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1. Introduction

The problem of minimizing or maximizing a linear-quadratic function on a con-
vex polyhedral set is called a quadratic program. Since the appearance of the
paper by Daniel [4] in 1973, continuity and differentiability properties of the so-
lution map, the local solution map, the Karush-Kuhn-Tucker (KKT, for brevity)
point set mapping and the optimal value function in parametric quadratic pro-
gramming have been studied intensively in the literature. In particular, upper
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semicontinuity and also lower semicontinuity of the KKT point set mapping in
indefinite quadratic programs under perturbations were investigated in [11 - 13]
where it was assumed that every component of the data is subject to perturba-
tion. If only the linear part of the data is subject to perturbation, then the upper
semicontinuity of the KKT point set mapping can be studied via a theorem of
Robinson [9] on the upper Lipschitz continuity of polyhedral multifunctions.

The aim of this paper is to derive necessary and sufficient conditions for the
lower semicontinuity of the Karush-Kuhn-Tucker point set in indefinite quadratic
programs under linear perturbations. The necessary conditions are relatively
simple. But the sufficient conditions are rather sophisticated. A series of exam-
ples is designed to show how each set of the sufficient conditions can be realized
in practice.

We consider the quadratic program

Minimize f(x) :=
1
2
xT Dx + cT x subject to x ∈ Δ(A, b), (1)

where Δ(A, b) = {x ∈ Rn : Ax ≥ b}, D is a symmetric (n × n)−matrix, A
is an (m × n)−matrix, b ∈ Rm and c ∈ Rn are some given vectors. Here the
superscript T denotes transposition. In what follows, matrices D and A will be
fixed, while vectors c and b are subject to change. Since D is not assumed to be
a positive semidefinite matrix, the function f is not necessarily convex. Thus we
will have deal with indefinite quadratic programs under linear perturbations.

We say that x ∈ Rn is a Karush–Kuhn–Tucker point of (1) if there exists a
Lagrange multiplier λ ∈ Rm corresponding to x, that is

Dx − AT λ + c = 0, Ax ≥ b, λ ≥ 0, λT (Ax − b) = 0. (2)

The KKT point set of (1) is denoted by S(c, b). The solution set and the local
solution set of (1) are denoted, respectively, by Sol(c, b) and loc(c, b). It is well-
known (see [3, p. 115]) that S(c, b) ⊃ loc(c, b) ⊃ Sol(c, b). We are interested in
studying the lower semicontinuity of the multifunction

S(·) : Rn × Rm → 2Rn

, (c′, b′) �→ S(c′, b′).

Note that lower semicontinuity properties of the multifunctions Sol(·) and loc(·),
have been studied in [5] and [7].

Recall [14, p. 451] that a multifunction F : Rk → 2Rn

is said to be lower
semicontinuous (l.s.c.) at ω ∈ Rk if F (ω) �= ∅ and, for each open set V ⊂ Rn

satisfying F (ω) ∩ V �= ∅, there exists δ > 0 such that F (ω′) ∩ V �= ∅ for every
ω′ ∈ Rk with the property that ‖ω′ − ω‖ < δ. This definition differs slightly
from the corresponding one given in [1, p. 39], where only the points from the
effective domain of F are taken into account.

We obtain the necessary and sufficient conditions for the lower semicontinuity
of the multifunction S(·), our main results, in Sec. 2. Then, in Sec. 3, we consider
several illustrative examples.

Throughout this paper, the scalar product and the norm in an Euclidean
space Rk are denoted by 〈, 〉 and ‖ · ‖, respectively. In matrix computations,
vectors in Rk are understood as columns of real numbers. In the usual text
they are written as rows of real numbers. For two vectors x = (x1, . . . , xk), y =
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(y1, . . . , yk) ∈ Rk, the inequality x ≥ y (resp., x > y) means xi ≥ yi (resp.,
xi > yi) for all i = 1, . . . , k. For a matrix A ∈ Rm×n, Ai denotes the i−th
row of A. For a subset I ⊂ {1, . . . , m}, AI is the matrix composed by the
rows Ai (i ∈ I) of A. For a vector x = (x1, . . . , xk) ∈ Rk and an index set
J ⊂ {1, . . . , k}, xJ is the vector with the components xj (j ∈ J). The norm in
the product space Rn × Rm is defined by setting ‖(c, b)‖ = (‖c‖2 + ‖b‖2)1/2 for
every (c, b) ∈ Rn × Rm.

