Vietnam Journal of MATHEMATICS © VAST 2006

Strongly Almost Summable Difference Sequences

Hifsi Altinok, Mikail Et, and Yavuz Altin

Department of Mathematics, First University, 23119, Elazığ-Turkey

Received November 28, 2005 Revised Ferbuary 14, 2006

Abstract. The idea of difference sequence space was introduced by Kızmaz [12] and was generalized by Et and Çolak [6]. In this paper we introduce and examine some properties of three sequence spaces defined by using a modulus function and give various properties and inclusion relations on these spaces.

2000 Mathematics Subject Classification: 40A05, 40C05, 46A45.

Keywords: Difference sequence, statistical convergence, modulus function.

1. Introduction

Let w be the set of all sequences of real numbers and ℓ_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$, where $k \in \mathbb{N} = \{1, 2, ...\}$, the set of positive integers.

A sequence $x \in \ell_{\infty}$ is said to be almost convergent [14] if all Banach limits of x coincide. Lorentz [14] defined that

$$\hat{c} = \left\{ x : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} x_{k+m} \text{ exists, uniformly in } m \right\}.$$

Several authors including Lorentz [14], Duran [2] and King [11] have studied almost convergent sequences. Maddox ([16, 17]) has defined x to be strongly almost convergent to a number L if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+m} - L| = 0, \quad \text{uniformly in} \quad m.$$

By $[\hat{c}]$ we denote the space of all strongly almost convergent sequences. It is easy to see that $c \subset [\hat{c}] \subset \hat{c} \subset \ell_{\infty}$.

The space of strongly almost convergent sequences was generalized by Nanda ([20, 21]).

Let $p = (p_k)$ be a sequence of strictly positive real numbers. Nanda [20] defined

$$[\hat{c}, p] = \left\{ x = (x_k) : \lim_n \frac{1}{n} \sum_{k=1}^n |x_{k+m} - L|^{p_k} = 0, \quad \text{uniformly in } m \right\},$$

$$[\hat{c}, p]_0 = \left\{ x = (x_k) : \lim_n \frac{1}{n} \sum_{k=1}^n |x_{k+m}|^{p_k} = 0, \quad \text{uniformly in } m \right\},$$

$$[\hat{c}, p]_\infty = \left\{ x = (x_k) : \sup_{n,m} \frac{1}{n} \sum_{k=1}^n |x_{k+m}|^{p_k} < \infty \right\}.$$

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$.

The generalized de la Vallée-Pousin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$ for n = 1, 2, ...

A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L [13] if $t_n(x) \to L \text{ as } n \to \infty.$

If $\lambda_n = n$, then (V, λ) -summability and strongly (V, λ) -summability are reduced to (C, 1) –summability and [C, 1] –summability, respectively.

The idea of difference sequence spaces was introduced by Kızmaz [12]. In 1981, Kızmaz[12] defined the sequence spaces

$$X(\Delta) = \{x = (x_k) : \Delta x \in X\}$$

for $X = \ell_{\infty}$, c and c_0 , where $\Delta x = (x_k - x_{k+1})$.

Then Et and Colak [6] generalized the above sequence spaces to the sequence spaces

$$X(\Delta^r) = \{x = (x_k) : \Delta^r x \in X\}$$

for
$$X = \ell_{\infty}$$
, c and c_0 , where $r \in \mathbb{N}$, $\Delta^0 x = (x_k)$, $\Delta x = (x_k - x_{k+1})$, $\Delta^r x = (\Delta^{r-1} x_k - \Delta^{r-1} x_{k+1})$, and so $\Delta^r x_k = \sum_{v=0}^r (-1)^v \binom{r}{v} x_{k+v}$.

Recently Et and Başarır [5] extended the above sequence spaces to the sequence spaces $X(\Delta^r)$ for $X = \ell_{\infty}(p), c(p), c_0(p), [\hat{c}, p], [\hat{c}, p]_0$ and $[\hat{c}, p]_{\infty}$.

