Semicommutative and Reduced Rings

Yang Gang

School of Mathematics, Physics and Software Engineering,
Lanzhou JiaoTong University, Lanzhou, 730070 China,

Received June 13, 2006
Revised January 10, 2007

Abstract. A ring \(R \) is called semicommutative, if \(ab = 0 \) implies \(aRb = 0 \) for all \(a, b \in R \). It is well-known that the \(n \times n \) upper triangular matrix ring over any ring with identity is not semicommutative when \(n \geq 2 \). In the paper, a special semicommutative subring of upper triangular matrix ring over a reduced ring is obtained.

2000 Mathematics Subject Classification: 16U80, 16S50.

Keywords: semicommutative ring; Armendariz ring; reduced ring.

1. Introduction

Throughout this paper, all rings are associative with identity \(1(\neq 0) \). For a ring \(R \), the notations \(\gamma_R(\cdot) \) and \(\iota_R(\cdot) \) are used for the right and left, respectively, annihilators over \(R \). A ring \(R \) is called semicommutative, if \(ab = 0 \) implies \(aRb = 0 \) for all \(a, b \in R \). According to Shin [1, Lemma 1.2], a ring \(R \) is semicommutative if and only if, for any \(a, b \in R, \) \(ab = 0 \) implies \(aRb = 0 \), if and only if any right annihilator over \(R \) is an ideal of \(R \), if and only if any left annihilator over \(R \) is an ideal of \(R \). Properties, examples and counterexamples of semicommutative rings are given in [2-4].

We fix some notations. Let \(R \) be a ring. We write \(M_n(R) \) and \(T_n(R) \) for the \(n \times n \) matrix ring and \(n \times n \) upper triangular matrix ring over \(R \), respectively. The \(n \times n \) identity matrix is denoted by \(I_n \). For any \(A \in M_n(R) \), let \(RA = \{ rA : r \in R \} \). For \(n \geq 2 \), let \(\{ E_{i,j} : 1 \leq i, j \leq n \} \) be the set of the matrix units.

Define a subring \(R_n \) of the \(n \times n \) matrix ring \(M_n(R) \) over \(R \) as follows:
It was proved in [2, Proposition 1.2 and Example 1.3] that if R is reduced, then the ring R_3 is semicommutative but R_n is not semicommutative for $n \geq 4$. In the paper we continue the study of semicommutative rings and try to find some bigger semicommutative subrings of $T_n(R)$ for $n \geq 2$ when R is a reduced ring. Our method will also be used to give some Armendariz subrings of $T_n(R)$ for $n \geq 2$ when R is a reduced ring. For this purpose, we introduce the following notation.

For an positive integer $n \geq 2$, we let

$$U_n(R) = \sum_{i=1}^{k} \sum_{j=k+1}^{n} RE_{i,j} + \sum_{j=k+2}^{n} RE_{k+1,j} + RI_n,$$

where $k = \lfloor n/2 \rfloor$, i.e., k satisfies $n = 2k$ when n is an even integer, and $n = 2k+1$ when n is an odd integer.

For example,

$$U_4(R) = \left\{ \begin{pmatrix} a & 0 & b & e \\ 0 & a & d & f \\ 0 & 0 & a & f \\ 0 & 0 & 0 & a \end{pmatrix} : a, b, c, d, e, f \in R \right\},$$

$$U_5(R) = \left\{ \begin{pmatrix} a & 0 & a & b & c \\ 0 & a & d & e & f \\ 0 & 0 & a & g & h \\ 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 & a \end{pmatrix} : a, b, c, d, e, f, g, h \in R \right\}.$$

Note that if $n = 3$, then the ring $U_3(R) = R_3$ is semicommutative [2, Proposition 1.2 and Example 1.3] when the ring R is reduced.

2. Semicommutative and Reduced Rings

Theorem 2.1. Let R be a reduced ring. Then the following hold.

1. $U_n(R)$ is a semicommutative ring for every $n = 2k + 1 \geq 3$;
2. $U_n(R)$ is a semicommutative ring for every $n = 2k \geq 2$.

