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Abstract. Let (A, m) be a commutative Noetherian local ring and M a finitely

generated A-module. The aim of this paper is to give a blow-up characterization of

pseudo Buchsbaum modules defined in [2], which says that M is a pseudo Buchsbaum

module if and only if the Rees module Rq(M) is pseudo Buchsbaum for all parameter

ideals q of M . We also show that the associated graded module Gq(M) is pseudo

Cohen Macaulay (resp. pseudo Buchsbaum) provided M is pseudo Cohen Macaulay

(resp. pseudo Buchsbaum).
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1. Introduction

Let A be a commutative Noetherian local ring with the maximal ideal m, M a
finitely generated A-module with dimM = d > 0. Let x = (x1, . . . , xd) be a
system of parameters of A-module M. We consider the difference between the
multiplicity and the length

JM (x) = e(x; M)− �(M/QM (x)),
where QM(x) =

⋃
t>0

((xt+1
1 , . . . , xt+1

d )M : xt
1 . . . xt

d) is a submodule of M. It

should be mentioned that JM (x) gives a lot of informations on the structure of M.
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For example, if M is a Cohen–Macaulay module then QM (x) = (x1, . . . , xd)M
by [7]. Therefore JM (x) = 0 for all system of parameters x of M . Further,
we have known that �(M/QM (x)) is just the length of generalized fraction (see
[10]). Therefore by [10], sup

x
JM (x) < ∞ if M is a generalized Cohen-Macaulay

module. In [1] we also showed that if M is a Buchsbaum module then, JM (x)
takes a constant value for every system of parameters x of M. Unfortunately,
the converses of all above statements are not true in general. The structure
of modules M satisfying JM (x) = 0 or sup

x
JM (x) < ∞ was studied in [5] and

such modules were called pseudo Cohen-Macaulay modules or pseudo generalized
Cohen-Macaulay modules, respectively. In [2] we studied the structure of mod-
ules M having JM (x) a constant value for all systems of parameters. We called
it pseudo Buchsbaum modules. Note that pseudo Cohen Macaulay (resp. pseudo
Buchsbaum, pseudo generalized Cohen Macaulay) modules still have many nice
properties and they are relatively closed to Cohen Macaulay (resp. Buchsbaum,
generalized Cohen Macaulay) modules.

For a parameter ideal q of M we set Rq(M) = ⊕
i≥0

qiMT i the Rees module and

Gq(M) = ⊕
i≥0

qiM/qi+1M the associated graded module of M with respect to q.

Let M = m⊕ ⊕
i≥1

qiT i be the unique homogeneous maximal ideal of Rq(A). Then

Rq(M) or Gq(M) is called a pseudo Cohen Macaulay (resp. pseudo Buchsbaum)
module if and only if Rq(M)M or Gq(M)M is a pseudo Cohen Macaulay (resp.
pseudo Buchsbaum) module. The purpose of this paper is to prove the following
result.

Theorem 1. Let A be a commutative Noetherian local ring and M a finitely
generated A-module. Then the following statements are true.
(i) M is a pseudo Buchsbaum module if and only if Rq(M) is a pseudo Buchs-

baum module for all parameter ideals q of M.

(ii) Let M be a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) module.
Then Gq(M) is a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) mod-
ule for all parameter ideals q of M.

It should be noted that an analogous result of the first statement in the
above theorem for Buchsbaum modules was only proved under the assumption
that depth M > 0 (see [11, Theorem 3.3, Chap. IV]).

The paper is divided into 4 sections. In Sec. 2, we outline some properties
of pseudo Cohen Macaulay (resp. pseudo Buchsbaum) modules over local ring
which will be needed later. The proof of Theorem 1 is given in Sec. 3. As
consequences of Theorem 1 we will show in the last section that the Rees module
Rq(M) and the associated graded module Gq(M) are always locally pseudo
Cohen-Macaylay if M is a pseudo Buchsbaum module.