We recall that a modulus f is a function from $[0,\infty)$ to $[0,\infty)$ such that

- i) f(x) = 0 if and only if x = 0,
- ii) $f(x+y) \le f(x) + f(y)$ for $x, y \ge 0$,
- iii) f is increasing,
- iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. A modulus may be unbounded or bounded. Ruckle [23] and Maddox [15] used a modulus f to construct some sequence spaces.

Subsequently modulus function has been discussed in ([3, 4, 19, 22, 26]). Let $X, Y \subset w$. Then we shall write

$$M(X,Y) = \bigcap_{x \in X} x^{-1} * Y = \left\{ a \in w : ax \in Y \quad \text{ for all } x \in X \right\}$$
 [27].

The set $X^{\alpha} = M(X, \ell_1)$ is called the Köthe-Toeplitz dual space or α -dual of X. Let X be a sequence space. Then X is called

- i) Solid (or normal) if $(\alpha_k x_k) \in X$ whenever, $(x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.
- ii) Symmetric if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of \mathbb{N} .
- iii) Perfect if $X = X^{\alpha\alpha}$.
- iv) A sequence algebra if $x.y \in X$, whenever $x, y \in X$. It is well known that if X is perfect then X is normal [10]. The following inequality will be used throughout this paper.

$$|a_k + b_k|^{p_k} \le C\{|a_k|^{p_k} + |b_k|^{p_k}\},$$
 (1)

where $a_k, b_k \in \mathbb{C}, 0 < p_k \le \sup_k p_k = H, C = \max(1, 2^{H-1})$ [18].

2. Main Results

In this section we prove some results involving the sequence spaces $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_0$, $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_1$ and $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_{\infty}$.

Definition 1. Let f be a modulus function and $p = (p_k)$ be any sequence of strictly positive real numbers. We define the following sequence sets

$$[\hat{V}, \Delta^r, \lambda, f, p]_1 = \left\{ x = (x_k) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} [f(|\Delta^r x_{k+m} - L|)]^{p_k} = 0, \right\}$$

uniformly in
$$m$$
, for some $L > 0$,

$$\begin{split} \left[\hat{V}, \Delta^r, \lambda, f, p\right]_0 &= \Big\{x = (x_k) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(|\Delta^r x_{k+m}|\right)\right]^{p_k} = 0, \ \textit{uniformly in } m\Big\}, \\ \left[\hat{V}, \Delta^r, \lambda, f, p\right]_\infty &= \Big\{x = (x_k) : \sup_{n,m} \frac{1}{\lambda_n} \sum_{k \in I} \left[f\left(|\Delta^r x_{k+m}|\right)\right]^{p_k} < \infty\Big\}. \end{split}$$

If $x \in [\hat{V}, \Delta^r, \lambda, f, p]_1$ then we shall write $x_k \to L[\hat{V}, \Delta^r, \lambda, f, p]_1$ and L will be called λ -strongly almost difference limit of x with respect to the modulus f.

Throughout the paper Z will denote any one of the notation 0, 1, or ∞ .

In the case f(x) = x and $p_k = 1$ for all $k \in \mathbb{N}$, we shall write $\begin{bmatrix} \hat{V}, \Delta^r, \lambda \end{bmatrix}_Z$ and $\begin{bmatrix} \hat{V}, \Delta^r, \lambda, f \end{bmatrix}_Z$ instead of $\begin{bmatrix} \hat{V}, \Delta^r, \lambda, f, p \end{bmatrix}_Z$. If $x \in \begin{bmatrix} \hat{V}, \Delta^r, \lambda \end{bmatrix}_1$ then we say that x is Δ_{λ}^{r} —strongly almost convergent to L.

The proofs of the following theorems are obtained by using the known standard techniques, therefore we give them without proofs (For detail see [3, 22]).

Theorem 2.1. Let (p_k) be bounded. Then the spaces $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_Z$ are linear spaces over the set of complex numbers \mathbb{C} .

