)^-|_{\mathbb{N}}.$$

Let us calculate the norm of $h_\phi^N=h_{\phi\circ E}^M$. Note that $||h_\phi^N||_1^{(N)}=||\phi||^{(N)}$ and $||h_{\phi\circ E}^M||_1^{(M)}=||\phi\circ E||^{(M)}$ for any $\phi\in N_*$. We have

$$\|\phi\|^{(N)} = \sup_{b \in N, \|b\| \le 1} |\phi(b)| \ge \sup_{a \in M, \|a\| \le 1} |(\phi \circ E)(a)| = \|\phi \circ E\|^{(M)}$$

$$\ge \sup_{b \in N, \|b\| \le 1} |(\phi \circ E)(b)| = \sup_{b \in N, \|b\| \le 1} |\phi(b)| = \|\phi\|^{(N)}. \tag{6}$$

This implies $\|\phi\|^{(N)} = \|\phi \circ E\|^{(M)}$; i.e. $\|h_{\phi}^{N}\|_{1}^{(N)} = \|h_{\phi \circ E}^{M}\|_{1}^{(M)}$, which shows that for any $k \in L^{1}(N) \subset L^{1}(M)$, one has $\|k\|_{1}^{(N)} = \|k\|_{1}^{(M)}$. It is now obvious that, for each $p \in [1, \infty]$,

$$||k||_p^{(N)} = ||k||_p^{(M)}, \quad \forall k \in L^p(N) \subset L^p(M).$$

References

- 1. S. Goldstein, Conditional expectations and Stochastic integrals in non commutative L^p -spaces, $Math.\ Proc.\ Camb.\ Phil.\ Soc.\ 110\ (1991)\ 365-383.$
- 2. S. Goldstein, Norm convergence of martingales in L^p -spaces over von Neumann algebras, Revue Roumaine de Math. Pures et Appl. 32 (1987) 531–541.
- 3. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, 1983; Vol. II, 1986. Academic Press, New York London.
- 4. C. E. Lance, Martingale convergence in von Neumann algebras, *Math. Proc. Camb. Phil. Soc.* **84** (1978) 47–56.

356 Phan Viet Thu

5. M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. ${\bf 9}~(1972)~306-321.$

6. M. Terp, L^p -spaces Associated with von Neumann Algebras, Notes $K\phi$ benhavns Universitet, Matematisk Institut, N_0 . 3, 1981.