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1. Introduction

Let I be an ideal of a Noetherian ring R. It is a well-known result of Brodmann
[1] that the sequences {Ass (R/In)}n≥1 and {Ass (In/In+1)}n≥1 stabilize for
large n. That is, there are positive numbers A and B such that Ass (R/In) =
Ass (R/IA) for all n ≥ A and Ass (In/In+1) = Ass (IB/IB+1) for all n ≥ B.
Very little is known about the numbers A and B. One of the difficulties in
estimating these numbers is that neither of the above sequences is monotonic;
see [6] and also [5] for monomial ideals. In an earlier paper of McAdam and
Eakin [6] and a recent paper of Sharp [9] there are some information about the
behavior of these sequences. Moreover, for specific prime ideals p one can decide
in terms of the Castelnuovo–Mumford regularity of the associated graded ring
of I when p belongs to Ass (R/In) (see [9, Theorem 2.10]). For a very restricted

∗This work was supported in part by the National Basic Research Program, Vietnam.



474 Lê Tuân Hoa

class of ideals the numbers A and B can be rather small (see [7]).
The aim of this paper is to find an explicit value for A and B for a monomial

ideal I in a polynomial ring R = K[t1, ..., tr] over a field. A special case was
studied in [2], when I is generated by products of two different variables. Such
an ideal is associated to a graph. The result looks nice: the number A can be
taken as the number of variables (see [2, Proposition 4.2, Lemma 3.1, Corollary
2.2]). However the approach of [2] cannot be applied for arbitrary monomial
ideals.

It is interesting to note that in our situation we can take A = B, since
Ass (R/In) = Ass (In−1/In) (see [12, Proposition 5]). In this paper, it is more
convenient for us to work with Ass (In/In+1) (and hence with the number B).
Let m = (t1, ..., tr). Then one can reduce the problem of finding B to finding a
number B′ such that m ∈ Ass (In/In+1) for all n ≥ B′ or m �∈ Ass (In/In+1)
for all n ≥ B′ (see Lemma 3.1). From this observation we have to study the
vanishing (or non-vanishing) of the local cohomology moduleH0

m(In/In+1). The
main technique to do that is to describe these sets as graded components of
certain modules over toric rings raised from systems of linear constraints. Then
we have to bound the degrees of generators of these modules, and also to bound
certain invariants related to the Catelnuovo-Mumford regularity. The number
B found in Theorem 3.1 depends on the number of variables r, the number of
generators s and the maximal degree d of generators of I. This number is very
big. However there are examples showing that such a number B should also
involve d and r (see Examples 3.1 and 3.2).

The paper is divided into two sections. The first one is of preparatory char-
acter. There we will give a bound for the degrees of generators of a module
raised from integer solutions of a system of linear constraints. Section 3 is de-
voted to determining the number B. First we will find a number from which the
sequence {Ass (In/In+1)}n≥1 is decreasing (see Proposition 3.2). Then we will
have to bound a number related to the Castelnuovo-Mumford regularity of the
associated graded ring of I (Proposition 3.3) in order to use a result of [6] on the
increasing property of this sequence. The main result of the paper is Theorem
3.1. This section will be ended with two examples which show how big B should
be.

I would like to end this introduction with the remark that by a different
method, Trung [12] is able to solve similar problems for the integral closures of
powers of a monomial ideal.

2. Integer Solutions of Linear Constraints

Let S be the set of integer solutions of the following system of linear constraints{
ai1x1 + · · ·+ aiexe ≥ 0, i = 1, ..., s,
x1 ≥ 0, ..., xe ≥ 0,

(1)

where aij ∈ Z. It is a fundamental fact in integer programming that the semi-
group ring K[S] is a finitely generated subring of K[x1, ..., xe]. An algebraic
proof can be found in [10, Sec. 1.3]. What we need is an “effective” version of
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this result. To this end we will consider an element of S as a point in the space
R

e. For a vector v = (v1, ..., ve) ∈ R
e, put

‖v‖ =
√
v2
1 + · · ·+ v2

e and ‖v‖∗ = max{|v1|, ..., |ve|}.
The proof of the following lemma and Lemma 2.2 is similar to that of

[8, Theorem 17.1]. For convenience of the readers we give here the detail.