Theorem 2.2. Let the sequence $p = (p_k)$ be bounded and f be a modulus function, then

$$\left[\hat{V}, \Delta^r, \lambda, f, p \right]_0 \subset \left[\hat{V}, \Delta^r, \lambda, f, p \right]_1 \subset \left[\hat{V}, \Delta^r, \lambda, f, p \right]_{\infty}.$$

Theorem 2.3. If $r \geq 1$, then the inclusion $\left[\hat{V}, \Delta^{r-1}, \lambda, f\right]_Z \subset \left[\hat{V}, \Delta^r, \lambda, f\right]_Z$ is strict. In general $\left[\hat{V}, \Delta^i, \lambda, f\right]_Z \subset \left[\hat{V}, \Delta^r, \lambda, f\right]_Z$ for all $i = 1, 2, \ldots, r-1$ and the inclusion is strict.

Proof. We give the proof for $Z=\infty$ only. It can be proved in a similar way for Z=0,1. Let $x\in \left[\hat{V},\Delta^{r-1},\lambda,f\right]_{\infty}$. Then we have

$$\sup_{m,n} \frac{1}{\lambda_n} \sum_{k \in I_n} f\left(\left|\Delta^{r-1} x_{k+m}\right|\right) < \infty.$$

By definition of f, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} f\left(\left|\Delta^r x_{k+m}\right|\right) \le \frac{1}{\lambda_n} \sum_{k \in I_n} f\left(\left|\Delta^{r-1} x_{k+m}\right|\right) + \frac{1}{\lambda_n} \sum_{k \in I_n} f\left(\left|\Delta^{r-1} x_{k+m+1}\right|\right) < \infty.$$

Thus $\left[\hat{V}, \Delta^{r-1}, \lambda, f\right]_{\infty} \subset \left[\hat{V}, \Delta^{r}, \lambda, f\right]_{\infty}$. Proceeding in this way one will have $\left[\hat{V}, \Delta^{i}, \lambda, f\right]_{\infty} \subset \left[\hat{V}, \Delta^{r}, \lambda, f\right]_{\infty}$ for $i = 1, 2, \ldots, r-1$. Let $\lambda_{n} = n$ for all $n \in \mathbb{N}$, then the sequence $x = (k^{r})$, for example, belongs to $\left[\hat{V}, \Delta^{r}, \lambda, f\right]_{\infty}$, but does not belong to $\left[\hat{V}, \Delta^{r-1}, \lambda, f\right]_{\infty}$ for f(x) = x. (If $x = (k^{r})$, then $\Delta^{r}x_{k} = (-1)^{r}r!$ and $\Delta^{r-1}x_{k} = (-1)^{r+1}r!(k + \frac{(r-1)}{2})$ for all $k \in \mathbb{N}$).

The proof of the following result is a routine work.

Proposition 2.4.
$$\left[\hat{V}, \Delta^{r-1}, \lambda, f\right]_1 \subset \left[\hat{V}, \Delta^r, \lambda, f\right]_0$$
.

Theorem 2.5. Let f_1 , f_2 be modulus functions. Then we have i) $\left[\hat{V}, \Delta^r, \lambda, f_1\right]_Z \subset \left[\hat{V}, \Delta^r, \lambda, f_1 \circ f_2\right]_Z$,

ii)
$$\left[\hat{V}, \Delta^r, \lambda, f_1, p\right]_Z \cap \left[\hat{V}, \Delta^r, \lambda, f_2, p\right]_Z \subset \left[\hat{V}, \Delta^r, \lambda, f_1 + f_2, p\right]_Z$$
.

Proof. Omitted.

The following result is a consequence of Theorem 2.5 (i).

Proposition 2.6. Let f be a modulus function. Then $[\hat{V}, \Delta^r, \lambda]_Z \subset [\hat{V}, \Delta^r, \lambda, f]_Z$.

Theorem 2.7. The sequence spaces $[\hat{V}, \Delta^r, \lambda, f, p]_0$, $[\hat{V}, \Delta^r, \lambda, f, p]_1$ and $[\hat{V}, \Delta^r, \lambda, f, p]_{\infty}$ are not solid for $r \geq 1$.