2. Main Results

Necessary and sufficient conditions for the lower semicontinuity of the multifunc-
tion S(·) will be established in this section. Recall that the inequality system
Ax ≥ b is said to be regular if the Slater condition is satisfied, i.e., there exists
x̄ ∈ Rn such that Ax̄ > b. It is easily seen that if the system Ax ≥ b is irregular
then there exists a sequence {bk} ⊂ Rm converging to b such that, for each k,
the system Ax ≥ bk has no solutions.

Theorem 2.1 (Necessary conditions for lower semicontinuity). If the multifunc-
tion S(·) is lower semicontinuous at (c, b), then the system Ax ≥ b is regular
and the set S(c, b) is nonempty and finite.

Proof. Suppose that S(·) is l.s.c. at (c, b). By definition, S(c, b) �= ∅. If the
system Ax ≥ b is irregular, then there exists a sequence {bk} ⊂ Rm converging
to b such that Δ(A, bk) = ∅ for all k ∈ N . This implies that S(c, bk) = ∅ for all
k ∈ N . Then S(·) cannot be l.s.c. at (c, b), a contradiction.

In order to prove that S(c, b) is a finite set, for each subset I ⊂ {1, · · · , m}
we define a matrix MI ∈ R(n+|I|)×(n+|I|), where |I| is the number of elements of
I, by setting

MI =
(

D −AT
I

AI O

)

(If I = ∅, then we put MI = D). Let

QI =
{
(u, v) ∈ Rn × Rm :

(
u

vI

)
= MI

(
x

λI

)
for some (x, λ) ∈ Rn × Rm

}
,

and
Q =

⋃
{QI : I ⊂ {1, · · · , m}, det MI = 0}.

If det MI = 0, then QI is a proper linear subspace of Rn × Rm. By the
Baire Lemma, Q is nowhere dense in Rn × Rm. Hence there exists a sequence
{(ck, bk)} ⊂ Rn × Rm converging to (c, b) such that (−ck, bk) /∈ Q for all k. Fix
any x̄ ∈ S(c, b). Since S(·) is l.s.c at (c, b), without loss of generality we can as-
sume that there is a sequence {xk} ⊂ Rn converging to x̄ such that xk ∈ S(ck, bk)
for all k. Then for each k ∈ N there exists λk ∈ Rm such that⎧⎪⎨

⎪⎩
Dxk − AT λk + ck = 0,

Axk ≥ bk, λk ≥ 0,

(λk)T (Axk − bk) = 0.
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For every k, let Ik := {i ∈ {1, . . . , m} : λk
i > 0}. (It may happen that Ik = ∅.)

Clearly, there exists a subset I ⊂ {1, · · · , m} such that Ik = I for infinitely many
k. Without loss of generality we can assume that Ik = I for all k. Then we have

Dxk − AT
I λk

I + ck = 0, AIx
k = bk

I ,

or, equivalently,

MI

(
xk

λk
I

)
=

(−ck

bk
I

)
.

We claim that det MI �= 0. Indeed, if det MI = 0 then by the definitions of QI

and Q we have

(−ck, bk) ∈ QI ⊂ Q,

contrary to the fact that (−ck, bk) /∈ Q for all k. We have proved that det MI �=
0. So (

xk

λk
I

)
= M−1

I

(−ck

bk
I

)
.

Letting k → ∞, we get

lim
k→∞

(
xk

λk
I

)
= M−1

I

(−c

bI

)
.