Lemma 2.1. Let aj = (a1j, ..., asj)T ∈ Z
s denote the coefficient column of xi in

(1). Assume that ‖a1‖ ≥ · · · ≥ ‖ae‖ > 0. Then K[S] is generated by monomials
xv := xv1

1 · · ·xve
e such that

‖v‖∗ < e‖a1‖ · · · ‖ae−1‖ ≤ e‖a1‖ · · · ‖ae‖.

Proof. Let C be the set of all real solutions of (1). It is a polyhedral convex set
in R

e. By Minkovski’s Theorem (see [8, Corollary 7.1a]), one can write

C = R+u1 + · · ·+ R+uk,

where u1, ...,uk ∈ C and R+ is the set of nonnegative numbers. Here we choose k
the smallest possible. Then R+u1, ...,R+uk are extreme rays. Each extreme ray
is an intersection of e− 1 independent hyperplanes appeared in (1). Hence, we
may without loss of generality assume that up, 1 ≤ p ≤ k, is a nonzero solution
of a linear subsystem of the type{

bi1x1 + · · ·+ biqxq = −bi,q+1xq+1, i = 1, ..., q,
xq+2 = · · · = xe = 0,

(2)

where q ≤ min{e− 1, s}, the matrix on the left-hand side is invertible, and each
column vector bj is a subvector of aj . By Cramer’s rule we may choose up the
integer solution:

up = (D1, ..., Dq, Dq+1, 0, ..., 0),

where D1, ..., Dq+1 are determinants of the linear system consisting of the first
q equations of (2). Note that if c1, ..., cq ∈ R

q are column vectors, then

Det (c1, ..., cq) ≤ ‖c1‖ · · · ‖cq‖. (3)

Hence

‖up‖∗ ≤ max
i

‖b1‖ · · · ‖bi−1‖‖bi+1‖ · · · ‖bq+1‖ ≤ ‖a1‖ · · · ‖aq‖ ≤ ‖a1‖ · · · ‖ae−1‖.

From now on we assume that all elements u1, ...,uk are integer points chosen
in the above way. In particular they belong to S. Let v ∈ S be an arbitrary
element. Since v ∈ C, by Caratheodory’s theorem (see [8, Corollary 7.1i)]), one
can find {i1, ..., iq} ⊆ {1, ..., k}, q ≤ e and numbers αi1, ..., αiq ≥ 0, such that

v = αi1ui1 + · · ·+ αiquiq .

For a real number α, let [α] denote the largest integer not exceeding α. Let

u = [αi1]ui1 + · · ·+ [αiq ]uiq,



476 Lê Tuân Hoa

and
w = (αi1 − [αi1])ui1 + · · ·+ (αiq − [αiq ])uiq.

We have w = v − u ∈ N
e. However w ∈ C. Hence w ∈ C ∩ N

e = S. Since
v = u + w, this means that the following set generates S:

{u1, ...,uk} ∪ {αi1ui1 + · · ·+ αiquiq ∈ N
e| q ≤ e, 0 ≤ αij < 1, 1 ≤ i1, ..., iq ≤ k}.

For each vector v = αi1ui1 + · · ·+αiquiq in the second subset of the above union
we have

‖v‖∗ < q max
j=1,...,k

‖uj‖∗ ≤ e max
j=1,...,k

‖uj‖∗ ≤ e‖a1‖ · · · ‖ae−1‖.

Hence the assertion holds true. �

The following simple example shows that the above result is essentially op-
timal.

Example 2.1. Consider the system of constraints⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dx1 − x2 ≥ 0,
· · ·
dxe−1 − xe ≥ 0,
x1 ≥ 0, ..., xe ≥ 0.

