Vietnam Journal of MATHEMATICS © VAST 2007

On the Extension of Holomorphic Mappings Around Sets with Zero Hausdorff (2n-1)-Measure

Omar Alehyane¹ and Hichame Amal²

¹ Université Chouaib Doukkali, Département de Mathématiques, Faculté des sciences, B. P. 20, El Jadida, Maroc ² Université Mohammed V, Département de Mathématiques, Faculté des sciences, B.P.1014, Rabat, Maroc

Received September 16, 2006

Abstract. In this paper we give a Noguchi-type convergence-extension theorem for holomorphic mappings from the complement of a closed subset with zero Hausdorff (2n-1)-measure of a domain in \mathbb{C}^n into a Caratheodory complete complex space.

1. Introduction

Our aim in this paper is to study the question concerning the extension of holomorphic mappings around closed sets with zero Hausdorff (2n-1)-measure into a complex space. Let D be a domain of \mathbb{C}^n and $E \subset D$ a closed subset. If E is an analytic set with $\operatorname{codim} E \geq 1$, Kwack [5] proved that all holomorphic mapping f from $D \setminus E$ to a compact complex hyperbolic space X can be extended holomorphically from D to X. That in [12] proved the same result but with X is a Caratheodory complete space. Note that if E is an analytic set then $\mathcal{H}_{2n-1}(E) = 0$.

We have generalized the above result of Thai and give a Noguchi-type convergence-extension theorem for holomorphic mappings. Precisely we proved the following:

Main Theorem. Let D be a domain of \mathbb{C}^n and $E \subset D$ a closed subset such that $\mathcal{H}_{2n-1}(E) = 0$. Then all holomorphic mapping f from $D \setminus E$ to a Caratheodory

complete space X can be extended holomorphically from D to X, and if $\{f_n, n \in \mathbb{N}\} \subset Hol(D \setminus E, X)$ converges uniformly on compact subsets of $D \setminus E$ to f, then $\{\bar{f}_n, n \in \mathbb{N}\}$ converges uniformly to \bar{f} on compact subsets of D, here $\bar{g} \in Hol(D, X)$ is the extension of $q \in Hol(D \setminus E, X)$.

It is likely that this result can be obtained if X is a compact hyperbolic space, but as remarked in the last section, the techniques presented here cannot be used to study this problem.

2. Extension of Holomorphic Mappings

Let γ be a simply closed path in \mathbb{C} and $\Omega(\gamma) := \text{Int } \gamma$. If $\Omega(\gamma) \subset \Omega(\sigma)$, we denote $R(\sigma, \gamma) := \Omega(\sigma) \setminus \bar{\Omega}(\gamma)$.

Let $E \subset \mathbb{C}$ be a closed set such that $\mathcal{H}_1(E) = 0$, then E is nowhere dense and hence for all $a \in E$ we can find a sequence of simply closed paths $\{\gamma_k\}$ in $\mathbb{D} \setminus E$ which converges to a.

Lemma 2.1. Let X be a complex space and f be a holomorphic mapping from $\mathbb{D} \setminus E$ into X, with \mathbb{D} is the unit disc of \mathbb{C} and $E \subset \mathbb{D}$ a closed subset such that $\mathcal{H}_1(E) = 0$. Suppose the following is satisfied: for all a in E and for all sequence of simply closed paths $\{\gamma_k\}$ in $\mathbb{D} \setminus E$ converging to a, a subsequence of $\{f(\gamma_k)\}$ converges to a point of X. Then f extend holomorphically from \mathbb{D} to X.

