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Abstract. We prove that the integral closures of the powers of a squarefree monomial

ideal I equal the symbolic powers if and only if I is the edge ideal of a Fulkersonian

hypergraph.
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1. Introduction

Let V be a finite set. A hypergraph Δ on V is a family of subsets of V . The
elements of V and Δ are called the vertices and the edges of Δ, respectively. We
call Δ a simple hypergraph if there are no inclusions between the edges of Δ.

Assume that V = {1, ..., n} and let R = K[x1, ..., xn] be a polynomial ring
over a field K. The edge ideal I(Δ) of Δ in R is the ideal generated by all
monomials of the form

∏
i∈F xi with F ∈ Δ. By this way we obtain an one-to-

one correspondence between simple hypergraphs and squarefree monomials.
It is showed [6] (and implicitly in [4]) that the symbolic powers of I(Δ) coin-

cide with the ordinary powers of I(Δ) if and only if Δ is a Mengerian hypergraph,
which is defined by a min-max equation in Integer Linear Programming. A nat-
ural generalization of the Mengerian hypergraph is the Fulkersonian hypergraph
which is defined by the integrality of the blocking polyhedron. Mengerian and
Fulkersonian hypergraphs belong to a variety of hypergraphs which generalize
bipartite graphs and trees in Graph Theory [1, 2]. They frequently arise in the
polyhedral approach of combinatorial optimization problems.
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The aim of this note is to show that the symbolic powers of I(Δ) coincide
with the integral closure of the ordinary powers of I(Δ) if and only if Δ is a
Fulkersonian hypergraph. We will follow the approach of [5, 6] which describes
the symbolic powers of squarefree monomials by means of the vertex covers of
hypergraphs. This approach will be presented in Sec. 1. The above character-
ization of the integral closure of the ordinary powers of squarefree monomials
ideals will be proved in Sec. 2.

2. Vertex Covers and Symbolic Powers

Let Δ be a simple hypergraph on V = {1, ..., n}. For every edge F ∈ Δ we
denote by PF the ideal (xi| i ∈ F ) in the polynomial ring R = K[x1, ..., xn]. Let

I∗(Δ) :=
⋂

F∈Δ

PF .

Then I∗(Δ) is a squarefree monomial ideal in R. It is clear that every squarefree
monomial ideal can be viewed as an ideal of the form I∗(Δ).

A subset C of V is called a vertex cover of Δ if it meets every edge. Let
Δ∗ denote the hypergraph of the minimal vertex covers of Δ. This hypergraph
is known under the name transversal [1] or blocker [2]. It is well-known that
I∗(Δ) = I(Δ∗). For this reason we call I∗(Δ) the vertex cover ideal of Δ.

Viewing a squarefree monomial ideal I as the vertex cover ideal of a hyper-
graph is suited for the study of the symbolic powers of I. If I = I∗(Δ), then the
k-th symbolic power of I is the ideal

I(k) =
⋂

F∈Δ

P k
F .

The monomials of I(k) can be described by means of Δ as follows [5].
Let c = (c1, ..., cn) be an arbitrary integral vector in N

n. We may think of c
as a multiset consisting of ci copies of i for i = 1, ..., n. Thus, a subset C ⊆ V
corresponds to an (0,1)-vector c with ci = 1 if i ∈ C and ci = 0 if i �∈ C, and
C is a vertex cover of Δ if

∑
i∈F ci ≥ 1 for all F ∈ Δ. For this reason, we call

c a vertex cover of order k of Δ if
∑

i∈F ci ≥ k for all F ∈ Δ. Let xc denote
the monomial xc1

1 · · ·xcn
n . It is obvious that xc ∈ PF if and only if

∑
i∈F ci ≥ k.

Therefore, xc ∈ I(k) if and only if c is a vertex cover of order k. In particular,
xc ∈ I if and only if c is a vertex cover of order 1.

Let F1, ..., Fm be the edges of Δ. We may think of Δ as an n × m matrix
M = (eij) with eij = 1 if i ∈ Fj and eij = 0 if i �∈ Fj. One calls M the incidence
matrix of Δ. Since the columns of M are the integral vectors of F1, ..., Fm, an
integral vector c ∈ N

n is a vertex cover of order k of Δ if and only if MT ·c ≥ k1,
where 1 denote the vector (1, ..., 1) of N

m.
By the above characterization of monomials of symbolic powers we have

I(k) = Ik if every vertex cover c of order k can be decomposed as a sum of k
vertex cover of order 1 of Δ.