(If I = ∅ then the last formula becomes limk→∞ xk = D−1(−c).) It follows that
the sequence {λk

I} converges to some λI ≥ 0 in R|I|. Since the sequence {xk}
converges to x̄, we have (

x̄

λI

)
= M−1

I

(−c

bI

)
.

Set

Z =
{

(x, λ) ∈ Rn × Rm : ∃J ⊂ {1, · · · , m} such that

det MJ �= 0 and
(

x

λJ

)
= M−1

J

(−c

bJ

)}
.

Let
X =

{
x ∈ Rn : ∃λ ∈ Rm such that (x, λ) ∈ Z

}
.

It is clear that x̄ ∈ X. From the definitions of Z and X it follows that X is a
finite set. Since x̄ ∈ X for every x̄ ∈ S(c, b), we conclude that S(c, b) is a finite
set. The proof is complete. �

Example 3.1 in the next section shows that the regularity of the system
Ax ≥ b, the nonemptiness and finiteness of S(c, b), altogether, do not imply that
S(·) is l.s.c. at (c, b).

Our next goal is to find sufficient conditions for the lower semicontinuity
of the KKT point set mapping (c′, b′) �→ S(c′, b′) at the given point (c, b) ∈
Rn × Rm.



Lower Semicontinuity of the KKT Point Set 415

Let x ∈ S(c, b) and let λ ∈ Rm be a Lagrange multiplier corresponding to x.
We set I = {1, 2, . . . , m},

K = {i ∈ I : Aix = bi, λi > 0}, J = {i ∈ I : Aix = bi, λi = 0}. (3)

It is clear that K and J are two disjoint sets (possibly empty).

Theorem 2.2. (Sufficient conditions for lower semicontinuity). Suppose that
the system Ax ≥ b is regular, the set S(c, b) is finite and nonempty. If for every
x ∈ S(c, b) there exists a Lagrange multiplier λ corresponding to x such that at
least one of the following conditions holds:
(c1) x ∈ loc(c, b),
(c2) K = ∅,
(c3) J = ∅, K �= ∅, and the system {Ai : i ∈ K} is linearly independent,
(c4) J �= ∅, K = ∅, D is nonsingular, and AJD−1AT

J is a positive definite
matrix,

where K and J are defined via (x, λ) by (3). Then, the multifunction S(·) is
lower semicontinuous at (c, b).

Proof. Since S(c, b) is nonempty, in order to prove that S(·) is l.s.c. at (c, b) we
only need to show that, for any x ∈ S(c, b) and for any open neighborhood Vx

of x, there exists δ > 0 such that

S(c′, b′) ∩ Vx �= ∅ (4)

for every (c′, b′) ∈ Rn × Rm satisfying ‖(c′, b′) − (c, b)‖ < δ.
Let x ∈ S(c, b) and let Vx be an open neighborhood of x. By our assumptions,

there exists a Lagrange multiplier λ corresponding to x such that at least one of
the four conditions (c1)–(c4) holds.

We first examine the case where (c1) holds, that is x ∈ loc(c, b). Since S(c, b)
is finite, loc(c, b) is finite. So x is an isolated local solution of (1). It can be
shown that the second-order sufficient condition [10, Def. 2.1] holds at (x, λ).
Since the system Ax ≥ b is regular, we can apply Theorem 3.1 from [10] to find
a δ > 0 such that

loc(D, A, c′, b′) ∩ Vx �= ∅
for every (c′, b′) ∈ Rn ×Rn with ‖(c′, b′)− (c, b)‖ < δ. Since loc(c, b) ⊂ S(c′, b′),
we conclude that (4) is valid for every (c′, b′) satisfying ‖(c′, b′) − (c, b)‖ < δ.