Proof. The proof is essentially the same as the one given by Kwack in [5] for the case when $E = \{0\}$. Let $a \in E$ and $\{\gamma_k\}$ be a sequence of simply closed paths in $\mathbb{D} \setminus E$ converging to a. After taking a subsequence if necessary, we may assume that the sequence $f(\gamma_k)$ converges to a point p of X. Let V be an open neighborhood of p in X, then there is an open set U of \mathbb{C}^n (which may be taken to be bounded) and a homeomorphism ψ from V to $\psi(V) \subset U$. Thus to prove the lemma it suffices to show that there exists k_o such that $f(\Omega(\gamma_{k_o}) \setminus E) \subset U$, then f can be extended holomorphically to a neighborhood of a (see [2, A1.4]). We can suppose that $p = (0, \dots, 0) \in U$. Let $\varepsilon > 0$ such that $\overline{\Delta}_{\varepsilon} \subset U$ where $\Delta_{\varepsilon} = \{z \in \mathbb{C}^n/|z_i| < \varepsilon\}$, then there is an integer K such that $\forall k \geq K$ we have $f(\gamma_k) \subset \Delta_{\frac{\varepsilon}{2}}$. Suppose that for all k, $f(\Omega(\gamma_k) \setminus E)$ is not contained in $\Delta_{\frac{\varepsilon}{2}}$.

Let $k \geq K$, then there is a simply closed path γ in $\Omega(\gamma_k) \setminus E$ such that $a \in \Omega(\gamma)$ and $f(\gamma) \not\subset \Delta_{\frac{\varepsilon}{2}}$. Set $O_k := \{z \in \Omega(\gamma_k) \setminus E; f(z) \in \Delta_{\frac{\varepsilon}{2}}\}$. Then O_k is open and since $\{\gamma_k\}$ converges to a, there is an integer $k_o \geq k$ such that $\gamma_{k_o} \subset \Omega(\gamma)$, and we have $\gamma_{k_o} \subset O_k$.

Next, let Γ be a connected component of O_k containing γ_{k_o} . Set $\partial^+\Gamma:=\partial\Gamma\cap\Omega(\gamma_{k_o})$ and $\partial^-\Gamma:=\partial\Gamma\cap R(\gamma_k,\gamma_{k_o})$. We have $f(\partial^+\Gamma\setminus E)\subset S_\varepsilon$ and $f(\partial^-\Gamma\setminus E)\subset S_\varepsilon$ where S_ε is the boundary of $\bar{\Delta}_{\frac{\varepsilon}{2}}$. Let W_o be a doubly connected neighborhood of γ_{k_o} contained in Γ . Therefore there are $b^-\in\partial^-\Gamma\setminus E,\ b^+\in\partial^+\Gamma\setminus E,\ b\in\gamma_{k_o}$ and two simply closed paths σ^- and σ^+ such that $b,b^-\in\sigma^-$, $b,b^+\in\sigma^+$, $\Omega(\sigma^-)\subset\Gamma$ and $\Omega(\sigma^+)\subset\Gamma$. Then we can find two simply closed paths γ_k^+ and γ_k^- in $W_o\cup\Omega(\sigma^-)\cup\Omega(\sigma^+)\cup\{b^-,b^+\}$ with $b^-\in\gamma_k^-$ and $b^+\in\gamma_k^+$

1- $a \in \Omega(\gamma_k^+) \cap \Omega(\gamma_k^-)$. 2- $\gamma_k^+ \subset \bar{\Gamma} \cap \Omega(\gamma_{k_o})$ and $\gamma_k^- \subset \bar{\Gamma} \cap [\mathbb{C} \setminus \bar{\Omega}(\gamma_{k_o})]$.

i)- $\gamma_k^+ \cap E = \emptyset$ and $\gamma_k^- \cap E = \emptyset$. ii)- $f(\gamma_k^+) \cap S_{\varepsilon} \neq \emptyset$ and $f(\gamma_k^-) \cap S_{\varepsilon} \neq \underline{\emptyset}$.

iii)- $\Omega(\underline{\gamma_k^+}) \subset \Omega(\gamma_{k_o}) \subset \Omega(\underline{\gamma_k^-})$ and $f(\overline{R(\underline{\gamma_k^-}, \underline{\gamma_k^+})}) \subset \bar{\Delta}_{\frac{\varepsilon}{2}} \subset U$.