The corresponding polyhedral convex set has an extreme ray R+u, where u =
(1, d, ..., de−1). Clearly, u is a minimal generator of S.

We now consider the set E of integer solutions of the following system of
linear constraints: {

ai1x1 + · · ·+ aiexe ≥ bi, (i = 1, ..., s),
x1 ≥ 0, ..., xe ≥ 0,

(4)

where aij, bi ∈ Z. Since S+E ⊆ E, K[E] is a module over K[S]. For simplicity,
sometimes we also say that E is a S-module.

Lemma 2.2. Keep the notation of Lemma 2.1. Let b = (b1, ..., bs)T ∈ Z
s. Then

the module K[E] is generated over K[S] by monomials xv such that

‖v‖∗ < (e+ ‖b‖)‖a1‖ · · · ‖ae‖.

Proof. Let C′ be the set of all real solutions of (4). Then C′ is also a polyhedral
convex set. By Minkovski’s theorem one can write

C′ = {λ1u1 + · · ·+ λkuk + μ1v1 + · · ·+ μlvl| λi, μj ≥ 0,
∑

μj = 1},

where u1, ...,uk are defined in the proof of the previous lemma, and v1, ...,vl

are extreme points. These extreme points are solutions of e independent affine
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hyperplanes appeared in (4). By a similar argument to the proof of Lemma 2.1
we get that

‖vj‖∗ ≤ ‖b‖ · ‖a1‖ · · · ‖ae−1‖,
and that the set

{λi1ui1 + · · ·+ λiquiq + μ1v1 + · · ·+ μlvl ∈ N
e|q ≤ e, 1 ≤ i1 < · · · < iq ≤ k,

0 ≤ λij < 1, μj ≥ 0,
∑
μj = 1}

generates the module E over S. All these elements have the ∗-norms less than

emax
i

‖ui‖∗ + max
j

‖vj‖∗ ≤ (e+ ‖b‖)‖a1‖ · · · ‖ae‖,

which proves the assertion. �

Remark 2.1. In the sequel, by abuse of terminology, if

ϕ(x) = a1x1 + · · ·+ aexe,

is a linear functional, then we say that ϕ(x) ≥ 0 is a homogeneous linear con-
straint, while ϕ(x) ≥ b is a linear constraint.

3. Stability of Ass (In/In+1)

We always assume that I is a non-zero monomial ideal of a polynomial ring R =
K[t1, ..., tr]. If r ≥ 2, then for a positive integer j ≤ r and a = (a1, ..., ar) ∈ R

r

we set
a[j] = (a1, ..., aj−1, aj+1, ..., ar).

Thus the monomial ta[j] is obtained from ta by setting tj = 1. Let I[j] be the
ideal generated by all monomials ta[j] such that ta ∈ I. Note that ta1[j], ..., tas[j]

generate I[j] provided {ta1 , ..., tas} is a generating system of I. Hence for all n
we have

In[j] = I[j]n.

The following observation is simple but useful. It comes from the fact that any
associated prime of a monomial ideal is generated by a subset of variables.

Lemma 3.1. Let m = (t1, ..., tr) and r ≥ 2. Then for all n ≥ 1 we have

Ass (In/In+1) \ {m} = ∪r
i=1Ass (I[i]n/I[i]n+1).

Proof. It immediately follows from [12, Lemma 11 and Proposition 4]. Another
way is to modify the proof of Lemma 11 in [12]. �

Using this lemma, by the induction on the number of variables, it is clear
that in order to study the stability of Ass (In/In+1) we have to find a number
n0 such that m ∈ Ass (In/In+1) for all n ≥ n0, or vice-versa, m �∈ Ass (In/In+1)
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for all n ≥ n0. Note that m ∈ Ass (In/In+1) if and only if the local cohomology
module H0

m(In/In+1) �= 0. Let

G = ⊕n≥0I
n/In+1

denote the associated graded ring of I. Then H0
mG(G) is a graded G-module.