Consider the case where (c2) holds, that is Aix > bi for every i ∈ I. Since
λ is a Lagrange multiplier corresponding to x, system (2) is satisfied. Because
Ax > b, from (2) we deduce that λ = 0. Then the first equality in (2) implies
that Dx = −c. Thus x is a solution of the linear system

Dz = −c (z ∈ Rn). (5)

Since S(c, b) is finite, x is a locally unique KKT point of (1). Combining this
with the fact that x is an interior point of Δ(A, b), we can assert that x is a
unique solution of (5). Hence the matrix D is nonsingular and we have

x = −D−1c. (6)
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Since Ax > b, there exist δ1 > 0 and an open neighborhood Ux ⊂ Vx of x
such that Ux ⊂ Δ(A, b′) for all b′ ∈ Rm satisfying ‖b′ − b‖ < δ1. By (6), there
exists δ2 > 0 such that if ‖c′ − c‖ < δ2 and x′ = −D−1c′ then x′ ∈ Ux.
Set δ = min{δ1, δ2}. Let (c′, b′) be such that ‖(c′, b′) − (c, b)‖ < δ. Since
x′ := −D−1c′ belongs to the open set Ux ⊂ Δ(A, b′), we deduce that

Dx′ + c′ = 0, Ax′ > b′.

From this it follows that x′ ∈ S(c′, b′). (Observe that λ′ = 0 is a Lagrange
multiplier corresponding to x′.) We have thus shown that (4) is valid for every
(c′, b′) ∈ Rn × Rm satisfying ‖(c′, b′) − (c, b)‖ < δ.

We now suppose that (c3) holds. First, we prove that the matrix MK ∈
R(n+|K|)×(n+|K|) defined by setting

MK =
[

D −AT
K

AK 0

]
,

where |K| denotes the number of elements in K, is nonsingular. To obtain a
contradiction, suppose that MK is singular. Then there exists a nonzero vector
(v, w) ∈ Rn × R|K| such that

MK

(
v

w

)
=

[
D −AT

K

AK 0

] (
v

w

)
= 0.

This implies that
Dv − AT

Kw = 0, AKv = 0. (7)

Since the system {Ai : i ∈ K} is linearly independent by (c3), from (7) it follows
that v �= 0. Because AI\Kx > bI\K and λK > 0, there exists δ3 > 0 such that
AI\K(x + tv) ≥ bI\K and λK + tw ≥ 0 for every t ∈ [0, δ3]. By (2) and (7), we
have ⎧⎪⎨

⎪⎩
D(x + tv) − AT

K(λK + tw) + c = 0,

AK(x + tv) = bK , λK + tw ≥ 0,

AI\K(x + tv) ≥ bI\K , λI\K = 0
(8)

for every t ∈ [0, δ3]. From (8) we deduce that x + tv ∈ S(c, b) for all t ∈ [0, δ3].
This contradicts the assumption that S(c, b) is finite. We have thus proved that
MK is nonsingular. From (2) and the definition of K it follows that⎧⎪⎨

⎪⎩
Dx − AT

KλK + c = 0,

AKx = bK , λK > 0,

AI\Kx > bI\K , λI\K = 0.

The last system can be rewritten equivalently as follows

MK

(
x

λK

)
=

(−c

bK

)
, λK > 0, λI\K = 0, AI\Kx > bI\K . (9)

As MK is nonsingular, (9) yields(
x

λK

)
= M−1

K

(−c

bK

)
, λK > 0, λI\K = 0, AI\Kx > bI\K .
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Hence there exists δ > 0 such that if (c′, b′) ∈ Rn × Rm is such that ‖(c′, b′) −
(c, b)‖ < δ, then the formula (

x′

λ′
K

)
= M−1

K

(
c′

b′K

)

defines a vector (x′, λ′
K) ∈ Rn × R|K| satisfying the following conditions

x′ ∈ Vx, λ′
K > 0, AI\Kx′ > b′I\K.

We see at once that vector x′ defined in this way belongs to S(c′, b′) ∩ Vx and
λ′ := (λ′

K , λ′
I\K), where λ′

I\K = 0, is a Lagrange multiplier corresponding to
x′. We have shown that (4) is valid for every (c′, b′) ∈ Rn × Rm satisfying
‖(c′, b′) − (c, b)‖ < δ.