Every integral vector c ∈ N
r is a vertex cover of some order k ≥ 0. The

minimum order of c is the number o(c) := min{∑i∈F ci| F ∈ Δ}. Let σ(c)
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denote the maximum number k such that c can be decomposed as a sum of k
vertex cover of order 1. Then I(k) = Ik for all k ≥ 1 if and only if o(c) = τ (c)
for every integral vector c ∈ N

r.
Using the incidence matrix of the hypergraph of minimal vertex covers one

can characterize the numbers o(c) and τ (c) as follows.

Lemma 2.1. [6, Lemma 1.3] Let M be the incidence matrix of the hypergraph
Δ∗ of the minimal vertex covers of Δ. Then
(i) o(c) = min{a · c| a ∈ N

n, MT · a ≥ 1},
(ii) σ(c) = max{b · 1| b ∈ N

m, M · b ≤ c}.

Let M now be the incidence matrix of a hypergraph Δ. One calls Δ a
Mengerian hypergraph [1, 2] (or having the max-flow min-cut property [4]) if

min{a · c| a ∈ N
n, MT · a ≥ 1} = max{b · 1| b ∈ N

m, M · b ≤ c}.
Since I(Δ) = I∗(Δ∗), switching the role of Δ and Δ∗ in the above observa-

tions we immediately obtain the following criterion for the equality of ordinary
and symbolic powers of a squarefree monomial ideal.

Theorem 2.1. [6, Corollary 1.6] Let I = I(Δ). Then I(k) = Ik for all k ≥ 1 if
and only if Δ is a Mengerian hypergraph.

Remark 2.1. In general, Δ∗ need not to be a Mengerian hypergraph if Δ is a
Mengerian hypergraph (see e.g. [6, Example 2.8]).

It should be noticed that min{a · 1| a ∈ N
n, MT · a ≥ 1} is the minimum

number of vertices of vertex covers and max{b · 1| b ∈ N
m, M · b ≤ 1} is the

maximum number of disjoint edges of Δ. If these numbers are equal, one says
that Δ has the König property [1, 2]. This is a typical property of trees and
bipartite graphs.

3. Fulkersonian Hypergraphs

Let Δ be a simple graph of m edges on n vertices. Let M be the incidence
matrix of Δ. By the duality in Linear Programming we have

min{a · c| a ∈ R
n
+, MT · a ≥ 1} = max{b · 1| b ∈ R

m
+ , M · b ≤ c},

where R+ denote the set of non-negative real numbers. This implies

min{a · c| a ∈ N
n, MT · a ≥ 1} ≤ max{b · 1| b ∈ N

m, M · b ≤ c}.
If equality holds above, we obtain

min{a · c| a ∈ R
n
+, MT · a ≥ 1} = min{a · c| a ∈ N

n, MT · a ≥ 1},
max{b · 1| b ∈ R

m
+ , M · b ≤ c} = max{b · 1| b ∈ N

m, M · b ≤ c}.
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In this case, the two optimization problems on the left-hand sides have integral
optimal solutions.

For the min problem, this condition is closely related to the integrality of
the polyhedron:

Q(Δ) := {a ∈ R
n
+| MT · a ≥ 1}.

This polyhedron is usually called the blocking polyhedron of Δ [2]. Notice that
an integral vector c ∈ N

n is a vertex cover of order 1 of Δ if and only if c ∈ Q(Δ).

Lemma 3.1. (see e.g. [1, Lemma 1, p. 203]) min{a · c| a ∈ R
n, MT · a ≥ 1} is

an integer for all c ∈ N
n if and only if Q(Δ) only has integral extremal points.

One calls Δ a Fulkersonian hypergraph [2] (or paranormal [1]) if Q(Δ) only
has integral extremal points. By the above observation and Lemma 3.1, Fulker-
sonian hypergraphs are generalizations of Mengerian hypergraphs.

Unlike the Mengerian property, the Fulkersonian property is preserved by
passing to the hypergraph of minimal vertex covers.

Lemma 3.2. (see e.g. [1, Corollary, p. 210]) Δ is Fulkersonian if and only if Δ∗

is Fulkersonian.

We shall see that Fulkersonian hypergraphs can be used to study the integral
closures of powers of monomial ideals.