Moreover, as a submodule of G, it is a finitely generated module. We have

Lemma 3.2. For r ≥ 2, H0
mG(G)n−1

∼= H0
m(In−1/In) ∼= In−1∩I[1]n∩···∩I[r]n

In .

Proof. The first isomorphism is well-known (see, e.g., [3, Lemma 2.1] for a proof),
while the second one follows from the fact

In : (x1, ..., xr)∞ = ∩r
i=1(I

n : x∞i ) = ∩r
i=1I[i]

n.

Here we denote I : J∞ = ∪∞
m=1I : Jm. �

The first isomorphism of the above lemma allows us to study H0
m(In/In+1),

n ≥ 0, in the total. Our preliminary task is to bound the degree of generators
of the module H0

mG(G). Let

J = I[1]n ∩ · · · ∩ I[r]n.
We will try to associate the set of monomials in J ∩ In−1 to the set of integer
solutions of a system of linear constraints, so that we can use the results of Sec. 2.
Our technique is based on the following remarks which will be used several times.
Note that this technique was used in Sec. 7 of [4].

Remark 3.1.
(i) An intersection of monomial ideals and a quotient of two monomial ideals

are again monomial ideals.
(ii) A monomial ideal is entirely defined by the set of its monomials. If I1 ⊂ I2

are monomial ideals, then the number of monomials in I2 \ I1 is equal to
the dimension of the K-vector space I2/I1.

(iii) Assume that the monomials ta1 , ..., tas generate the ideal I. Then a mono-
mial tb ∈ In if and only if there are nonnegative integers α1, ..., αs−1, such
that n ≥ α1 + · · ·+ αs−1 and tb is divisible by

(ta1 )α1 · · · (tas−1 )αs−1(tas)n−α1−···−αs−1 .

This is equivalent to

bj ≥ a1jα1 + · · ·+ a(s−1)jαs−1 + asj(n− α1 − · · · − αs−1),

for all j = 1, ..., r, where ai = (ai1, ..., air).

From now on assume that I is minimally generated by the monomials ta1 , ..., tas.
Note that if I is generated by powers of variables, i. e. I = (ta1

i1
, ..., t

ap

ip
), then

Ass (In/In+1) = {(ti1 , ..., tip)}
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for all n > 0. Therefore, in the whole paper we may assume that
(�) as contains at least two non-zero components.

This will simplify our calculation.
Consider the following system of linear constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj ≥ a1jx1 + · · ·+ a(s−1)jxs−1 + asj(z − x1 − · · · − xs−1 − 1), (j = 1, ..., r),
z ≥ x1 + · · ·+ xs−1 + 1,
yj ≥ a1jxi1 + · · ·+ a(s−1)jxi(s−1) + asj(z − xi1 − · · · − xi(s−1)),
(i, j = 1, ..., r; j �= i),
z ≥ xi1 + · · ·+ xi(s−1), (i = 1, ..., r),
z ≥ 0; y1 ≥ 0, ..., yr ≥ 0; x1 ≥ 0, ..., xs−1 ≥ 0; x11 ≥ 0, ..., xr(s−1) ≥ 0.

(5)
For short, we set

u = (u0, ..., urs+s−1) = (z, y1, ..., yr, x1, ..., xs−1, x11, ..., xr(s−1)).

By Remark 3.1, a monomial tb ∈ J ∩ In−1 if and only if the system (5) has an
integer solution u∗ such that u∗0 = n, u∗1 = b1, ..., u

∗
r = br.

The corresponding system of homogeneous linear constraints is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj ≥ a1jx1 + · · ·+ a(s−1)jxs−1 + asj(z − x1 − · · · − xs−1), (j = 1, ..., r),
z ≥ x1 + · · ·+ xs,

yj ≥ a1jxi1 + · · ·+ a(s−1)jxi(s−1) + asj(z − xi1 − · · · − xi(s−1)),
(i, j = 1, ..., r; j �= i),
z ≥ xi1 + · · ·+ xi(s−1), (i = 1, ..., r),
z ≥ 0; y1 ≥ 0, ..., yr ≥ 0; x1 ≥ 0, ..., xs−1 ≥ 0; x11 ≥ 0, ..., xr(s−1) ≥ 0.