Proof. Let $p_k = 1$ for all k, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in \left[\hat{V}, \Delta^r, \lambda, f, p\right]_{\infty}$ but $(\alpha_k x_k) \notin \left[\hat{V}, \Delta^r, \lambda, f, p\right]_{\infty}$ when $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Hence $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_{\infty}$ is not solid. The other cases can be proved by considering similar examples.

From the above theorem we may give the following corollary.

Corollary 2.8. The sequence spaces $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_0$, $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_1$ and $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_{\infty}$ are not perfect for $r \geq 1$.

Theorem 2.9. The sequence spaces $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_1$ and $\left[\hat{V}, \Delta^r, \lambda, f, p\right]_{\infty}$ are not symmetric for $r \geq 1$.

Proof. Let $p_k = 1$ for all k, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in [\hat{V}, \Delta^r, \lambda, f, p]_{\infty}$. Let (y_k) be a rearrangement of (x_k) , which is defined as follows:

$$(y_k) = \{x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, ...\}$$
. Then $(y_k) \notin [\hat{V}, \Delta^r, \lambda, f, p]_{\infty}$.

Remark. The space $[\hat{V}, \Delta^r, \lambda, f, p]_0$ is not symmetric for $r \geq 2$.

Theorem 2.10. The sequence spaces $[\hat{V}, \Delta^r, \lambda, f, p]_Z$ are not sequence algebras.

Proof. Let
$$p_k = 1$$
 for all $k \in \mathbb{N}$, $f(x) = x$ and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $x = (k^{r-2}), y = (k^{r-2}) \in [\hat{V}, \Delta^r, \lambda, f, p]_Z$, but $x.y \in [\hat{V}, \Delta^r, \lambda, f, p]_Z$.

3. Statistical Convergence

The notion of statistical convergence was introduced by Fast [7] and studied by various authors ([1, 9, 24, 25]).

In this section we define Δ^r_{λ} -almost statistically convergent sequences and give some inclusion relations between $\hat{s}(\Delta^r_{\lambda})$ and $\left[\hat{V},\Delta^r,\lambda,f,p\right]_{\text{1}}$.

Definition 2. A sequence $x = (x_k)$ is said to be Δ_{λ}^r -almost statistically convergent to the number L if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{\lambda_n} |\{k \in I_n : |\Delta^r x_{k+m} - L| \ge \varepsilon\}| = 0, \text{ uniformly in } m.$$

In this case we write $\hat{s}(\Delta_{\lambda}^r) - \lim x = L \text{ or } x_k \to L\hat{s}(\Delta_{\lambda}^r)$.

In the case $\lambda_n = n$ we shall write $\hat{s}(\Delta^r)$ instead of $\hat{s}(\Delta^r)$.

The proof of the following theorem is easily obtained by using the same techniques of Theorem 2 in Savas [25], therefore we give it without proof.

Theorem 3.1. Let $\lambda = (\lambda_n)$ be the same as in Sec. 1, then

i) If
$$x_k \to L\left[\hat{V}, \Delta^r, \lambda\right]_1 \Rightarrow x_k \to L\hat{s}(\Delta^r_{\lambda}),$$

ii) If
$$x \in \ell_{\infty}(\Delta^r)$$
 and $x_k \to L\hat{s}(\Delta_{\lambda}^r)$, then $x_k \to L\left[\hat{V}, \Delta^r, \lambda\right]_1$,

iii)
$$\hat{s}(\Delta_{\lambda}^r) \cap \ell_{\infty}(\Delta^r) = \left[\hat{V}, \Delta^r, \lambda\right]_1 \cap \ell_{\infty}(\Delta^r).$$

Theorem 3.2. $\hat{s}(\Delta^r) \subseteq \hat{s}(\Delta^r_{\lambda})$ if and only if $\liminf_n \frac{\lambda_n}{n} > 0$.

Proof. The sufficiency part of the proof can be obtained using the same technique as the sufficiency part of the proof of Theorem 3 in Savas [25].