As $\overline{R(\gamma_k^-, \gamma_k^+)}$ is a compact subset of $\mathbb{D} \setminus E$, then there is a relatively compact open set W of $\mathbb{D}\setminus E$ which is a neighborhood of $\overline{R(\gamma_k^-,\gamma_k^+)}$ and such that $f(\bar{W})\subset$

Let $z_k \in \gamma_{k_0}$, as $f \in Hol(W, U)$ then

$$\frac{1}{2\pi\sqrt{-1}}\int_{\gamma_{k}^{-}}\frac{f_{i}^{'}(z)}{f_{i}(z)-f_{i}(z_{k})}dz-\frac{1}{2\pi\sqrt{-1}}\int_{\gamma_{k}^{+}}\frac{f_{i}^{'}(z)}{f_{i}(z)-f_{i}(z_{k})}dz>0$$

On the other hand, $f(z_k)$ converges to p, $\{\gamma_k^-\}$ and $\{\gamma_k^+\}$ converge to a. After taking subsequences if necessary we can suppose that $\{f(\gamma_k^-)\}$ and $\{f(\gamma_k^+)\}$ converge respectively to q' and q on X. Also we can assume that $q_1 \neq 0$ and $q_1' \neq 0$. Hence there is an integer K such that $f_1(z_k)$ is not contained in $f_1(\gamma_k^-) \cup q_1' \neq 0$. $f_1(\gamma_k^+)$ for all $k \geq K$, it follows that $\{f_1(\gamma_k^-)\}$ and $\{f_1(\gamma_k^+)\}$ are contained in simply connected domain in \mathbb{C} which do not contain $f_1(z_k)$, then

$$\int_{\gamma_{k}^{-}} \frac{f_{1}^{'}(z)}{f_{1}(z) - f_{1}(z_{k})} dz = \int_{\gamma_{k}^{+}} \frac{f_{1}^{'}(z)}{f_{1}(z) - f_{i}(z_{k})} dz = 0.$$

This is a contradiction.

In the proof of the main theorem we use the following two lemmas about Hausdorff measure [2]:

Lemma 2.2 Let M, N be Riemanian manifolds of class C^1 , let $f: N \longrightarrow M$ be a smooth map, and let E be a subset in N such that $\mathcal{H}_{\alpha}(E) = 0$ for an $\alpha \geq m = dim M$. Then $\mathcal{H}_{\alpha-m}(E \cap f^{-1}(x)) = 0$ for almost all $x \in M$.

Lemma 2.3. Let E be a locally closed set in \mathbb{C}^n such that $\mathcal{H}_{2p+1}(E) = 0$ for some integer p < n. If $a \in E$, then there are r > 0 and a unitary transformation $l: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ such that $B' = B'(a', r) \subset \mathbb{C}^p$, $B'' = B''(a'', r) \subset \mathbb{C}^{n-p}$, $l(E) \cap [B' \times B'']$ is closed in $\overline{B' \times B''}$ and $l(E) \cap [\overline{B'} \times \partial B''] = \emptyset$.

Proof of the main theorem.

(1) The case when n=1: Let $a\in E$ and r>0 such that $\mathbb{D}(a,r)\subset D$. Without loss of generality we may assume that a=0 and r=1. Let $b\in \mathbb{D}\cap E$, $\{\gamma_k\}$ be a sequence of simply closed paths $\{\gamma_k\}$ in $\mathbb{D}\setminus E$ converging to b and $(z_k)_{k\geq 1}$ a sequence such that $z_k \in \gamma_k$. Since z_k converge to b, then $(z_k)_{k>1}$ is a $c_{\mathbb{D}}$ -Cauchy sequence, $(z_k)_{k>1}$ is also a $c_{\mathbb{D}\setminus E}$ -Cauchy sequence. Indeed, let $g\in Hol(\mathbb{D}\setminus E,\mathbb{D})$ then g is extended holomorphically to \tilde{g} from \mathbb{D} into \mathbb{D} (see [2, A1.4]). It follows from the maximum principle applied to $u(z) = |\tilde{g}(z)|$ that $\tilde{g}(\mathbb{D}) \subset \mathbb{D}$ and then for all $x, y \in \mathbb{D} \setminus E$ we have