Finally, suppose that (c4) holds. In this case, from (2) we get

Dx + c = 0, AJx = bJ , λJ = 0, AI\Jx > bI\J , λI\J = 0. (10)

To prove that there exists δ > 0 such that (4) is valid for every (c′, b′) ∈ Rn×Rm

satisfying ‖(c′, b′) − (c, b)‖ < δ, we consider the following system of equations
and inequalities of variables (z, μ) ∈ Rn × Rm:{

Dz − AT
J μJ + c′ = 0, AJz ≥ b′J , μJ ≥ 0,

AI\Jz ≥ b′I\J , μI\J = 0, μT
J (AJz − b′J) = 0.

(11)

Since D is nonsingular, (11) is equivalent to the following system{
z = D−1(−c′ + AT

J μJ), AJz ≥ b′J , μJ ≥ 0,

AI\Jz ≥ b′I\J , μI\J = 0, μT
J (AJz − b′J) = 0.

(12)

By (10), AI\Jx > bI\J . Hence there exist δ4 > 0 and an open neighborhood
Ux ⊂ Vx of x such that AI\Jz ≥ b′I\J for any z ∈ Ux and (c′, b′) ∈ Rn ×
Rm satisfying ‖(c′, b′) − (c, b)‖ < δ4. Consequently, for every (c′, b′) satisfying
‖(c′, b′)− (c, b)‖ < δ4, the verification of (4) is reduced to the problem of finding
z ∈ Ux and μJ ∈ R|J| such that (12) holds. Here |J | denotes the number of
elements in J . We substitute z from the first equation of (12) into the first
inequality and the last equation of that system to get the following{

AJD−1AT
J μJ ≥ b′J + AJD−1c′, μJ ≥ 0,

μT
J (AJD−1AT

J μJ − b′J − AJD−1c′) = 0.
(13)

Let S := AJD−1AT
J and q′ := −b′J − AJD−1c′. We can rewrite (13) as follows

SμJ + q′ ≥ 0, μJ ≥ 0, (μJ )T (SμJ + q′) = 0. (14)

Problem of finding μJ ∈ R|J| satisfying (14) is the linear complementarity prob-
lem (see [3]) defined by the matrix S ∈ R|J|×|J| and the vector q′ ∈ R|J|. By
assumption (c4), S is a positive definite matrix, that is yT Sy > 0 for every
y ∈ R|J| \{0}. Then S is a P -matrix. The latter means [3, Def. 3.3.1] that every
principal minor of S is positive. According to Theorem 3.3.7 in [3], for each
q′ ∈ R|J|, problem (14) has a unique solution μJ ∈ R|J|. Since D is nonsingular,
from (10) it follows that
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AJD−1(−c) − bJ = 0.

Setting q = −bJ − AJD−1c we have q = 0. Substituting q′ = q = 0 into (14) we
find the unique solution μ̄J = 0 = λJ . By Theorem 7.2.1 in [3], there exist � > 0
and ε > 0 such that for every q′ ∈ R|J| satisfying ‖q′ − q‖ < ε we have

‖μJ − λJ‖ ≤ �‖q′ − q‖.
Therefore

‖μJ‖ = ‖μJ − λJ‖ ≤ �‖b′J − bJ + AJD−1(c′ − c)‖.
From this we conclude that there exists δ ∈ (0, δ4] such that if (c′, b′) satisfies
the condition ‖(c′, b′) − (c, b)‖ < δ, then the vector z defined by the formula

z = D−1(−c′ + AT
J μJ),

where μJ is the unique solution of (14), belongs to Ux. From the definition of μJ

and z we see that system (12), where μI\J := 0, is satisfied. Then z ∈ S(c′, b′).
We have thus shown that, for any (c′, b′) satisfying ‖(c′, b′)−(c, b)‖ < δ, property
(4) is valid.

The proof is complete. �

To verify condition (c1), we can use the following result, which is due to
Majthay [6] and Contesse [2].