For the necessity suppose that $\liminf_n \frac{\lambda_n}{n} = 0$. As in ([8], p.510) we can choose a subsequence (n(j)) such that $\frac{\lambda_{n(j)}}{n(j)} < \frac{1}{j}$. Define $x = (x_i)$ such that

$$\Delta^{r} x_{i} = \begin{cases} 1, & \text{if } i \in I_{n}\left(j\right), \ j = 1, 2, \dots \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \in [\hat{c}](\Delta^r)$ and by [4, Theorem 3.1 (i)], $x \in \hat{s}(\Delta^r)$. But $x \notin [\hat{V}, \Delta^r, \lambda]_1$ and Theorem 3.1 (ii) implies that $x \notin \hat{s}(\Delta^r_{\lambda})$. This completes the proof.

Theorem 3.3. Let f be a modulus function and $\sup_k p_k = H$. Then $[\hat{V}, \Delta^r, \lambda, f, p]_1 \subset \hat{s}(\Delta^r_{\lambda})$.

Proof. Let $x \in [\hat{V}, \Delta^r, \lambda, f, p]_1$ and $\varepsilon > 0$ be given. Let Σ_1 denote the sum over $k \le n$ such that $|\Delta^r x_{k+m} - L| \ge \varepsilon$ and Σ_2 denote the sum over $k \le n$ such that $|\Delta^r x_{k+m} - L| < \varepsilon$. Then

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(|\Delta^{r} x_{k+m} - L| \right) \right]^{p_{k}} \\
= \frac{1}{\lambda_{n}} \sum_{1} \left[f\left(|\Delta^{r} x_{k+m} - L| \right) \right]^{p_{k}} + \frac{1}{\lambda_{n}} \sum_{2} \left[f\left(|\Delta^{r} x_{k+m} - L| \right) \right]^{p_{k}} \\
\geq \frac{1}{\lambda_{n}} \sum_{1} \left[f\left(|\Delta^{r} x_{k+m} - L| \right) \right]^{p_{k}} \\
\geq \frac{1}{\lambda_{n}} \sum_{1} \left[f\left(\varepsilon \right) \right]^{p_{k}} \\
\geq \frac{1}{\lambda_{n}} \sum_{1} \min \left(\left[f\left(\varepsilon \right) \right]^{\inf p_{k}}, \left[f\left(\varepsilon \right) \right]^{H} \right) \\
\geq \frac{1}{\lambda_{n}} \left| \left\{ k \in I_{n} : |\Delta^{r} x_{k+m} - L| \geq \varepsilon \right\} \right| \min \left(\left[f\left(\varepsilon \right) \right]^{\inf p_{k}}, \left[f\left(\varepsilon \right) \right]^{H} \right).$$

Hence $x \in \hat{s}(\Delta_{\lambda}^r)$.

Theorem 3.4. Let f be bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. Then $\hat{s}(\Delta_{\lambda}^r) \subset \left[\hat{V}, \Delta^r, \lambda, f, p\right]_1$.

Proof. Suppose that f is bounded. Let $\varepsilon > 0$ and Σ_1 and Σ_2 be denoted in the previous theorem. Since f is bounded there exists an integer K such that f(x) < K, for all $x \ge 0$. Then

$$\frac{1}{\lambda_n} \sum_{k \in I_n} [f(|\Delta^r x_{k+m} - L|)]^{p_k}$$

$$= \frac{1}{\lambda_n} \sum_{1} [f(|\Delta^r x_{k+m} - L|)]^{p_k} + \frac{1}{\lambda_n} \sum_{2} [f(|\Delta^r x_{k+m} - L|)]^{p_k}$$

$$\leq \frac{1}{\lambda_n} \sum_{1} \max(K^h, K^H) + \frac{1}{\lambda_n} \sum_{2} [f(\varepsilon)]^{p_k}$$

$$\leq \max(K^h, K^H) \frac{1}{\lambda_n} |\{k \in I_n : |\Delta^r x_{k+m} - L| \geq \varepsilon\}|$$

$$+ \max(f(\varepsilon)^h, f(\varepsilon)^H).$$

Hence
$$x \in \left[\hat{V}, \Delta^r, \lambda, f, p\right]_1$$
.