(6)
An integer solution (n,b,x) of this system gives a monomial tb ∈ J ∩ In = In .
Denote the sets of all integer solutions of (5) and (6) by E and S, respectively.
Then K[S], K[E] ⊆ K[u] and K[E] is a K[S]-module. Equip K[S] and K[E]
with an N-grading by setting

deg (uc) = c0.

Let I be the ideal of K[S] generated by all binomials uα − uβ, such that α0 =
β0, ..., αr = βr .

Lemma 3.3. There is an isomorphism of N-graded rings

K[S]/I ∼= R := ⊕n≥0I
ntn.

Proof. The above discussion shows that there is an epimorphism of N-graded
rings:

K[S] → R,
uc �→ tc1

1 · · · tcr
r t

c0 .
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The kernel of this map is exactly I. The proof is similar to that of Lemma 4.1
in [11], or we can argue directly as follows. By Lemma 2.1, K[S] is generated
by a finite number of monomials, say uc1, ...,ucp. Consider the polynomial ring
K[v] of p new variables v = (v1, ..., vp). By [11], Lemma 4.1, the kernel of the
epimorphism

ψ : K[v] → K[S], ψ(vi) = uci,

is the ideal IA generated by binomials vα−vβ such that
∑p

i=1 αici =
∑p

i=1 βici.
Such an ideal is called toric ideal associated to the matrix A := {c1, ..., cp}. Let
c′i = (ci0, ..., cir) and A′ := {c′1, ..., c′p}. Again by [11], Lemma 4.1, the kernel of
the epimorphism

χ : K[v] → R, vi �→ tci1
1 · · · tcir

r tci0 ,

is IA′ . Clearly IA ⊆ IA′ , ψ(IA′ ) = I. Hence χ induces an isomorphism

ϕ : K[S] → R,
such that Kerϕ = I and ϕ(uci) = χ(vi). This implies

ϕ(uc) = tc1
1 · · · tcr

r t
c0

for all c ∈ S. �

By this isomorphism, we can consider the quotient module K[E]/IK[E] as
a module over R. Of course, H0

mG(G) can be considered as a module over R,
too.

Lemma 3.4. Let r ≥ 2. Then there is an epimorphism of N-graded modules
over R

K[E]/IK[E] → ⊕n≥1
J ∩ In−1

In
tn = H0

mG(G).

Proof. The set M = ⊕n≥1(J∩In−1)tn is a module over R and contains the ideal
IR. The isomorphism ϕ in the proof of Lemma 3.3 induces a homomorphism

K[E]/IK[E] →M,

uc �→ tc1
1 · · · tcr

r t
c0 ,

which is clearly surjective. SinceH0
mG(G) ∼= M/IR, it is an image ofK[E]/IK[E].

�

Proposition 3.1. Let r ≥ 2 and d be the maximal degree of the generators of
I, i.e. d = maxi(ai1 + · · · + air). Then the R-module H0

mG(G) is generated by
homogeneous elements of degrees less than

B1 := d(rs+ s+ d)(
√
r)r+1(

√
2d)(r+1)(s−1).

Proof. By Lemma 3.4, it suffices to show that K[E] is generated over K[S] by
monomials of degrees less than B1. The system (5) has rs+ s variables. Denote
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by δ(x) the vector obtained from the coefficient vector of a variable x by dele-
ting already known zero entries. For simplicity we write it in the row form. Then

δ(xik) = (ak1 − as1, ..., ak(i−1) − as(i−1), ak(i+1) − as(i+1), ..., akr − asr,−1).