$$c_{\mathbb{D}\backslash E}(x,y) = \sup_{g\in Hol(\mathbb{D}\backslash E,\mathbb{D})} \rho(x,y) = \sup_{g\in Hol(\mathbb{D},\mathbb{D})} \rho(x,y) = c_{\mathbb{D}}(x,y).$$

From this we deduce that $(f(z_k))_{k\geq 1}$ is a c_X -Cauchy sequence and since c_X is complete, $(f(z_k))_{k\geq 1}$ converges to a point $p\in X$.

Let W be an open neighborhood of p in X and $\varepsilon > 0$ such that the ball $B(p,\varepsilon) \subset W$. There is K_1 such that $c_X(p,f(z_k)) < \frac{\varepsilon}{2}$ for all $k \geq K_1$. We have $L_{c_{\mathbb{D}}\setminus E}(\gamma_k) = L_{c_{\mathbb{D}\setminus E}}(\gamma_k)$, where $L_{c_{\mathbb{D}\setminus E}}(\gamma_k)$ (resp. $L_{c_{\mathbb{D}}\setminus E}(\gamma_k)$) is the diameter of γ_k measured in terms of the Caratheodory distance $c_{\mathbb{D}\setminus E}$ (resp. $c_{\mathbb{D}}$), then $L_{c_{\mathbb{D}\setminus E}}(\gamma_k) \to 0$.

If we denote by $L_{c_X}(f(\gamma_k))$ the diameter of $f(\gamma_k)$ measured in terms of the Caratheodory distance c_X , then we have

$$L_{c_X}(f(\gamma_k)) \leq L_{c_{\mathbb{D}\setminus E}}(\gamma_k).$$

Therefore $L_{c_X}(f(\gamma_k))$ converges to 0.

Thus there is K_2 such that $L_{c_X}(f(\gamma_k)) < \frac{\varepsilon}{2}$ for all $k \geq K_2$, and then for $k \geq K := \max(K_1, K_2)$ we have

$$c_X(p, f(z)) \le c_X(p, f(z_k)) + c_X(f(z_k), f(z)) < \varepsilon$$

for all $z \in \gamma_k$. Hence $f(\gamma_k) \subset W$ for $k \geq K$, and by Lemma 2.1, f can be extended holomorphically to \mathbb{D} .

(2) For the case n > 0, since $\mathcal{H}_{2n-1}(E) = 0$ and using Lemma 2.3. there are r > 0 and a unitary transformation $l : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ such that $\overline{B}(a',r) \times \overline{B}(a_n,r) \subset D$ and $l(E) \cap [\overline{B}(a',r) \times \partial B(a_n,r)] = \emptyset$. Moreover as $\partial B(a_n,r)$ is compact and E is closed we can find $0 < r_0 < r$ such that $l(E) \cap [\overline{B}(a',r) \times (B(a_n,r) \setminus \overline{B}(a_n,r_0))] = \emptyset$. We denote B' = B'(a',r), $B_n = B(a_n,r)$ and $V_0 = B(a_n,r) \setminus \overline{B}(a_n,r_0)$. Without loss of generality we may assume that $l : z \longmapsto z$. Let $\xi \in E_r := E \cap [B' \times B_n]$. Put $E_{\xi} = \{z_n \in B_n / (\xi, z_n) \in E_r\}$.

Let $p: B' \times B_n \longrightarrow B'$ be the projection map, by Lemma 2.2. there is a subset $A \subset B'$ with Lebesgue measure equal to zero such that for all $\xi \in B' \setminus A$ the set $p^{-1}(\xi) \cap E_r = \{\xi\} \times E_{\xi}$ has zero Hausdorff $\mathcal{H}_{(2n-1)-(2n-2)}$ -measure i.e. $\mathcal{H}_1(E_{\xi}) = 0$ for all $\xi \in B' \setminus A$.