2. Preliminaries

Let (A, m) be a commutative Noetherian local ring and M a finitely gener-
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ated module with dimM = d > 0. Let x = (x1, . . . , xd) be a system of
parameters of M and n = (n1, . . . , nd) a d-tuple of positive integers. Set
x(n) = (xn1

1 , . . . , xnd

d ). Then the difference between multiplicities and lengths

JM (x(n)) = n1 . . . nde(x; M)− �(M/QM (x(n)))

can be considered as a function in n. Note that this function is non-negative
([1, Lemma 3.1]) and ascending, i.e., for n = (n1, . . . , nd), m = (m1, . . . , md)
with ni ≥ mi, i = 1, . . . , d, JM (x(n)) ≥ JM (x(m)) ([1, Corollary 4.3]). More-
over, we know that �(M/QM (x(n))) is just the length of generalized fraction
M(1/(xn1

1 , . . . , xnd

d , 1)) defined by Sharp and Hamieh [10]. Therefore, we can
describe Question 1.2 of [10] as follows: is JM (x(n)) a polynomial for large
enough n (n � 0 for short)? A negative answer for this question is given in [4].
But, the function JM (x(n)) is bounded above by the polynomial n1 . . . ndJM (x),
and more general, we have the following result.

Theorem 2. [3, Theorem 3.2] The least degree of all polynomials in n bound-
ing above the function JM (x(n)) is independent of the choice of a system of
parameters x.

The numerical invariant of M given in the above theorem is called the
polynomial type of fractions of M and denoted by pf(M) [3, Definition 3.3].
For convenience, we stipulate that the degree of the zero-polynomial is equal
to −∞.

Definition 1.
(i) [5, Definition 2.2] M is said to be a pseudo Cohen Macaulay module if

pf(M) = −∞.

(ii) [2, Definition 3.1] An A-module M is called a pseudo Buchsbaum module
if there exists a constant K such that JM (x) = K for every system of
parameters x of M.

A is called a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) ring if it is
a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) module as a module over
itself.

It should be mentioned that every Cohen Macaulay module is pseudo Cohen
Macaulay and the class of pseudo Buchsbaum modules contains the class of
pseudo Cohen Macaulay modules. In [1] and [2], we showed that the class of
pseudo Buchsbaum modules strictly contains the class of Buchsbaum modules,
but it does not contain the class of generalized Cohen Macaulay modules.

Next, we recall characterizations of these modules from [5] and [2].

Proposition 1. M is a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) A-
module if and only if M̂ is a pseudo Cohen Macaulay (resp. pseudo Buchsbaum)
Â-module.

Note that for an A-module M (A is not necessarily a local ring) we usually
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use in this paper the following notations

Assh M = {p ∈ Ass M | dimA/p = dimM}.
Let 0 = ∩

pi∈AssM
N(pi) be a reduced primary decomposition of the submodule 0

of M. We put

UM (0) = ∩
pj∈AsshM

N(pj) and M = M/UM (0).

Then UM (0) does not depend on the choice of a primary decomposition of the
zero-submodule of M. Notice that UM (0) is the largest submodule of M of
dimension less than dimM and Ass M = Assh M , dimM = dimM.

Theorem 3. ([5, Theorem 3.1], [2, Lemma 4.4]) Suppose that A admits a
dualizing complex. Then the following statements are true.
(i) M is a pseudo Cohen Macaulay module if and only if M is a Cohen Macaulay

module.
(ii) M is a pseudo Buchsbaum A-module if and only if M is a Buchsbaum A-

module. Moreover, in this case we have

JM (x) =
d−1∑
i=1

(
d − 1
i − 1

)
�(Hi

m(M)),

for every system of parameters x = (x1, . . . , xd) of M, where Hi
m(M) stands

for the ith local cohomology module of M with respect to the maximal ideal
m.

3. Proof of Theorem 1

Let
ϕ : Rq(M) → Rq(M) and π : Gq(M) → Gq(M)

be the canonical epimorphisms, where M = M/UM (0). Then we have

Ker ϕ = ⊕
i≥0

(UM (0) ∩ qiM)T i and Ker π = ⊕
i≥0

qiM ∩ (qi+1M + UM (0))
qi+1M

.