We have

‖δ(xik)‖2 ≤ 1 + (ak1 − as1)2 + · · ·+ (akr − asr)2

≤ 1 + (a2
k1 + · · ·+ a2

kr) + (a2
s1 + · · ·+ a2

sr)

≤ 1 + (ak1 + · · ·+ akr)2 + (as1 + · · ·+ asr)2 − 2
∑
i<j

asiasj

< 2d2 (by the condition (�)).

Similarly,
‖δ(xi)‖2 < 2d2.

For all j = 1, .., r, δ(yj) = (1, ..., 1) (r entries 1). Hence

‖δ(yj)‖2 = r.

Further,
δ(z) = (as, as[1], ..., as[r], 1, ..., 1) (r + 1 entries 1).

This yields
‖δ(z)‖2 = r(a2

s1 + · · ·+ a2
sr) + r + 1 < rd2.

For the free coefficients of (5) we have δ = (as1, ..., asr, 1). So

‖δ‖2 < d2.

Applying Lemma 2.2 we get that K[E] is generated over K[S] by monomials uc

with

‖c‖∗ < (rs+ s+ d)
√
rd(

√
2d)(r+1)(s−1)√rr = B1 .

Since deg (uc) = c0 ≤ ‖c‖∗ < B1, the proof of the proposition is complete. �

Proposition 3.2. Keep the notation of Proposition 3.1. Let n ≥ B1 be an
integer. Then

Ass (In/In+1) ⊇ Ass (In+1/In+2).

Proof. Induction on the number of variables r. The case r = 1 is trivial. Let
r ≥ 2. By the induction hypothesis we have

∪r
i=1Ass (I[i]n/I[i]n+1) ⊇ ∪r

i=1Ass (I[i]n+1/I[i]n+2).

If m ∈ Ass (In/In+1), then the above inclusion together with Lemma 3.1 obvi-
ously give the assertion. Let m �∈ Ass (In/In+1). ThenH0

mG(G)n = H0
m(In/In+1)

= 0. Since the module H0
mG(G) is generated by elements of degrees less than B1

over the standard graded ring R and n ≥ B1, we must have H0
mG(G)n+1 = 0.
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This implies m �∈ Ass (In+1/In+2). Hence, we have by Lemma 3.1

Ass (
In+1

In+2
) = Ass (

In+1

In+2
) \ {m}

= ∪r
i=1 Ass (

I[i]n+1

I[i]n+2
) ⊆ ∪r

i=1Ass (
I[i]n

I[i]n+1
) ⊆ Ass (

In

In+1
).

�

In order to get the reverse inclusion we use a result of McAdam and Eakin
(see [6, pp. 71, 72] and also [9, Proposition 2.4]). Let

R+ = ⊕n>0I
ntn.

The local cohomology module H0
R+

(G) is also a Z-graded R-module. Let

a0(G) = sup{n| H0
R+

(G)n �= 0}.
(This number is to be taken as −∞ if H0

R+
(G) = 0.) It is related to an important

invariant called the Castelnuovo-Mumford regularity of G (see, e.g., [9]). We
have

Lemma 3.5. ([6, Proposition 2.4]) Ass (In/In+1) ⊆ Ass (In+1/In+2) for all
n > a0(G).

To define H0
R+

(G), let us recall the Ratliff–Rush closure of an ideal:

Ĩn = ∪m≥1I
n+m : Im.

This immediately gives

Lemma 3.6. For all n > 0 we have H0
R+

(G)n−1
∼= (Ĩn ∩ In−1)/In.

Recall that I = (ta1 , ..., tas).

Lemma 3.7. For all n > 0 we have

Ĩn = ∪m≥0I
n+m : (tma1 , ..., tmas).

Proof. Since tmai ∈ Im, the inclusion ⊆ is obvious. To show the inclusion ⊇, let

x ∈ In+m : (tma1 , ..., tmas).

Put m′ = sm and let y be an arbitrary element in Im′
. Then y = (tmai )y′ for

some i and y′ ∈ Im′−m. We have

xy = y′(xtmai) ∈ y′In+m ⊆ In+m′
.