The map f is holomorphic from $B' \times V_0$ to X and for all $\xi \in B' \setminus A$, $f_{\xi} = f(\xi,.)$ is holomorphic from $B_n \setminus E_{\xi}$ to X with $\mathcal{H}_1(E_{\xi}) = 0$. It follows from the case n = 1 that f_{ξ} can be extended holomorphically to B_n . On the other hand X is complete hyperbolic and then has Hartogs extension property. It follows from [1, 9] that f can be extended holomorphically to $(B' \setminus A)^* \times B_n$, where $(B' \setminus A)^*$ is the set of points when $B' \setminus A$ is locally pluriregular. As A has zero Lebesgue measure, then $(B' \setminus A)^* = B'$. Therefore f can be extended holomorphically to a neighborhood of a.

The last part of the main theorem is an immediate consequence of the following lemma:

Lemma 2.4. Let X be a complex Kobayashi-hyperbolic space, $D \subset \mathbb{C}^n$ be a domain and $E \subset D$ be a closed subset with Lebesque measure $\lambda(E) = 0$. Let

 $\{f_n, n \in \mathbb{N}\} \subset Hol(D, X)$ and $f \in Hol(D, X)$ such that $\{f_n, n \in \mathbb{N}\}$ converges uniformly on compact subsets of $D \setminus E$ to f. Then $\{f_n, n \in \mathbb{N}\}$ converges uniformly to f on compact subsets of D.

Proof. Let $a \in E$, $U \subset\subset D$ be a connected neighborhood of a and $\varepsilon > 0$. The set $D \setminus E$ is dense in D. Hence, let $b \in U \setminus E$ be such that $d_U(a,b) < \frac{\varepsilon}{3}$. There is N > 0 such that for all $n \geq N$, we have $d_X(f_n(b), f(b)) < \frac{\varepsilon}{3}$. It follows that:

$$d_X(f_n(a), f(a)) \le d_X(f_n(a), f_n(b)) + d_X(f_n(b), f(b)) + d_X(f(b), f(a))$$

$$< d_U(a, b) + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon.$$

Consequently, for all $z \in D$ the set $\{f_n(z), n \in \mathbb{N}\}$ is relatively compact in X. Since X is hyperbolic, then Hol(D,X) is equicontinuous. It follows by Ascoli-Arzelà theorem that the family $\{f_n, n \in \mathbb{N}\}$ is relatively compact in Hol(D,X), then there is a subsequence $\{f_{n_p}, n \in \mathbb{N}\}$ which converges uniformly on compact subsets to a holomorphic mapping $g \in Hol(D,X)$. By hypotheses $g_{|D\setminus E} = f_{|D\setminus E}$, hence g = f. Remark that there are not subsequences which diverge and all subsequences converge to f, then the result follows.

Metric defined by plurisubharmonic functions (see [3] and [4]). Let X be a complex manifold. For $x_o \in X$, we denote by $P_X(x_o)$ the set of upper semi-continuous functions φ on X satisfying the following conditions:

(i). $0 \le \varphi < 1$ (ii). $\varphi(x_o) = 0$ (iii). $\log \varphi$ is plurisubharmonic and (iv). In a local coordinates $z = (z_1, \dots, z_n)$ centered in x_o , $\frac{\varphi}{||z||}$ is bounded in a neighborhood of x_o .

We consider the extremal function

$$\lambda_X(x, x_o) = \sup \{ \varphi(x) ; \varphi \in P_X(x_o) \}.$$

We then define $p_X^{'}(x,x') = \max\{\rho(\lambda_X(x,x'),0),\rho(\lambda_X(x',x),0)\}\$ for $x,x'\in X$, where ρ is the Poincaré metric of \mathbb{D} .