Theorem 2.3. (See [3, p. 116]) The necessary and sufficient condition for
x ∈ Rn to be a local solution of (1) is that the next two properties are valid:
(i) ∇f(x)v = (Dx + c)T v ≥ 0 for every v ∈ TΔ(x) = {v ∈ Rn : AI0v ≥ 0},

where I0 = {i ∈ I : Aix = bi};
(ii) vT Dv ≥ 0 for every v ∈ TΔ(x) ∩ (∇f(x))⊥, where (∇f(x))⊥ = {v ∈ Rn :

∇f(x)v = 0}.
The ideas of the proof of Theorem 2.2 are adapted from [8, Theorem 4.1]

and [12, Theorem 6]. In [8], some results involving Schur complements were
obtained.

Let x ∈ S(c, b) and let λ ∈ Rm be a Lagrange multiplier corresponding to x.
We define K and J by (3). Consider the case where both the sets K and J are
nonempty. If the matrix

MK =
[

D −AT
K

AK 0

]
∈ R(n+|K|)×(n+|K|)

is nonsingular, then we denote by SJ the Schur complement [3, p. 75] of MK in
the matrix ⎡

⎣ D −AT
K −AT

J

AK 0 0
AJ 0 0

⎤
⎦ ∈ R(n+|K|+|J|)×(n+|K|+|J|).

That is
SJ = [AJ 0]M−1

K [AJ 0]T .

Note that SJ is a symmetric matrix [8, p. 56]. Consider the following condition:
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(c5) J �= ∅, K �= ∅, the system {Ai : i ∈ K} is linearly independent, vT Dv �= 0
for every nonzero vector v satisfying AKv = 0, and SJ is positive definite.
Modifying some arguments of the proof of Theorem 2.2 we can show that if

J �= ∅, K �= ∅, the system {Ai : i ∈ K} is linearly independent, and vT Dv �= 0
for every nonzero vector v satisfying AKv = 0, then MK is nonsingular.

It can be proved that the assertion of Theorem 2.2 remains valid if instead
of (c1)–(c4) we use (c1)–(c5). The method of dealing with (c5) is similar to
that of dealing with (c4) in the proof of Theorem 2.2. Up to now we have not
found any example of quadratic programs of the form (1) for which there exists
a pair (x, λ), x ∈ S(c, b) and λ is a Langrange multiplier corresponding to x,
such that (c1)–(c4) are not satisfied, but (c5) is satisfied. Thus the usefulness
of (c5) in characterizing the lower semicontinuity property of the multifunction
S(·) is to be investigated furthermore. This is the reason why we omit (c5) in
the formulation of Theorem 2.2.

3. Examples

The following example shows that the conditions stated in Theorem 2.1 are not
sufficient for having the lower semicontinuity property of S(·) at (c, b).

Example 3.1. (see [12, Example 2]). Consider problem (1) with n = 2, m = 3,

D =
[−1 0

0 −2

]
, A =

⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦ , c =

(
1
0

)
, b =

⎛
⎝ 0

0
−2

⎞
⎠ .

For every ε > 0, we set c(ε) = (1,−ε). Since

Δ(A, b) = {x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, −x1 − x2 ≥ −2},

we check at once that the system Ax ≥ b is regular. A direct computation shows
that if ε > 0 is small enough then

S(c, b) =
{

(0, 0), (1, 0), (2, 0),
(

5
3
,
1
3

)
, (0, 2)

}
,

S(c(ε), b) =
{

(2, 0),
(

5 + ε

3
,
1 − ε

3

)
, (0, 2)

}
.

For the open set V := {x ∈ R2 : 1
2 < x1 < 3

2 , −1 < x2 < 1}, we have
S(c, b) ∩ V = {(1, 0)} and S(c(ε), b) ∩ V = ∅ for every ε > 0 small enough. We
thus conclude that S(·) is not l.s.c. at (c, b).

We now consider three examples to see how the conditions (c1)–(c4) can be
verified for concrete quadratic programs.