This implies
x ∈ In+m′

: Im′ ⊆ Ĩn.
�
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Proposition 3.3. We have

a0(G) < B2 := s(s+ r)4sr+2d2(2d2)s2−s+1.

Proof. Consider the following system of linear constraints

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yj + aijx ≥ a1jxi1 + · · ·+ a(s−1)jxi(s−1) + asj(z + x− xi1 − · · · − xi(s−1)),
z + x ≥ xi1 + · · ·+ xi(s−1),

(i = 1, ..., s; j = 1, ..., r),
z ≥ 0, x ≥ 0; y1 ≥ 0, ..., yr ≥ 0; x11 ≥ 0, ..., xs(s−1) ≥ 0.

(7)
By Lemma 3.7 and Remark 3.1 we have tb ∈ Ĩn if and only if there is an integer
solution

u := (u0, ..., us(s−1)+r+1) := (z, x, y1, ..., yr, x11, ..., xs(s−1))

of (7) such that z = n and b = (u2, ..., ur+1). This system has s(s − 1) + r + 2
variables. Using the notation in the proof of Proposition 3.1, a straightforward
calculation gives

‖δ(xij)‖2 < 2d2, ‖δ(yk)‖2 = s, ‖δ(z)‖2 < sd2, ‖δ(x)‖2 < 2sd2.

Let S be the set of all integer solutions of (7). By Lemma 2.1, the ring K[S] is
generated by monomials, say uc1 , ...,ucp, with

‖cj‖∗ < (s(s− 1) + r + 2)(
√

2d)s(s−1)
√
sd

√
2sd

√
s

r

< [(s+ r)2d(
√

2d)s2−s+1
√
s

r+2] − 1 =: B3.

Fix such a generator ucj of K[S]. Let

c′j = (cj2, ..., cj(r+1)).

Then from (7) we have

(tai)cj1tc
′
j ∈ Icj0+cj1 .

Since cj1 < B3, this implies that

(tai)B3tc
′
j ∈ Icj0+B3 ,

for all i ≤ s. Let
B4 = sB3.

Since

IsB3 =
s∑

i=1

(tai )B3I(s−1)B3 ,

from the above relationship we get

IB4tc
′
j ⊆ Icj0+B4 . (8)

We will show that Ĩn = In for all n ≥ B4(B3 + 1). For this aim, let tb ∈ Ĩn
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with

n ≥ B4(B3 + 1).

Then there are α ∈ N and α = (α11, ..., αs(s−1)), such that (n, α,b, α) ∈ S. Since
c1, ..., cp generate S, there are nonnegative integers m1, ..., mp such that

(n, α,b, α) = m1c1 + · · ·+mpcp.

This implies
m1c10 + · · ·+mpcp0 = n,

and
tb = (tc

′
1)m1 · · · (tc′

p)mp .

Repeated application of (8) gives

(tai )B4tb ∈ In+B4 ,

for all i ≤ s. In other words,

tb ∈ In+B4 : (tB4a1 , ..., tB4as ).

Hence there is β = (βij) ∈ N
s(s−1) such that (n, B4,b, β) ∈ S. Then one can

write
(n, B4,b, β) =

∑
ci1=0

m′
ici +

∑
ci1>0

m′′
i ci, (9)

for some m′
i, m

′′
i ∈ N. We have

n =
∑

ci1=0

m′
ici0 +

∑
ci1>0

m′′
i ci0.

Comparing the second components in (9) gives∑
m′′

i ≤
∑

m′′
i ci1 = B4.

Since ci0 ≤ ‖ci‖∗ ≤ B3, we must have

∑
m′

ici0 = n −
∑

ci1>0

m′′
i ci0 ≥ n− B3

∑
m′′

i ≥ B4(B3 + 1) −B3B4 = B4.