Let $x = x_0, x_1, \dots, x_k = x'$ be a chain and

$$p_X(x, x') = \inf \sum p'_X(x_{i-1}, x_i)$$

where the infimum is taken over all chains from x to x'. The pseudodistance p_X has the following properties:

- (1). If $f: X \longrightarrow Y$ is a holomorphic map, then for all $x, x' \in X$ we have $p_Y(f(x), f(x')) \leq p_X(x, x')$.
- $(2). p_{\mathbb{D}} = \rho.$
- (3). $c_X \leq p_X \leq d_X$.

By definition we remark that if $F \subset \mathbb{D}$ is a closed polar subset then for all r > 1 we have $\lambda_{\mathbb{D}\backslash F}(x,y) \le r\lambda_{\mathbb{D}}(x,y)$ and hence $\lambda_{\mathbb{D}\backslash F}(x,y) \le \lambda_{\mathbb{D}}(x,y)$. It follows that $p_{\mathbb{D}\backslash F}(x,y) \le p_{\mathbb{D}}(x,y)$. Therefore, we deduce from (1) that $p_{\mathbb{D}\backslash F}(x,y) = p_{\mathbb{D}}(x,y)$ for all $x,y \in \mathbb{D} \setminus F$.

By the same proof of the main theorem the following proposition is obtained.

Proposition 2.5. Let D be a domain of \mathbb{C}^n and $E \subset D$ a closed pluripolar subset. Let X be a complex manifold, if p_X is a complete distance then all holomorphic mapping f from $D \setminus E$ to X extend holomorphically from D to X.

3. Remark on the Kwack Technique

Let \mathbb{D} be the unit disc of \mathbb{C} , $E \subset \mathbb{D}$ a closed subset such that $\mathcal{H}_1(E) = 0$ and X a compact hyperbolic space.

Problem. Does all holomorphic mapping f from $\mathbb{D} \setminus E$ to X can be extended holomorphically to \mathbb{D} ? For the case when E is polar see [6, 10, 11]. If we want to use Kwack technique we must have the following property:

Let $a \in E$ and $d_{\mathbb{D}\setminus E}$ be the Kobayashi distance. If $\{\gamma_k\}$ is a sequence of simply closed paths $\{\gamma_k\}$ in $\mathbb{D}\setminus E$ converging to a, then $\lim_{k\to+\infty} L_{d_{\mathbb{D}\setminus E}}(\gamma_k)=0$.

We next show that, by a simple explicit example of E and γ_k , this is not the case in general.

Let Ω be a bounded domain of \mathbb{C}^n . A Kählerienne complete metric $g = \sum g_{i\bar{j}}dz_i \otimes d\bar{z}_j$ is called Einstein metric if there is $c \in \mathbb{R}_-$ such that $\mathrm{Ric}(g) = c\omega_g$ where $\omega_g = \sum g_{i\bar{j}}dz_i \wedge d\bar{z}_j$ and $\mathrm{Ric}(g) = -\sqrt{-1}\partial\bar{\partial}\log(\det(g_{i\bar{j}}))$. Let

$$\omega_g^n = \underbrace{\omega_g \wedge \dots \wedge \omega_g}_{\text{n foix}}$$

We denote by $\delta(x) = \delta(x, \partial\Omega)$ the euclidean distance.

Suppose that $-\log \delta(x) \ge 1$. Mok and Yau [7] prove that

$$\omega^n \ge \frac{C}{\delta^2(-\log \delta)^2} \sqrt{-1} dz_1 \wedge d\bar{z}_1 \cdots \sqrt{-1} dz_n \wedge d\bar{z}_n$$

where C is a constant depending only on n. By a result of Yau [13] we have $f^*\omega^n \leq \Theta$ for all holomorphic mapping $f: \mathbb{D}^n \longrightarrow \Omega$, where Θ is the Poincaré volume form of \mathbb{D}^n given by $\Theta = \wedge_{i=1}^n \frac{2}{(1-|z_j|^2)^2} \sqrt{-1} dz_j \wedge d\bar{z}_j$.