To prove Theorem 1 we need some auxiliary lemmata.

Lemma 1. With the same notations as above, then we have Ker ϕ = URq(M)(0).

Proof. It is clear that Ass Ker ϕ ⊆ Ass Rq(M). For each p ∈ Spec A we
denote p̃ := ⊕

i≥0
(p ∩ qi)T i. Take any P ∈ Assh Rq(M). Then there exists

p ∈ Assh M such that P = p̃ (see [11, Lemma 1.7 and Lemma 3.1, chap IV]).
Since dimUM (0) < dimM ,(UM (0))p = 0. Therefore we have

(Ker ϕ)
(p̃)

= ( ⊕
i≥0

(UM (0) ∩ qiM)T i)
(̃p)

= 0.
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Thus (Ker ϕ)(P) = 0. It follows that (Ker ϕ)P = 0. Therefore dim Kerϕ <

dimRq(M).
Let K = ⊕

i≥0
KiT

i be a homogeneous submodule of Rq(M) with K ⊃ Ker ϕ.

Then we have KiT
i ⊇ (UM (0)∩qiM)T i for all i ≥ 0 and there exists j ≥ 0 such

that Kj ⊃ (UM (0)∩ qjM). Since K ⊆ Rq(M), Kj ⊆ qjM. Hence Kj �⊆ UM (0).
Set V = Kj + UM (0). We have V ⊃ UM (0). Thus dimV = dimM. Therefore
there exists p ∈ Assh V ∩ Assh M. Hence 0 �= Vp = (Kj)p ⊆ Kp̃ ,h

⊆ K p̃ .

Thus we get Kp̃ �= 0, i.e, p̃ ∈ SuppK ⊆ Supp Rq(M). On the other hand

P̃ ∈ Assh Rq(M) (see [11, Lemma 1.7 and Lemma 3.1, chap IV]). Combining
these facts, we get dimK = dimRq(M) and therefore Ker ϕ is the largest
homogeneous submodule of Rq(M) of dimension less than dimRq(M).

Moreover, we can choose a reduced primary decomposition of the submodule

0 in Rq(M) such that 0Rq(M) =
l∩

i=1
Qi with Qi is the homogeneous primary

submodule of Rq(M) belonging to homogeneous prime Pi (see [9, Proposition
10 B]). Then URq(M)(0) is a homogeneous submodule of Rq(M). On the other
hand, URq(M)(0) is the largest submodule of Rq(M) of dimension less than
dimRq(M). Therefore Ker ϕ = URq(M)(0). �

Let N be a submodule of M such that dimN < dim M. Set M ′ = M/N. If
q is a parameter ideal of M , then it is clear that q is a parameter ideal of M ′.
But the converse is not true. It means that there exists a parameter ideal q′ of
M ′ but q′ is not a parameter ideal of M. However, we have the following result.

Lemma 2. Let q′ be a parameter ideal of M ′. Then there exists a parameter
ideal q of M such that q + AnnM ′ = q′ + AnnM ′. In particular we have
Rq(M ′) = Rq′(M ′) and Gq(M ′) = Gq′ (M ′).

Proof. Let q′ be a parameter ideal of M ′ and let (x1, . . . , xd) be a system of
parameters of M ′ such that q′ = (x1, . . . , xd)A. Then the lemma is proved if we
can show the existence of a system of parameters (y1, . . . , yd) of M such that

(y1 , . . . , yd)R + AnnM ′ = (x1, . . . , xd)R + AnnM ′.

To prove this we first claim by introduction on i that there exists a system of
parameters (y1, . . . , yd) of M such that yi = xi+ai with ai ∈ (xi+1, . . . , xd)A+
Ann M ′ for all i = 1, . . . , d. In fact, since x1 is a parameter element of M ′

and Assh M = Assh M ′, we have x1 is a parameter element of M. We choose
y1 = x1. Suppose that we already have for 1 � k < d a part of the system of
parameters (y1, . . . , yk) of M as required. We have to show that there exists
a parameter element yk+1 of M/(y1, . . . , yk)M such that yk+1 = xk+1 + ak+1

with ak+1 ∈ (xk+2, . . . , xd)A + AnnM ′. Let q1 = (x1, . . . , xd)A + AnnM ′.
Since (x1, . . . , xd) is a system of parameters of M ′, we have q1 is a m-primary
ideal. Therefore q1 �⊆ p for all prime ideals p with dimA/p > 0. It then follows
that

(xk+1, . . . , xd)A + AnnM ′ �⊆ p
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for all p ∈ Assh (M/(y1, . . . , yk)M. Indeed, if (xk+1, . . . , xd)A + Ann M ′ ⊆ p
for some p ∈ Assh (M/(y1 , . . . , yd)M), then

q1 = (x1, . . . , xd)A + AnnM ′

= (y1, . . . , yk, xk+1, . . . , xd)A + AnnM ′ ⊆ (y1, . . . , yk)A + p = p

as the choice of y1, . . . , yk. This gives a contradiction since dim A/p > 0. There-
fore we can choose by [8, Theorem 124] an element ak+1 ∈ (xk+2, . . . , xd)A +
Ann M ′ such that xk+1 + ak+1 �∈ p for all p ∈ Assh (M/(y1, . . . , yk)M). Let

yk+1 = xk+1 + ak+1. Then yk+1 is a parameter element of M/(y1, . . . , yk)M
and the claim is therefore proved.

Now, let (y1, . . . , yd) be a system of parameters of M as required. Then we
can check that

(y1, . . . , yd)R + AnnM ′ = (x1, . . . , xd)R + Ann M ′

by the choice of y1, . . . , yd. We set q = (y1, . . . , yd)A. Then we have q +
Ann M ′ = q′ + Ann M ′; Rq(M ′) = Rq′(M ′) and Gq(M ′) = Gq′(M ′). �

Now we are able to prove the first statement of Theorem 1.

Proof of Statement (i) of Theorem 1. Let q be a parameter ideal of M. We have
known that R

qÂ
(Â) ∼= Rq(A) ⊗A Â and RqÂ

(M̂) ∼= Rq(M) ⊗A Â. Moreover,

let q̂ denote a parameter ideal of M̂. Then there is a parameter ideal q of M
with q̂M̂ = (qÂ)M̂. Hence Rq̂(M̂) = R

qÂ
(M̂). Therefore Rq̂(M̂) is a pseudo

Buchsbaum (resp. pseudo Cohen Macaulay) module for all parameter ideals
q̂ of M̂ if and only if Rq(M) is a pseudo Buchsbaum (resp. pseudo Cohen
Macaulay) module for all parameter ideals q of M. On the other hand, M̂ is
a pseudo Buchsbaum (resp. pseudo Cohen Macaulay) module if and only if
M is a pseudo Buchsbaum (resp. pseudo Cohen Macaulay) by Proposition 1.
Therefore without any loss of generality, we may assume that A = Â.

Let M be a pseudo Buchsbaum module and q any parameter ideal of M.
Then M is Buchsbaum by Theorem 3. Hence Rq(M) is Buchsbaum (see
[11, Theorem 2.10, Chap. IV]). Thus Rq(M)M/URq(M)(0)M is Buchsbaum
by Lemma 1. Since A is complete, Rq(A) is catenary. Then we can check that
URq(M)(0)M = URq(M)M(0). Therefore Rq(M)M is a pseudo Buchsbaum by
Theorem 5.

Conversely, let Rq(M) be a pseudo Buchsbaum module for all parameter
ideals q of M. Let q be any parameter ideal of M. Then we have Rq(M) ∼=
Rq(M)/URq(M)(0) by Lemma 1. Hence Rq(M)M ∼= Rq(M)M/URq(M)(0)M =
Rq(M)M/URq(M)M

(0). Therefore Rq(M)M is a Buchsbaum module by Theo-
rem 3. Take any parameter ideal q of M, there exists by Lemma 2 a parameter
ideal q of M such that Rq(M) = Rq(M).

Combining these facts we get that Rq(M) is a Buchsbaum module for all
parameter ideals q of M. On the other hand, depth M > 0. Therefore, M is
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a Buchsbaum module by [11, Theorem 3.3, Chap IV]. Thus M is a pseudo
Buchsbaum module by Theorem 3. Statement (i) of Theorem 1 is proved. �

In order to prove the second statement of Theorem 1 we need some more
lemmas.

Lemma 3. P /∈ Supp (Ker ϕ), for all P ∈ Assh Gq(M).

Proof. Let P ∈ Assh Gq(M). Suppose that P ∈ Supp (Ker ϕ). Then we have

dim M = dimRq(A)/P � dimRq(A)/Ann Ker ϕ = dim(Ker ϕ) < dimM + 1

by Lemma 1. It follows that dim( Ker ϕ) = dimM and P ∈ Assh (Ker ϕ).
Thus dim(Ker ϕ)P = 0. Hence

dim(Ker ϕ)(P) = 0.

On the other hand, [P]0 = M ∈ Supp M (see [11, Lemma 3.1, Chap. IV]).
Further, [P]1 ⊂ qT. Because, if [P]1 = qT then P ⊇ qT. It follows that P =
[P]∗0 = M∗ = M ⊕ ( ⊕

i>0
qiT i) = M. However, M /∈ Assh Gq(M). Therefore, by

[11, Lemma 1.3 (ii), Chap IV], there exists x ∈ q, xT /∈ [P]1 such that x is a
non-zero divisor with respect to Rq(M)(P). Since (Ker ϕ)(P) ⊂ Rq(M)(P), x is
a non-zero divisor with respect to (Ker ϕ)(P). This is a contradiction. Therefore
the lemma is proved. �

Lemma 4. dim Ker π < dim Gq(M).

Proof. We have

Ker π = ⊕
i≥0

qiM ∩ (qi+1M + UM (0))
qi+1M

= ⊕
i≥0

qi+1M + (qiM ∩ UM (0))
qi+1M

∼=
qRq(M) + URq(M)(0)

qRq(M)
∼=

URq(M)(0)

qRq(M) ∩ URq(M)(0)
.

Then we get
(Ker π)P ∼= URq(M)(0)P/(qRq(M) ∩ URq(M)(0))P = 0,

for all P ∈ Assh Gq(M) by Lemma 3. Thus dimKer π < dimGq(M). �

Lemma 5. Let A be a commutative Notherian local ring, M be a finitely
generated A-module. Suppose that N is a submodule of M such that dimN <
dimM. Then M is a pseudo Buchsbaum module if and only if so is M/N.

Proof. Recall that U
M̂

(0) is a largest submodule of M̂ of dimension less than

dim M̂. Then N̂ ⊆ U
M̂

(0) and U
M̂

(0)/N̂ is a largest submodule of M̂/N̂ of
dimension less than dim M̂/N̂ . Further, (M̂/N̂)/(U

M̂
(0)/N̂) ∼= M̂/U

M̂
(0).

Let M be a pseudo Buchsbaum module. Then M̂/U
M̂

(0) is a Buchsbaum Â-
module by Proposition 1 and Theorem 3. Thus M̂/N̂ is a pseudo Buchsbaum
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Â-module by Theorem 3. It follows that M/N is a pseudo Buchsbaum A-
module by Proposition 1.

For the converse, let M/N be a pseudo Buchsbaum A-module. Then M̂/N̂

is a pseudo Buchsbaum Â-module by Proposition 1. Therefore M̂/U
M̂

(0) is

a Buchsbaum Â-module by Theorem 3. Thus M̂ is a pseudo Buchsbaum Â-
module by Theorem 3. So M is a pseudo Buchsbaum module by Proposition
1. �

Now we prove the second statement of Theorem 1.

Proof of Statement (ii) of Theorem 1. By the same argument in the proof of
Stament (i) of Theorem 1, we can assume without loss of generality that A is
complete.

Assume that M is a pseudo Cohen Macaulay (resp. pseudo Buchsbaum)
module. Then M is a Cohen Macaulay (resp. pseudo Buchsbaum) module
by Theorem 3. Let q be any parameter ideal of M. Then Gq(M) is a Cohen
Macaulay (resp. Buchsbaum) module (see [11, Theorem 2.1, Chap IV]). Hence
Gq(M)/Ker π is a Cohen Macaulay (resp. Buchsbaum) module. It means that
Gq(M)M/(Ker π)M is a Cohen Macaulay (resp. Buchsbaum) module. On the
other hand, we have dim(Ker π)M � dimKer π < dimGq(M) = dimGq(M)M
by Lemma 4. Therefore, if M is a pseudo Cohen-Macaulay module, we can
check that pf(Gq(M)M) = pf(Gq(M)M/(Ker π)M) = −∞. This means that
Gq(M) is a pseudo Cohen Macaulay. Further, if M is a pseudo Buchsbaum
module, then by Lemma 5 Gq(M) is a pseudo Buchsbaum module. �

For pseudo Cohen Macaulayness of Rees module, we only have the following
result.

Proposition 2. Let M be a pseudo Cohen Macaulay module. Then Rq(M) is
a pseudo Cohen Macaulay module for all parameter ideals q of M.

Proof. By the same argument in the proof of Statement (i) of Theorem 1, we
can assume without loss of generality that A is complete. Since M is pseudo
Cohen Macaulay, M is Cohen Macaulay by Theorem 3. Thus Rq(M) is Cohen
Macaulay for all parameter ideals q of M (see [11, Theorem 2.11, Chap. IV]).
Let q be any parameter ideal of M. We have Rq(M) ∼= Rq(M)/URq(M)(0) by
Lemma 1. Therefore

Rq(M)M ∼= Rq(M)M/URq(M)(0)M = Rq(M)M/URq(M)M
(0).

It follows that Rq(M)M is a Cohen Macaulay. The statement is proved.
�

Remark 1. The converse of Proposition 2 is not true. In fact, let k be a field and
s, t indeterminates. Take A = k[[s4, s3t, st3, t4]]. Then the Rees algebra Rq(A)
is a Cohen Macaulay ring for every parameter ideal q of A by [6, Proposition
4.8]. But it is well-known that A is not a Cohen Macaulay ring. However, A is
Buchsbaum with H0

M(A) = 0 and H1
M(A) = k. Therefore A = A/UA(0) = A is
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not pseudo Cohen Macaulay by Theorem 3.

4. Locally Pseudo Cohen–Macaulay Modules

For any module M we set

Supph M = {p ∈ Supp M | ∃q ∈ Assh M, q ⊆ p}.
We start with the following definition.

Definition 2. Rq(M) (resp. Gq(M)) is called a locally pseudo Cohen–Macaulay
module if Rq(M)(P) (resp. Gq(M)(P)) is a pseudo Cohen–Macaulay module for
all homogeneous prime ideals P ∈ Supph Rq(M)\M (resp. P ∈ Supph Gq(M)\
M) of Rq(A).

Lemma 6. Assume that A has a dualizing complex. Then URq(M)(0)(P) is the
largest submodule of Rq(M)(P) of dimension less than dimRq(M)(P) for all
homogeneous prime ideals P ∈ Supph Rq(M).

Proof. Let P ∈ Supph Rq(M). Since A has a dualizing complex, we can
check that URq(M)(0)P is the largest submodule of Rq(M)P of dimension less
than dimRq(M)P. Furthermore, dimURq(M)(0)(P) = dimURq(M)(0)P and
dimRq(M)P = dimRq(M)(P) (see [11, Lemma 2.27, Chap IV]). This implies
that dimURq(M)(0)(P) < dimRq(M)(P).

On the other hand, let N be a submodule of Rq(M)(P) with dimN <
dimRq(M)(P). Then N ⊂ Rq(M)P and dimN < dimRq(M)P. Thus N ⊆
URq(M)(0)P. It follows that N ⊆ URq(M)(0)(P). Therefore the lemma is proved.

�

Proposition 3. Let M be a pseudo Buchsbaum module. Then Rq(M) is a
locally pseudo Cohen Macaulay module for all parameter ideals q of M.

Proof. Let M be a pseudo Buchsbaum module. Then M is a Buchsbaum
module by Theorem 3, (ii). Hence Rq(M) is a locally Cohen Macaulay module
for all parameter ideals q of M by [11, Theorem 3.2, Chap. IV].
Let q be a parameter ideal of M. Then q is also a parameter ideal of M and
Rq(M)/URq(M)(0) is a locally Cohen Macaulay module by Lemma 6. It means
that Rq(M)(P)/URq(M)(0)(P) is a Cohen Macaulay module for all homogeneous
prime ideals P ∈ SupphRq(M) \ M. Therefore Rq(M)(P) is a pseudo Cohen
Macaulay module for all homogeneous prime ideals P ∈ SupphRq(M) \ M by
Lemma 6 and Theorem 3, (i), i.e., Rq(M) is a locally pseudo Cohen Macaulay
module. �

Lemma 7. Let Rq(M) be a locally pseudo Cohen Macaulay module. Then
Gq(M) is a locally pseudo Cohen Macaulay module.

Proof. Suppose that Rq(M) is a locally pseudo Cohen Macaulay module i.e.,
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Rq(M)(P) is a pseudo Cohen Macaulay module for all homogeneous prime ideals
P ∈ SupphRq(M) \ M of Rq(A).

Let P ∈ Supph Gq(M) \ M. If Gq(M)(P) = 0 then Gq(M)(P) is a pseudo
Cohen Macaulay module. If Gq(M)(P) �= 0 and [P]1 = qT , then P = M. Thus
we may assume that Gq(M)(P) �= 0 and [P]1 �= qT. Then we can choose an
element x such that x ∈ q, xT /∈ [P]1. Moreover, x is a non-zero divisor with
respect to Rq(M)(P) and Gq(M)(P)

∼= Rq(M)(P)/xRq(M)(P) by [11, Lemma
1.3 (ii), Chap. IV]. Therefore Gq(M)(P) is a pseudo Cohen Macaulay module
by [5, Corollary 3.4]. Therefore Gq(M) is a locally pseudo Cohen Macaulay
module. �

Proposition 4. Let M be a pseudo Buchsbaum module. Then Gq(M) is a
locally pseudo Cohen Macaulay module for all parameter ideals q of M.

Proof. Since M is a pseudo Buchsbaum module, Rq(M) is a locally pseudo
Cohen Macaulay module for all parameter ideals q of M by Proposition 3.
Therefore the statement follows from Lemma 7. �

Acknowledgments. The authors would like to thank Macel Morales for his useful

suggestions and conversations.

References

1. N.T. Cuong, N.T. Hoa, and N.T.H. Loan, On certain length functions associated

to a system of parameters in local rings, Vietnam J. Math. 27 (1999) 259–272.

2. N.T. Cuong and N.T.H. Loan, A characterization for pseudo Buchsbaum mod-

ules, Japanese J. Math. 30 (2004) 165–181.

3. N.T. Cuong and N.D. Minh, Lengths of generalized fractions of modules having

small polynomial type, Math. Proc. Camb. Phil. Soc. 128 (2000) 269–282.

4. N.T. Cuong, M. Morales, and L.T. Nhan, On the length of generalized fractions,

J. Algebra 265 (2003) 100–113.

5. N.T. Cuong and L.T. Nhan, Pseudo Cohen Macaulay and pseudo generalized

Cohen Macaulay modules, J. Algebra 267 (2005) 156–177.

6. S. Goto and Y. Shimoda, On Rees algebra over Buchsbaum rings, J. Math. Kyoto.

Univ. (JMKYAZ), 20 (1980) 691–708.

7. R. Hartshorne, Property of A-sequence, Bull. Soc. Math. France 4 (1966) 61–66.

8. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.

9. H. Matsumura, Commutative Algebra, W. A. Benjamin. Inc., 1970.

10. R.Y. Sharp and M.A. Hamieh, Lengths of certain generalized fractions, J. Pure

Appl. Algebra 38 (1985) 323–336.

11. J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Spinger–Verlag,

Berlin–Heidelberg–New York, 1986.