In particular, the set of ci with ci1 = 0 in (9) is not empty. From (7) one can
see that for such an index i we have tc

′
i ∈ Ici0 . Therefore, by (9) one obtains

tb = tb
′
tb

′′
,

where
tb

′ ∈ I
∑

m′
ici0 ⊆ IB4 ,

and
tb

′′
=

∏
ci1>0

(tc
′
i)m′′

i .

Repeated application of (8) once more gives us tb ∈ In. Thus we have shown
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Ĩn = In .

Since

B4(B3 + 1) = sB3(B3 + 1) < s[(s+ r)2d(
√

2d)s2−s+1
√
s
r+2 ]2 ≤ B2,

from Lemma 3.6 we get a0(G) < B2 . �

Finally we can prove

Theorem 3.1. Let

B = max{d(rs+ s+ d)(
√
r)r+1(

√
2d)(r+1)(s−1), s(s+ r)4sr+2d2(2d2)s2−s+1}.

Then we have
Ass (In/In+1) = Ass (IB/IB+1)

for all n ≥ B.

Proof. Note that B = max{B1, B2}. By Proposition 3.2, Ass (In/In+1) ⊆
Ass (IB/IB+1). By Lemma 3.5 and Proposition 3.3, Ass (In/In+1) ⊇ Ass
(IB/IB+1). �

The number B in the above theorem is very big. However the following
examples show that such a number B should depend on d and r.

Example 3.1. Let d ≥ 4 and

I = (xd, xd−1y, xyd−1, yd, x2yd−2z) ⊂ K[x, y, z].

A monomial ideal of this type was used in the proof of Theorem 4.1 in [5]. We
have

In : (x, y, z)∞ = (xd, xd−1y, xyd−1, yd, x2yd−2)n = In

if and only if n ≥ k − 2. Hence

Ass (In−1/In) =
{ {(x, y, z), (x, y)} if n < d− 2,

{(x, y)} if n ≥ d− 2.

Example 3.2. Let r ≥ 4 and d > r − 3. We put

u = t
(r−3

0 )
1 t

(r−3
1 )

2 · · · t(
r−4
0 )

r−3 and v = tβ1
1 · · · tβr−4

r−3 t
d−r+2
r−2 ,

where

βi =
{

0 if r − 3 − i is even,
2
(
r−3

i

)
if r − 3 − i is odd.

Let
I = (utd1, ut

d−1
2 tr, ..., ut

d−r+3
r−2 tr−3

r , utr−1t
d−1
r , vtr−3

r ),

and J be the integral closure Ir of Ir. Assume that

Ass (Jn−1/Jn) = Ass (JB−1/IB)
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for all n ≥ B. Then

B ≥ d(d− 1) · · · (d− r + 3)
r(r − 3)

.

Note that in this example J is generated by monomials of degree r(d+2r−3−1).
Thus, if r is fixed, then B is at least O(d(J)r−2), where d(J) is the maximal
degree of the generators of J .
Proof. By [13, Corollary 7.60], J is a normal ideal. Using the filtration

Jn = Irn ⊂ Irn−1 ⊂ · · · ⊂ Ir(n−1) = Jn−1,

we get

Ass (Irn−1/Irn) ⊆ Ass (Jn−1/Jn) ⊆ ∪r
i=1Ass (Ir(n−1)+i−1/Ir(n−1)+i).

By virtue of [12, Proposition 4], it is shown in the proof of [12, Proposition 16],
that

m ∈ Ass (Ik−1/Ik) for all k � 0,

and

m �∈ Ass (Ik−1/Ik) if k < δ :=
d(d− 1) · · · (d− r + 3)

(r − 3)
.

Hence m ∈ Ass (Jn−1/Jn) for all n� 0. Assume that

B <
d(d− 1) · · · (d− r + 3)

r(r − 3)
= δ/r.

Then Br < δ, and hence m �∈ Ass (Ir(B−1)+i−1/Ir(B−1)+i) for all i ≤ r. This
implies m �∈ Ass (JB−1/JB), a contradiction. �
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