On the other hand a holomorphic mapping $f: \mathbb{D}^n \longrightarrow \Omega$ is non-degenerate

On the other hand a holomorphic mapping $f: \mathbb{D}^n \longrightarrow \Omega$ is non-degenerate at $z \in \mathbb{D}^n$ if $f_*: T(\mathbb{D}^n)_z \longrightarrow T(\Omega)_{f(z)}$ is a linear isomorphism. The hyperbolic pseudo-volume form of Ω is defined as follows

$$\Psi_{\Omega}^{n}(x) = \inf f_{*}(\Theta(0)),$$

where the infimum is taken over all holomorphic mappings $f: \mathbb{D}^n \longrightarrow \Omega$ such that f(0) = x and which are non-degenerate at 0. By [8, Proposition 2.3.5], we have the following inequality

$$\Psi_{\Omega}^n \geq \omega^n$$
.

Next we consider the case n=1 and $\Omega=\mathbb{D}\setminus E$. From above we have $\Psi^1_{\mathbb{D}\setminus E}=\sqrt{-1}\lambda dz\wedge d\bar{z}\geq \frac{C}{\delta^2(-\log\delta)^2}\sqrt{-1}dz\wedge d\bar{z}$. We have

$$ds^{2} = 2\lambda dz \wedge d\bar{z} \ge \frac{2C}{\delta^{2}(-\log \delta)^{2}} dz \wedge d\bar{z}$$

for ds^2 being the pseudo-metric associated to $\Psi^1_{\mathbb{D}\backslash E}$.

Let $r \in]0, \frac{1}{2}[$, for $n \ge 1$ we have $r^2 + r^n + r^{2n} < 1$, hence $r^{2n+2} < r_n < \frac{r^{2n} + r^{2n+2}}{2}$ where $r_n = r^{2n+2} + r^{4n}$. Let $\{a_i^n\}$ be a finite set of points in the circle $S(0, r^{2n+2})$ such that

$$\sup_{x \in S(0, r_n)} \delta(\{a_i^n\}, x) \le r^{3n}.$$

Set $E = \{0\} \bigsqcup_{n \geq 1} \{a_i^n\} \bigsqcup A$, where $A \subset \mathbb{D} \setminus \overline{\mathbb{D}}(0, r_1)$ is a closed discrete set such that $-\log \delta(x) \geq 1$ for $x \in \Omega = \mathbb{D} \setminus E$. We denote by $L(S(0, r_n))$ the length of $S(0, r_n)$ measured in terms of ds^2 . Hence, we have

$$L(S(0,r_n)) = \int_0^1 \sqrt{2\lambda} |\phi'_n(t)| dt$$

with $\phi_n(t) = r_n e^{2\pi i t}$.

As $r^2 + r^n + r^{2n} < 1$, it is easy to see that $\delta(x, \partial\Omega) = \delta(x, \{a_i^n\})$ in $S(0, r_n)$ and as $-\log \delta(x) \ge 1$ then $\delta(x) \log \delta(x) \ge r^{3n} \log r^{3n}$ in $S(0, r_n)$, it follows that

$$\frac{1}{\delta(x)\log\frac{1}{\delta(x)}} \ge \frac{1}{r^{3n}\log\frac{1}{r^{3n}}}$$

Therefore

$$L(S(0, r_n)) \ge \frac{2\sqrt{2C}\pi r_n}{r^{3n} \log \frac{1}{r^{3n}}}$$

$$= \frac{2\sqrt{2C}\pi r^{2n+2}}{r^{3n} \log \frac{1}{r^{3n}}} + \frac{2\sqrt{2C}\pi r^{4n}}{r^{3n} \log \frac{1}{r^{3n}}}$$

$$\longrightarrow +\infty$$

To conclude we need the lemma below. To its exact statement, let M be a Riemann surface and $\Psi^1_M = a\sqrt{-1}dz \wedge d\bar{z}$ its hyperbolic volume form. We define the mapping $H_M: TM \longrightarrow \mathbb{R}_+$ as follows. For any $v \in T_zM \cong \mathbb{C}$ set $H_{M,z}(v) = \frac{1}{\sqrt{2}}\sqrt{\langle a(z)v,v \rangle} = \frac{1}{\sqrt{2}}\sqrt{a(z)}|v|$, then we have:

Lemma 3.1. We have $H_M \leq F_M$, for F_M being the Kobayashi differential metric on M..

Proof. Let $f: \mathbb{D} \longrightarrow M$ be a holomorphic mapping, then

$$f^*\Psi^1_M \leq \Psi^1_{\mathbb{D}} = \frac{2\sqrt{-1}}{(1-|z|^2)^2} dz \wedge d\bar{z}$$

and as $F_{\mathbb{D}}(v) = \frac{1}{(1-|z|^2)}|v|$ for all $v \in T_z\mathbb{D}$, it follows that $f^*H_M \leq F_{\mathbb{D}}$. On the other hand $H_M(0_z) = 0$ (where 0_z is the zero of T_zM) and $\forall v \in T_zM$, $\forall t \in \mathbb{C}$ $H_M(tv) = |t|H_M(v)$, then by [8, Theorem 1.2.3] we have $H_M \leq F_M$.

We deduce from above that the length of $S(0, r_n)$ measured in terms of Kobayashi metric of $\mathbb{D} \setminus E$ tends to $+\infty$.

Finally, let f be a holomorphic mapping from $\mathbb{D} \setminus E$ to a compact hyperbolic space X. As z is an isolated point for every $z \in \bigcup_{n \geq 1} \{a_i^n\} \bigsqcup A$ then f can be extended holomorphically to $\mathbb{D} \setminus \{0\}$ and hence to \mathbb{D} . We conclude that Kwack technique cannot be used in the study of the above problem.

References

- O. Alehyane, Une extension du theoreme de Hartogs pour les applications séparément holomorphes, C. R. Acad. Sci. Paris Ser. I Math. 324 (1997) 149–152.
- 2. E. M. Chirka, Complex Analytic Set, Kluwer Academic Publishers, 1989.
- M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985) 231–240.
- S. Kobayashi, Hyperbolic Complex Spaces, Grundlehren der Mathematischen Wissenschaften, 1998.
- M. Kwack, Generalization of the big Picard theorem, Ann. Math. 90 (1969) 9–22.
- T. Nishino, Prolongements analytiques au sens de Riemann, Bull. Soc. Math. France 107 (1979) 97–112.
- N. Mok and S-T. Yau, Completeness of the Kähler-Einstein metric on bounded domains and characterization of holomorphy by curvature conditions, In: The Mathematical Heritage of Henri Poincar, Proc. Symp. Pure Math. 39 (Part I) (1983) 41–60.
- 8. J. Noguchi and T. Ochiai, Geometric function theory in several complex variable, Translation of Mathematical Monographs 80.
- 9. B. Shiffman, Hartogs theorem for separately holomorphic mappings into complex spaces, C. R. Acad. Sci. Paris Ser. I Math. 310 (1990) 89–94.
- 10. M. Suzuki, Comportement des applications holomorphes autour d'un ensemble polaire, C.R. Acad. Sci. Paris Ser. I Math. **304** (1987) 191–194.
- 11. M. Suzuki, Comportement des applications holomorphes autour d'un ensemble polaire, II, C. R. Acad. Sci. Ser. I Math. **306** (1988) 535–538.
- 12. D. D. Thaï, D*-extension property and generalization of the big Picard theorem, *Vietnam J. Math* **23** (1995) 163−170.
- 13. S-T. Yau, A general Schwartz lemma for Kähles manifolds, Amer. J. Math. 100 (1978) 197–203.