Let I be an arbitrary monomial ideals. Let I denote the integral closure of
I. It is easy to see that I is the monomial ideal generated by all monomial f
such that fp ∈ Ip for some p ≥ 1. We say that I is an integrally closed ideal if
I = I.

It is well known that powers of ideals generated by variables are integrally
closed. Since the intersection of integrally closed ideals is again an integrally
closed ideal, symbolic powers of squarefree monomial ideals are integrally closed.
From this it follows that Ik ⊆ I(k) for all k ≥ 0 if I is a squarefree monomial
ideal.

Theorem 3.1. Let I = I∗(Δ). Then Ik = I(k) for all k ≥ 1 if and only if Δ is
a Fulkersonian hypergraph.

Proof. Assume that Q(Δ) is integral with integral vertices a1, ..., ar. We have to
show that every monomial xc ∈ I(k) belongs to Ik. As we have seen in Sec. 1, c
is a vertex cover of order k of Δ. This means MT ·c ≥ k1. Therefore 1

kc ∈ Q(Δ).
Hence there are rational numbers l1, .., lr ≥ 0 with l1 + · · ·+ lr = 1 such that

1
k
c = l1a1 + · · ·+ lsar + b

for some rational vector b ∈ R
n
+. Let p be the least common multiple of the

denominators of l1, ..., lr and the components of b. Then

pc = kpl1a1 + · · ·+ kplrar + kpb
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is a sum of kp integral vectors a1, ..., ar in Q(Δ) and the integral vector krb ∈ N
n.

Since xa1 , ..., xar ∈ I,

(xc)p = (xa1 )kpl1 · · · (xar )krlrxkpb ∈ Ikp.

Therefore, xc ∈ Ik as required.
Conversely, assume that I(k) = Ik for all k ≥ 1. Let a1, ..., ar now be the

integral vectors corresponding to the minimal vertex covers of Δ. Let P (Δ)
denote the set of all vectors of the form l1a1 + · · ·+ lrar +b with μ1, ..., μr ∈ R+

and b ∈ R
n
+. It is obvious that P (Δ) ⊆ Q(Δ). We will prove that Q(Δ) = P (Δ),

which shows that a1, ..., ar are the extremal points of Q(Δ).
It suffices to show that every rational vector a ∈ Q(Δ) belongs to P (Δ).

Let k be the least common multiple of the denominators of the components
of a. Then MT · (ka) ≥ k1. Hence xka ∈ I(k) = Ik. Thus, there exists an
integer p ≥ 1 such that xpka ∈ Ipk. Since I is generated by xa1 , ..., xar, we have
xpka = xν1a1 · · ·xνrarxd for some integral vector d ∈ N

n and integers ν1, ...., νr

with ν1 + · · ·+ νr = pk. It follows that

a =
ν1

pk
c1 + · · ·+ νr

pk
cr +

1
pk

d.

Therefore, a ∈ P (Δ), as desired. �

By Lemma 3.2, Theorem 3.1 can be reformulated as follows.

Theorem 3.2. Let I = I(Δ). Then Ik = I(k) for all k ≥ 1 if and only if Δ is
a Fulkersonian hypergraph.

It is obvious that I(k) = Ik for all k ≥ 1 if and only if I(k) = Ik and Ik = Ik

for all k ≥ 1. Let R[It] =
⊕

k≥0 Iktk be the Rees algebra of I. It is known
that R[It] is normal if and only if Ik = Ik for all k ≥ 1. Therefore, combining
Theorem 2.1 and Theorem 3.2 we obtain the following result of Gitler, Valencia
and Villarreal [4, Theorem 3.5].

Corollary 3.1. Let I = I(Δ). Then Δ is a Mengerian hypergraph if and only
if Δ is a Fulkersonian hypergraph and R[It] is normal.

In an earlier paper, Escobar, Villarreal and Yoshino showed that I(k) = Ik

for all k ≥ 1 if and only if Δ is a Fulkersonian hypergraph and R[It] is normal
[3, Proposition 3.4]. Combining this result with Corollary [4] one can recover
Theorem 2.1.

In view of Corollary 3.1 it is of great interest to study the following

Problem 3.1. Let I = I(Δ). Can one describe the normality of the Rees algebra
R[It] in terms of Δ?

This problem has been solved for the graph case by Hibi and Ohsugi [7],
Simis, Vasconcelos and Villarreal [8].
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