Theorem 3.5. Let f be bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. We have $\hat{s}(\Delta_{\lambda}^r) = [\hat{V}, \Delta^r, \lambda, f, p]_1$ if and only if f is bounded.

Proof. Let f be bounded. By the Theorem 3.3 and Theorem 3.4 we have $\hat{s}(\Delta_{\lambda}^r) = [\hat{V}, \Delta^r, \lambda, f, p]_1$.

Conversely, suppose that f is unbounded. Then there exists a positive sequence (t_k) with $f(t_k) = k^2$, for k = 1, 2, ... If we choose

$$\Delta^r x_i = \begin{cases} t_k, & i = k^2, & i = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}.$$

Then we have

$$\frac{1}{\lambda_n} |\{k \in I_n : |\Delta^r x_{k+m}| \ge \varepsilon\}| \le \frac{\sqrt{\lambda_{n-1}}}{\lambda_n} \text{ for all } n \text{ and } m$$

and so $x \in \hat{s}(\Delta_{\lambda}^r)$, but $x \notin \left[\hat{V}, \Delta^r, \lambda, f, p\right]_1$. This contradicts to $\hat{s}(\Delta_{\lambda}^r) = \left[\hat{V}, \Delta^r, \lambda, f, p\right]$.

References

- J. S. Connor, The statistical and strong p-Cesáro convergence of sequences, Analysis 8 (1988) 47-63.
- J. P. Duran, Infinite matrices and almost convergence, Math. Zeit. 128 (1972) 75–83.
- A. Esi, Some new sequence spaces defined by a sequence of moduli, Turkish J. Math. 21 (1997) 61–68.
- 4. M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Stud. Sci. Math. Hung. 40 (2003) 463–476.
- M. Et and M. Başarır, On some new generalized difference sequence spaces, Period. Math. Hung. 35 (1997) 169–175.
- M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995) 377–386.
- 7. H. Fast, Sur la convergence statistique, Collog. Math. 2 (1951) 241-244.
- 8. A. R. Freedman, J. J. Sember, and M. Raphael, Some Cesáro-type summability spaces, *Proc. London Math. Soc.* **37** (1978) 508–520.
- 9. A. Fridy, On statistical convergence, Analysis 5 (1985) 301–313.
- P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Lecture Notes in Pure and Applied Mathematics, 65. Marcel Dekker, Inc., New York, 1981.
- 11. J.P. King, Almost summable sequences, Proc. Amer. Math. Soc. 16 (1966) 1219–1225.
- 12. H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981) 169–176.
- 13. L. Leindler, Über die la Vallee-Pousinsche summierbarkeit allgemeiner orthogonalreihen, *Acta Math. Acad. Sci. Hung.* **16** (1965) 375–387.
- 14. G. G. Lorentz, A contribution to the theory of divergent sequences, $Acta\ Math.$ 80 (1948) 167–190.
- 15. I. J. Maddox, Sequence spaces defined by a modulus, *Mat. Proc. Camb. Phil. Soc.* **100** (1986) 161–166.
- I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18 (1967) 345–355.
- 17. I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc. 83 (1978) 61–64.
- 18. I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.

- 19. E. Malkowsky and E. Savas, Some $\lambda-$ sequence spaces defined by a modulus, *Arch. Math.* **36** (2000) 219–228.
- 20. S. Nanda, Strongly almost convergent sequences, Bull. Cal. Math. Soc. **76** (1984) 236–240.
- 21. S. Nanda, Strongly almost summable and strongly almost convergent sequences, *Acta Math. Hung.* **49** (1987) 71–76.
- 22. E. Öztürk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, *Indian J. Pure and Appl. Math.* **25** (1994) 621–625.
- W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973) 973–978.
- 24. T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca* **30** (1980) 139–150.
- 25. E. Savaş, Strong almost convergence and almost $\lambda-$ statistical convergence, *Hokkaido Math. J.* **29** (2000) 531–536.
- 26. A. Waszak, On the strong convergence in some sequence spaces, Fasc. Math. 33 (2002) 125–137.
- 27. A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, 85, 1984.