Proof.

(1) Let
a = \begin{pmatrix}
 a & 0 & \cdots & 0 & a_{1,k+1} & a_{1,k+2} & \cdots & a_{1,2k+1} \\
 a & 0 & \cdots & 0 & a_{2,k+1} & a_{2,k+2} & \cdots & a_{2,2k+1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 a & a_{k,k+1} & a_{k,k+2} & \cdots & a_{k,2k+1} \\
 a & a_{k+1,k+2} & \cdots & a_{k+1,2k+1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 a & 0 & \cdots & 0 & a \\
 a & 0 & \cdots & 0 & a \\
 \end{pmatrix}

\beta = \begin{pmatrix}
 b & 0 & \cdots & 0 & b_{1,k+1} & b_{1,k+2} & \cdots & b_{1,2k+1} \\
 b & 0 & \cdots & 0 & b_{2,k+1} & b_{2,k+2} & \cdots & b_{2,2k+1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 b & a_{k,k+1} & b_{k,k+2} & \cdots & b_{k,2k+1} \\
 b & b_{k+1,k+2} & \cdots & b_{k+1,2k+1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 b & 0 & \cdots & 0 & b \\
 b & 0 & \cdots & 0 & b \\
 \end{pmatrix}

in U_n(R) for n = 2k + 1 \geq 3 satisfy \alpha \beta = (c_{p,q}) = 0. Then for any p, q \in \{1, 2, \cdots, k\} we have the following:

\begin{align}
 c_{p,q} &= ab = 0 \\
 c_{p,k+1} &= ab_{p,k+1} + a_{p,k+1}b = 0 \\
 c_{p,k+1+q} &= ab_{p,k+1+q} + a_{p,k+1}b_{k+1,k+1+q} + a_{p,k+1+q}b = 0 \\
 c_{k+1,k+1+q} &= ab_{k+1,k+1+q} + a_{k+1,k+1+q}b = 0
\end{align}

From (1), we have that ba = 0 since R is reduced. If we multiply (2) by b on the left side, then bab_{p,k+1} + ba_{p,k+1}b = 0 for p = 1, 2, \cdots, k. Thus we get that bab_{p,k+1}b = 0 and hence a_{p,k+1}b = 0 for p = 1, 2, \cdots, k. So ab_{p,k+1} = 0 for p = 1, 2, \cdots, k. From (4), continuing in the same manner, we can show that ab_{k+1,k+1+q}b = 0 for q = 1, 2, \cdots, k. If we multiply (3) on the left side by b, then we obtain that 0 = bab_{p,k+1+q} + ba_{p,k+1}b_{k+1,k+1+q} + ba_{p,k+1+q}b = ba_{p,k+1+q}b for any p, q \in \{1, 2, \cdots, k\}, thus a_{p,k+1+q}b = 0 for any p, q \in \{1, 2, \cdots, k\}. Thus

ab_{p,k+1+q} + a_{p,k+1}b_{k+1,k+1+q} = 0 \quad \text{for any } p, q \in \{1, 2, \cdots, k\} \tag{\ast}

Multiplying (\ast) on the right side by a, we obtain 0 = ab_{p,k+1+q}a + a_{p,k+1}b_{k+1,k+1+q}
\begin{align}
a &= ab_{p,k+1+q}a \quad \text{for any } p, q \in \{1, 2, \cdots, k\}. \quad \text{Thus } ab_{p,k+1+q} = 0 \quad \text{for any } p, q \in \{1, 2, \cdots, k\}. \quad \text{It also follows from (\ast) that } a_{p,k+1}b_{k+1,k+1+q} = 0 \quad \text{for any } p, q \in \{1, 2, \cdots, k\}. \quad \text{Now each}
\end{align}
\[\gamma = \begin{pmatrix} c & 0 & \cdots & 0 & c_{1,k+1} & c_{1,k+2} & \cdots & c_{1,2k+1} \\ c & \cdots & 0 & c_{2,k+1} & c_{2,k+2} & \cdots & c_{2,2k+1} \\ \vdots & \vdots \\ c & a_{k,k+1} & c_{k,k+2} & \cdots & c_{k,2k+1} \\ c & \cdots & 0 \\ c & \cdots & 0 \\ c & \cdots & 0 \end{pmatrix} \in U_n(R). \]

We need only to prove \((\alpha \beta \gamma)_{ij} = d_{ij} = 0\) for each \((i, j) \in N \times N\), where \(N = \{1, 2, \ldots, n\}\). Since \(R\) is reduced, it is semicommutative. So for any \(x, y \in R\), \(xy = 0\) implies that \(xRy = 0\). Thus \(\alpha cb = 0\), \(d_{p,k+1} = (ac)b_{p,k+1} + (ac_{p,k+1} + a_{p,k+1})b = 0\) for \(p = 1, 2, \ldots, k\) and \(d_{k+1,k+1+q} = (ac)b_{k+1,k+1+q} + (ac_{k+1,k+1+q} + a_{k+1,k+1+q})b = 0\) for \(q = 1, 2, \ldots, k\). For any \(p, q \in \{1, 2, \ldots, k\}\), we have

\[
d_{p,k+1+q} = (ac)b_{p,k+1+q} + (ac_{p,k+1} + a_{p,k+1})b_{k+1,k+1+q} + (ac_{p,k+1+q} + a_{p,k+1+q})b_{k+1,k+1+q} = 0.
\]

By the above proof, we get that \((\alpha \gamma \beta)_{ij} = d_{ij} = 0\) for each \((i, j) \in N \times N\). Therefore \(\alpha \gamma \beta = 0\). Hence \(U_n(R)\) is semicommutative for \(n = 2k + 1 \geq 3\).

(2) It is similar to (1).

According to [5], a ring \(R\) is called an Armendariz ring if whenever polynomials \(f(x) = a_0 + a_1x + \cdots + a_m x^m, g(x) = b_0 + b_1x + \cdots + b_n x^n \in R[x]\) satisfy \(f(x)g(x) = 0\), then \(a_i b_j = 0\) for each \(i, j\). The name "Armendariz" was chosen because E. Armendariz [6, Lemma 1] had noted that a reduced ring satisfies this condition. Properties, examples and counterexamples of Armendariz rings are given in [3, 5 - 9].

Note that \(R_3\) is Armendariz when \(R\) is reduced, but \(R_n\) is not for any ring \(R\) when \(n \geq 4\) [7, Proposition 2 and Example 3]. By analogy with the proof of Theorem 2.1 we have the following result on Armendariz rings.

Corollary 2.2. Let \(R\) be a reduced ring. Then the following hold.

(1) \(U_n(R)\) is an Armendariz ring for every \(n = 2k + 1 \geq 3\);

(2) \(U_n(R)\) is an Armendariz ring for every \(n = 2k \geq 2\).

Proof.

(1) Let \(f(x) = \sum_{i=0}^s A_i x^i, g(x) = \sum_{j=0}^t B_j x^j \in U_n(R)[x]\) be such that \(f(x)g(x) = 0\). Suppose that...
A_i = \begin{pmatrix}
a^{(i)} & 0 & \cdots & 0 & a_1^{(i)} & a_2^{(i)} & \cdots & a_{1,2k+1}^{(i)} \\
a^{(i)} & 0 & \cdots & 0 & a_2^{(i)} & a_2^{(i)} & \cdots & a_{2,2k+1}^{(i)} \\
\vdots & & \ddots & & \vdots & & \vdots & \vdots \\
a^{(i)} & a_{k,k+1}^{(i)} & a_{k,k+2}^{(i)} & \cdots & a_{k,2k+1}^{(i)} & 0 & \cdots & 0 \\
a^{(i)} & a_{k+1,k+2}^{(i)} & a_{k+1,k+2}^{(i)} & \cdots & a_{k+1,2k+1}^{(i)} & 0 & \cdots & 0 \\
\cdots & & \cdots & & \cdots & & \cdots & \cdots \\
a^{(i)} & & & & & & & a^{(i)} \\
\end{pmatrix}, i = 0, 1, \cdots, s,

and

B_j = \begin{pmatrix}
b^{(j)} & 0 & \cdots & 0 & b_1^{(j)} & b_2^{(j)} & \cdots & b_{1,2k+1}^{(j)} \\
b^{(j)} & 0 & \cdots & 0 & b_2^{(j)} & b_2^{(j)} & \cdots & b_{2,2k+1}^{(j)} \\
\vdots & & \ddots & & \vdots & & \vdots & \vdots \\
b^{(j)} & b_{k,k+1}^{(j)} & b_{k,k+2}^{(j)} & \cdots & b_{k,2k+1}^{(j)} & 0 & \cdots & 0 \\
b^{(j)} & b_{k+1,k+2}^{(j)} & b_{k+1,k+2}^{(j)} & \cdots & b_{k+1,2k+1}^{(j)} & 0 & \cdots & 0 \\
\cdots & & \cdots & & \cdots & & \cdots & \cdots \\
b^{(j)} & & & & & & & b^{(j)} \\
\end{pmatrix}, j = 0, 1, \cdots, t.

Denote

f = \sum_{i=0}^{s} a^{(i)} x^i,

f_{1,k+1} = \sum_{i=0}^{s} a_{1,k+1}^{(i)} x^i, \cdots, f_{1,2k+1} = \sum_{i=0}^{s} a_{1,2k+1}^{(i)} x^i,

\cdots

f_{k,k+1} = \sum_{i=0}^{s} a_{k,k+1}^{(i)} x^i, \cdots, f_{k,2k+1} = \sum_{i=0}^{s} a_{k,2k+1}^{(i)} x^i,

f_{k+1,k+2} = \sum_{i=0}^{s} a_{k+1,k+2}^{(i)} x^i, \cdots, f_{k+1,2k+1} = \sum_{i=0}^{s} a_{k+1,2k+1}^{(i)} x^i,

and
\[g = \sum_{j=0}^{t} b(j)x^j, \]

\[g_{1,k+1} = \sum_{j=0}^{t} b_{1,k+1}^{(j)}x^j, \ldots, g_{1,2k+1} = \sum_{j=0}^{t} b_{1,2k+1}^{(j)}x^j, \]

\[\ldots \]

\[g_{k,k+1} = \sum_{j=0}^{t} b_{k,k+1}^{(j)}x^j, \ldots, g_{k,2k+1} = \sum_{j=0}^{t} b_{k,2k+1}^{(j)}x^j, \]

\[g_{k+1,k+2} = \sum_{j=0}^{t} b_{k,k+2}^{(j)}x^j, \ldots, g_{k+1,2k+1} = \sum_{j=0}^{t} b_{k+1,2k+1}^{(j)}x^j. \]

Note that \(R[x] \) is reduced when \(R \) is reduced. So as in the proof of Theorem 2.1, we obtain that \(fg = 0, \ f g_{p,k+1} = 0, \ f g_{p,k+1+q} = 0, \ f g_{p,k+1+q+1} = 0, \ f g_{p,k+1+q+2} = 0, \ f g_{k+1,k+1+q} = 0, \ f g_{k+1,k+1+q+1} = 0 \) and \(f g_{k+1,k+1+q+2} = 0 \) for each \(p, q \in \{1, 2, \ldots, k\} \). Since reduced rings are Armendariz, it follows easily that each coefficient of \(f \) annihilators every coefficient of \(g \), each coefficient of \(f \) annihilators every coefficient of \(g_{p,k+1} \) for \(p = 1, 2, \cdots, n \), each coefficient of \(f \) annihilators every coefficient of \(g_{p,k+1} \) for \(p = 1, 2, \cdots, n \), etc. Now it is easy to prove that \(A_iB_j = 0 \) for any \(i = 0, 1, \cdots, s \) and \(j = 0, 1, \cdots, t \). Thus \(U_n(R) \) is an Armendariz ring for every \(n = 2k + 1 \geq 3 \).

(2) It is similar to (1).

\[\begin{array}{l}
\textbf{Corollary 2.3.} \quad (\text{[2], