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Abstract. The most kinds of generalized convexities cannot resist perturbations,
even linear ones, while real application problems are often affected by disturbances,
both linear and nonlinear ones. For instance, we showed earlier that quasiconvexity,
explicit quasiconvexity, and pseudoconvexity cannot withstand arbitrarily small lin-
ear disturbances to keep their characteristic properties, and convex functions are the
only ones which can resist every linear disturbance to preserve property “each local
minimizer is a global minimizer”, but it fails if perturbation is nonlinear, even with
arbitrarily small supremum norm. In this paper, we present some sufficient conditions
for the outer -convexity and the inner y-convexity of disturbed functions, for instance,
when convex functions are added with arbitrarily wild but accordingly bounded func-
tions. That means, in spite of such nonlinear disturbances, some weakened properties
can be saved, namely the properties of outer y-convex functions and inner 7y-convex
ones. For instance, each y-minimizer of an outer y-convex function f : D — R de-
fined by f(2*) = inf,cp(u+,4)np f() is a global minimizer, or if an inner y-convex
function f : D — R defined on some bounded convex subset D of an inner product
space attains its supremum, then it does so at least at some strictly y-extreme point
of D, which cannot be represented as midpoint of some segment [z, 2"] C D with
|2/ = 2"|| > 27, ete.
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1. Introduction

As ideal mathematical object, convex functions have several particular proper-
ties. Two of them are:

(o) each local minimizer is a global minimizer,

(0) if a convex function defined on a finite-dimensional compact set D attains

its supremum, then it does so at least at some extreme point of D
(see, e.g., [17,18],...). These properties are useful for optimization. («) serves
as a sufficient condition for global minimum and justifies local search. Due to
(8), in order to seek a global maximizer, one can restrict himself to investigating
extreme points, as done by simplex method.

A generalization trend to get similar properties for wider function classes
consists of different kinds of rough convexity, where some characteristics are
required to be satisfied at some certain places between points whose distance is
greater than given roughness degree v > 0. Some representatives are global 6-
convexity ([3]), rough p-convexity ([2,19]), v-convexity ([4, 6]), and symmetrical
~-convexity ([1]). All mentioned kinds of roughly convex functions have two
properties similar to (a) and (), namely:

(cy) each y-minimizer of f : D — R defined by f(z*) = inf,cp(y+ y)np f(7) is a
global minimizer,

(By) under some suitable additional hypothesis, if f : D — R attains its supre-
mum, then it does so at least at some strictly y-extreme point of D, which
cannot be represented as midpoint of some segment [2/, 2] C D with ||z’ —
21 > 2+

(see [8]). But they are by far not general enough in order to model a lot of
important practical problems. To get a function class which is as wide as possible
and has such properties, we choose two separate ways for generalization, because
essentially different natures hide behind minimum and maximum. Outer -
convexity is introduced in [10] and [15] to get (o) and other properties similar
to those of convex functions relative to their infimum. Inner y-convexity is
defined in [11] and [12] to obtain (/) and other similar properties relative to
supremum.

In the present paper, we show the outer v-convexity and the inner v-convexity
of some classes of disturbed functions. As consequence, these disturbed functions
inherit the mentioned optimization properties of roughly convex functions.

Such a research is of practical importance because real application problems
are almost always affected by disturbances, while the most kinds of generalized
convexities cannot resist perturbations. We showed in [13] that known kinds of
generalized convexities like quasiconvexity, explicit quasiconvexity, and pseudo-
convexity cannot withstand arbitrarily small linear disturbances to keep their
characteristic properties. Due to [14], convex functions are the only ones which
can resist every linear disturbance to preserve property («), i.e. concretely, if
the sum of some certain lower semicontinuous function f : [a,b] C R — R and an
arbitrary linear function always has property («), then f must be convex. Simi-
larly, if the sum of some certain lower semicontinuous function f : [a,b] CR — R
and an arbitrary linear function always has property (o), then f must be outer
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~-convex, i.e., only outer y-convex functions withstand all linear disturbances to
hold (a) (see [14] and [15]).

How about nonlinear disturbances? In general, convex functions cannot tol-
erate relatively wild disturbances without losing their characteristic properties,
even if the supremum norm of disturbances is arbitrarily small. But we will
present in Sec. 1 and Sec. 2 some classes of convex functions which remain to be
outer y-convex and/or inner y-convex if they are disturbed by arbitrarily wild
but accordingly bounded disturbances, i.e., some weakened properties can be
saved in spite of such wild disturbances, namely properties of outer y-convex
and inner y-convex functions.

Throughout this paper, X is a normed linear space over the field of real
numbers, D is a convex subset of X, and +y is a positive real number. For any
o and x1 in X, let us denote

zx = (1 = Nzo + Azy. (1)
Moreover, the following notations are used
B(z,r):={2d' e X | ||z —2'|| < r},
B(z,r):={d' e X |||z —2/|| <r}.

2. Outer 1-Convexity of Disturbed Functions
A real-valued function f : D — R is said to be outer y-convex or strictly outer

~v-convexr with respect to (w.r.t. for short) roughness degree v > 0 if for all
xo, 1 € D there exists A C [0, 1] such that

[0, 21] C {xx | X € A} + B(0,v/2) (2)
and
VAEA: f(za) < (1= A)f(zo) + Af(21), (3)
VA€ A: f(za) < (1= A)f(zo) + Af(21), (4)
respectively.

(2) holds if and only if there exist k € N and \; € A C [0,1],:=0,1,...,k
such that

Mo=0, Ap=1,0< A1 — A < —
lzo — 1]l

for i=0,1,....k—1, (5)
since it follows from (1) that (5) just means zy, = xo, T, = =1, and

lzx, = x|l = Nigr = Ai) [[wo — 21| £y for i=0,1,...,k—1.

Note that conditions (2)—(3) are proper only when ||xg — z1|| > 7, because if
lzo — 21]] < then these conditions are always fulfilled by choosing A = {0, 1}.

The relation between convexity and outer y-convexity is given by the follow-
ing.
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Proposition 1.

(a) Every convex function is outer vy-conver w.r.t. any v > 0.

(b) f+ g is outer y-convez if f is outer y-convex and g is conver.

(¢) f-+g is strictly outer y-convex if [ is strictly outer y-convex and g is conver,
or if f is outer y-convexr and g s strictly convez.

The above assertions follow directly from definition, so their proof are omit-
ted.

The concrete form of property (a) of outer y-convex functions is as follows.

Theorem 2. ([10,15]) Let f : D — R be outer y-convexr and let * € D.

(a) If f(z*) = infoc gz 4)np f(x) then f(z*) = infiep f(2), i-e., ay-minimizer
is a global minimizer.

(b) If there exists an € > 0 such that liminf, .« f(x) = infyepar y+eonp f(2)
then liminf, .« f(z) = infyep f(x), i.e., a local v-infimizer is a global in-
fimizer.

An important property of strictly convex functions is that they have at most
one minimizer. This uniqueness is crucial for proving the continuity of optimal
solutions or of optimal control functions. A roughly generalized version of strictly
convex functions was investigated in [9], whose result was applied in [16] to show
the rough continuity of the optimal control of a transportation problem. Since a
strictly outer y-convex function is strictly r-convexlike w.r.t. » = ~, Proposition
2.2 in [9] yields immediately the following.

Proposition 3. If f: D — R is strictly outer vy-convex, then the diameter of
the set of its global minimizers (if any) is not greater than ~.

A remarkable property of convex functions is concerned with the existence
of a subgradient £ € X* at some 2* € D defined by

VzeD: f(z) = f(z") + (&2 —27)

(see [18]). Outer v-convex functions have a similar property as follows.

Theorem 4. ([10]) Let X = R"™ be some n-dimensional normed vector space,
and D C X be compact and convex. Let f: D — R be outer y-convez, bounded
below, and lower semicontinuous. Then for all z* € ri D, there is £ € R™ such
that

3z € B(z*, Js(X)/2) Vz€D: f(z) > f(Z) + (& 2 — 2),

where
2 conv S .
Js(X) :=sup 7"75() S C X bounded, non-empty, non-singleton p ,
diam S
with Teonvs(S) = inf  supl|lz — y||, diam S = sup ||z — y||, is the so-called
€convSy€S z,yeS

self-Jung constant.
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Let us now come to the outer ~-convexity of disturbed functions. The next
three propositions deal with disturbances which are already outer y-convex,
therefore, due to Proposition 1, if we add it to any convex function, the sum is
obviously outer y-convex, too.

Proposition 5. (Insistent disturbance) Suppose
ZER, 0< 2T — 29 <~ forall je (6)
Let D C R be any interval and g : D — R be any function satisfying
g(z7) = xnelg g(x) for all 27 € D. (7)
Then g is outer ~y-convex. Hence, f+g is outer y-convex if f : D — R is convexz.
Proof. Consider arbitrary xg,z1 € D with x1 — x9 > 7. By choosing

W = (vo — 2") /(w0 — 71), j € Z,

we have
0<uj“—uj:_zj+l+zj_ T jez, (8)
Lo — 1 |To — 1]
and
T =1 — oo+ pley =27, jeL. (9)
Let

j7 = min{j | @ >0}, k= max{j— j* [ /! < 1),
MN=0 \=1 N=p" fori=1,....k—1.
Then (8)—(9) imply

OS)\iJrl_)\i S,uiJrlJrj* —,uiJrj* S # for iZO,l,...,k—l,
lzo — =1
and
glwr,) = g(z"t") = inf g() < (1= Xi)g(wo) + Nig(1) fori=1,2,... k-1,

i.e., (3) and (5) hold for A = {); | 0 < i < k}. By definition, g is outer -convex.
Due to Proposition 1, if f: D — R is convex then f + g is outer y-convex. m

In particular, if infyep g(z) = 0, then (6)—(7) describe an one-sided non-
negative disturbance function, which vanishes at least once in every arbitrary
interval [z, z + 7] C D.

Proposition 6. (y-homogenous disturbance) Let D C R be any interval and
g: D — R be any function satisfying

[z,24+ 7] C D= g([z,z+1]) = g(D) (10)

Then g is outer ~y-convex. Hence, f+ g is outer y-convex if f : D — R is convexz.
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Obviously, (10) yields (11). Therefore, Proposition 6 follows directly from
the next one.

Proposition 7. Let D C R be any interval and g : D — R be any function
satisfying

([z,z+1] C D, y € g(D)) = (32’ € [z, 2 +7] : g(z') < y). (11)
Then g is outer y-convex. Hence, f+g is outer y-convex if f : D — R is convexz.
Proof. Consider arbitrary xg,z; € D with 1 — x9 > 7. Let
A= {A€[0,1] | glzx) < minfg(zo), g(1)}.

then g satisfies (3) and {0,1} C A. If (2) is not fulfilled, then there are X and
A such that

0<)\/<)\//<1, [)\/,)\N]QAZQ, CC)\//—.I)\/>")/,
This means that
g(x) > min{g(zp), g(x1)} for all x € [z, zr1],

a contradiction to (11). Therefore, (2) is fulfilled, too. By definition, g is outer
~v-convex. Due to Proposition 1, if f : D — R is convex then f + g is outer
~-convex. ]

In the following, we consider bounded disturbances, which may be arbitrarily
wild from the analytical point of view, nevertheless, the disturbed function is
outer y-convex.

Proposition 8. (Bounded disturbance) Let f : D C X — R be convezr and

() = 3 (@) + o) = £ (3@ +20) ) >0 (12

inf (
z0,z1€D, ||[zo—z1||=y \ 2
and v > 0. Then the disturbed function f = f + g is outer y-convez if the
disturbance function satisfies

lg(z)| < hi(y)/2 for all z € D. (13)

Proof. Consider arbitrary zg,z1 € D and zx = (1 — Nz + A\x1 € [x0, 71]
satisfying

lzo =zl =2 v, [lwo —2all = 7/2, [lz1 — x| = /2. (14)
Let

Y No= A+ Y

Ner--— T S
2|zo — z1]| 2|zo — 21|

Then we have
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oy =1 —=N)zo+ Ny € [wo, ], xar = (1= XNz + N1 €[22, 24]
and
1 ! 12 1
A= 50‘ + A7), an= 5(33/\/ +axar), |lzn —zar| =17. (15)

Since f is convex, there holds

NN

(1-A)f(zo) + M(z1) = (1 - )f(xo)+ N

f(z1)
= (- N)f(xo) + N f(z1) + (1-N) (o) + ' (1))
(flzx) + f@ar)).

Y
N =N =

Hence, (12) and (15) imply

(1= X)) + M) = f(2) 2 3 (Flon) + flan) = F(lax + o)
> hai(7).

This inequality and (13) yield

(1= A)f(wo) + Af(a1) = f(ar)

= (1 =X (f(zo) + g(w0)) + A(f(x1) + g(x1)) — (f(2r) + g(x))

> (L= N)(f(zo) = ha(7)/2) + A(f(21) — h1()/2) — f(2a) — ha(7)/2  (16)
=@ =Nf(zo) + Af(z1) = fl2a) = ha(7)

> 0.

That means

(1= N)f(wo) + Af(a1) = f(zr) (17)

holds for all 2o, 71 € D and xx € [x¢, 71] satisfying (14). Obviously, (2) holds
then for A which contains all A satisfying (14). Thus, by definition, f = f + g is
outer y-convex. ]

Proposition 9. (Bounded disturbance) Let f : D C X — R be conver and
fulfil (12), and let v > 0. Then the disturbed function f = f + g is strictly outer
~v-convez if the disturbance function satisfies

lg(z)] < hi(vy)/2 forall z € D. (18)

Proof. Since the only difference between the assumptions of Proposition 8 and
of Proposition 9 is the substitution of (13) by (18), almost all the proof of
Proposition 8 can be taken over, where only the first greater or equal sign (>)
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in (16) and in (17) must be changed to the greater sign (>). Finally, we obtain
that (4) holds for A which contains all A satisfying (14). n

Ezxample 1. Let X be the n-dimensional Euclidian space and f : X — R be
defined by

fz) = ||z|]* = }ja,x—sh.@w : (19)

Then, for all To = (&)1,...,&)") € X and z; = (511,...,6171) c X satisfying
|lzo — x1]] = 7, we have

5 (F(ao) + f(1) = 75 (w0 +a)

N~

i il 260i° + 261" — (b0i” + 2€0iki + &11°))
— i il (€0 + &15° — 2&0ikns)

= 1 llzo — a1
L

Following, (12) implies hy(y) = 7°/4. Hence, by Proposition 8, the disturbed
function f = f + g is outer y-convex if the disturbance function g : X — R
satisfies

lg(z)] < h1(7)/2 =~%/8 forall z € X, (20)
and, due to Proposition 9, f = f + g is strictly outer v-convex if ¢ fulfils
lg(z)] < h1(7)/2 =~*/8 for all z € X.

Remark 1. Actually, in the proof of Proposition 8, we have proven that if f
and g satisfy (12)—(13) then f + g is globally d-convex w.r.t. § = . Hence,
for f defined by (19) and ¢ satisfying (20), f + g is globally d-convex w.r.t.
0 = 7. Thus, Example 1 shows that in general a globally J-convex function
may be nowhere continuous and therefore also nowhere differentiable. This fact
was shown in [7], but only for functions defined on some interval of R!, while
Example 1 gives us an example for D = X =R", n > 1.

3. Inner y-Convexity of Disturbed Functions

A real-valued function f : D — R is said to be inner y-convex or strictly inner
~v-convex w.r.t. roughness degree v > 0 if there is a fixed refinement rate v €]0, 1]
such that

for all xg, x1 € D satisfying ||zo — 21| = vy

21
and zi41,, = —(1/v)zo+(1+1/v)z1€ D @1
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there holds
sup  (f((1 = Nxo +Azy) = (1= A)f(zo) — Af(21)) >0, (22)
AE[2,141/v]

or

INE 2,1+ /] F((1 = Nzo + Aa1) — (1— N f(zo) — Af(z1) >0, (23)

respectively.

Note that the corresponding positions of zy for A =2 and A =1+ 1/v are
characterized by

lz1 — 22| = [[z1- (—20 + 271)|| = ||x0 — 21| = V7,
lzr =211l = lor—(— (1/v)2o + (L + 1/v)21)|| = (1/v)||20 — 21| = 7.

The next sufficient condition (24) is easier to check than (22), and it becomes
necessary if the considered function is upper semicontinuous. We will use it for
proving Proposition 15.

Proposition 10. ([11])
(a) f:D — R is inner y-convez if there is v €]0, 1] such that for all zg,x1 € D
satisfying (21) there holds

INe2,1+1/v]: f((1 = Nzo+Ax1) > (1 =N f(zo) + Af(z1).  (24)

(b) Let f: D — R be upper semicontinuous. Then it is inner vy-convex if and
only if there is v €]0,1] such that (24) holds for all xg,z1 € D satisfying
(21).

Let us collect some assertions describing the relation between convexity and
inner ~y-convexity.

Proposition 11. ([11])

(a) Fach convex function is inner y-convex and each strictly convex function is
strictly inner y-conver w.r.t. any v > 0.

(b) If f is convex and g is inner vy-convez, then f + g is inner y-conver w.r.t.
the same roughness degree .

(¢) If [ is strictly convex and g is inner y-convex, or if f is convex and g is
strictly inner v-convex, then f+ g is strictly inner y-conver w.r.t. the same
roughness degree .

To characterize the location of maximizers and supremizers of inner «-convex
functions, we need two generalizations of extreme points defined as follows.
z € D is said to be a y-extreme point (or strictly y-extreme point) of D if a repre-
sentation z = 0.5(z' +2”) by 2/, 2" € D is only possible when ||z —2"|| <2+ (or
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2" —2"|| < 27, respectively). One of these notions was introduced in [5] for rep-
resenting finite-dimensional convex sets which are bounded but not necessarily
closed.

For inner ~-convex functions, property (3,) appears as follows.

Theorem 12. ([11]) Let X be an inner product space and D be a bounded convex
subset of X and f: D — R be inner y-convex. If f attains its supremum, then
it does so at some strictly y-extreme point of D.

When introducing Proposition 3, we already mentioned an important prop-
erty of strictly convex functions w.r.t. their minimizers. The second important
property of strictly convex functions is concerned with their maximizers, namely:
a strictly convex function is only able to have maximizers at extreme points of its
domain. For strictly inner y-convex functions, we also have a similar property.

Theorem 13. ([11]) A strictly inner vy-convex function f : D — R can only
have mazimizers at strictly y-extreme points of D.

Due to the generality of inner v-convexity, the existence of maximizers is
not always guaranteed, even for inner «-convex functions defined on compact
sets. Therefore, we consider, in addition, the so-called supremizers z* € D of
f+ D — R defined by

limsup,_, .« f(x) = sup f(x),
x€D

where x belongs to D while converging to z* and it may equal z*. A version of
(By) for supremizers of inner y-convex functions is the following.

Theorem 14. [12] Let X be an inner product space and D C X be bounded. Let
f+D — R be inner v-convex and bounded above and possess supremizers on D.
Then there is at leat a supremizer on the boundary of D relative to affD or at a
v-extreme point of D. If, in addition, D is open relative to afD or dim D < 2,
then there is certainly a supremizer at a y-extreme point of D.

Let us come to two sufficient conditions for the inner «-convexity and the
strict inner y-convexity of disturbed functions when disturbances may behave
very wildly and have only to be bounded by some corresponding quantity.

Proposition 15. Let v >0 and let f : D C X — R fulfil

ha(y) := inf (f(xzo)—2f(x1) + f(=x0 + 2271))) > 0.

z0,21€D, ||xo — 1 ||="7, —x0+221ED
(25)
Then the disturbed function f = [+ g is inner y-conver (with v = 1) if the
disturbance function satisfies

lg(z)| < ha(y)/4 for all z € D. (26)
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Proof. For all zg, x1 € D satistying ||zo — z1|| = v and —x¢ + 221 € D, (25) and
(26) imply

Fxo) = 2 f(x1) + f(—x0 + 221)

= f(zo) + g(x0) — 2 f(z1) — 2g(z1) + f(—z0 + 271) + g(—T0 + 271)

> f(zo) = ha(7)/4 =2 f(z1) = 2ha(7) /4 + f(—x0 + 221) — ha(7) /4 (27)
= f(zo) — 2f(21) + f(—z0 + 221)) — ha(7)

> 0.

Hence, for A = 2,
f((l - )\){EO + )\fEl) = f(—fbo + 2:E1)

—f(zo) +2 f(a1)
(1= N f(zo) + Af(21),

i.e., (24) holds for » = 1 and A = 2. Due to Proposition 10, f is inner y-convex.
|

It is worth emphasizing that in Proposition 15 function f is not required to
be convex. Condition (25) means only a concrete demand to the y-midpoint
convexity.

Proposition 16. Lety > 0 and let f : D C X — R fulfil (25). Then the
disturbed function f = [+ g is strictly inner y-conver (with v = 1) if the
disturbance function satisfies

lg(x)| < ha(y)/4  for all z € D. (28)

Proof. Since “<” in (26) is replaced by “<” in (28), “<” in (27) must also be
replaced by “<” accordingly. Following, for A = 2, we have

F((1 = Nazo + Az1) = f(—20 + 221)
> —f(x0) +2 f(a1)
= (1= 2 f(wo) + Af(1),
i.e., (23) holds for » = 1 and A = 2. By definition, f is strictly inner y-convex.

Ezxample 2. Let X be the n-dimensional Euclidian space and f : D — R be
defined by

f ||$||2 Zé.l’ €T = 515' ;gn)
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Then, for all To = (&)1,...,&)") € X and z; = (511,...,6171) c X satisfying
|lzo — x1]] = 7, we have

f(zo) = 2f(x1) + f(—m0 + 221) = [|wol|* — 2 |21 ]| + || — 2o + 221 |

n

> (& - 28k + (—goi +260)°)

=1

=> 2(531' — 281 + fi)
=1

=2|lwo — z1?

=292,

which yields by (25) that ha(y) = 2+2. Therefore, due to Proposition 15, the

disturbed function f = f 4+ ¢ is inner 7-convex if the disturbance function g :
X — R satisfies

lg(z)| < ha(y)/4 =~%/2 forall z € X,
and by Proposition 16, f = f + ¢ is strictly inner y-convex if g fulfils
lg(z)] < ha(7)/4 =~%/2 forall z € X.

4. Concluding Remarks

If f: DC X — R is convex and if disturbance function g : D — R fulfils both
conditions (13) and (26), i.e.,

lg(x)| < min{h1(vy)/2, ha(y)/4} for all x € D,

then the disturbed function f = f+g¢ is both outer y-convex and inner y-convex.
For instance, due to Example 1 and Example 2, if f is defined by (19) and if ¢
satisfies

lg(z)] <~*/8 for all z € X,

then f + ¢ is both outer v-convex and inner y-convex. Following, f + ¢ inherits
all properties of outer y-convex functions and inner v-convex ones.

In this paper, only some properties of outer y-convex functions and inner
~-convex functions are mentioned. Other properties can be found in [10-12],
and [15].
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