Example 3.2. (see [8, p. 56]). Let

f(x) =
1
2
x2

1 −
1
2
x2

2 − x1 for all x = (x1, x2) ∈ R2. (15)
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Consider the problem

min{f(x) : x = (x1, x2) ∈ R2, x1 − 2x2 ≥ 0, x1 + 2x2 ≥ 0}. (16)

For this problem, we have

D =
[

1 0
0 −1

]
, A =

[
1 −2
1 2

]
, c =

(−1
0

)
, b =

(
0
0

)
,

S(c, b) =
{

(1, 0),
(4

3
,
2
3

)
,
(4

3
,−2

3

)}
,

loc(c, b) =
{(4

3
,
2
3

)
,
(4

3
,−2

3

)}
.

For any feasible vector x = (x1, x2) of (16), we have x1 ≥ 2|x2|. Therefore

f(x) +
2
3

=
1
2
x2

1 −
1
2
x2

2 − x1 +
2
3
≥ 3

8
x2

1 − x1 +
2
3
≥ 0. (17)

For x̄ :=
(

4
3 , 2

3

)
and x̂ :=

(
4
3 ,−2

3

)
, we have f(x̄) = f(x̂) = −2

3 . Hence from
(17) it follows that x̄ and x̂ are the solutions of (16). Actually,

Sol(c, b) = loc(c, b) = {x̄, x̂}.
Setting x̃ = (1, 0) we have x̃ ∈ S(c, b) \ loc(c, b). Note that λ̃ := (0, 0) is a
Lagrange multiplier corresponding to x̃. We check at once that the inequality
system defining the constraint set of (16) is regular and, for each KKT point x ∈
S(c, b), either (c1) or (c2) is satisfied. Theorem 2.2 shows that the multifunction
S(·) is l.s.c. at (c, b).

Example 3.3. Let f(·) be defined by (15). Consider the problem

min{f(x) : x = (x1, x2) ∈ R2, x1 − 2x2 ≥ 0, x1 + 2x2 ≥ 0, x1 ≥ 1}.

For this problem, we have

D =
[

1 0
0 −1

]
, A =

⎡
⎣ 1 −2

1 2
1 0

⎤
⎦ , c =

(−1
0

)
, b =

⎛
⎝ 0

0
1

⎞
⎠ .

Let x̄, x̂, x̃ be the same as in the preceding example. Note that λ̃ := (0, 0, 0) is
a Lagrange multiplier corresponding to x̃. We have

S(c, b) = {x̃, x̄, x̂}, Sol(c, b) = loc(c, b) = {x̄, x̂}.

Clearly, for x = x̄ and x = x̂, assumption (c1) is satisfied. It is easily seen that,
for the pair (x̃, λ̃), we have K = ∅, J = {3}. Since AJ = (1 0) and D−1 = D,
we get AJD−1AT

J = 1. Thus (c4) is satisfied. By Theorem 2.2, S(·) is l.s.c. at
(c, b).
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Example 3.4. Let f(x) be as in (15). Consider the problem

min{f(x) : x = (x1, x2) ∈ R2, x1 − 2x2 ≥ 0, x1 + 2x2 ≥ 0, x1 ≥ 2}.

For this problem, we have

D =
[

1 0
0 −1

]
, A =

⎡
⎣ 1 −2

1 2
1 0

⎤
⎦ , c =

(−1
0

)
, b =

⎛
⎝ 0

0
2

⎞
⎠ ,

S(c, b) =
{
(2, 0), (2, 1), (2,−1)

}
,

Sol(c, b) = loc(c, b) = {(2, 1), (2,−1)}.

Let x̄ = (2,−1), x̂ = (2, 1), x̃ = (2, 0). Note that λ̃ := (0, 0, 1) is a Lagrange
multiplier corresponding to x̃. For x = x̄ and x = x̂, we see at once that (c1) is
satisfied. For the pair (x̃, λ̃), we have K = {3}, J = ∅. Since

{Ai : i ∈ K} = {A3} = {(1 0)},

assumption (c3) is satisfied. According to Theorem 2.2, S(·) is l.s.c. at (c, b).
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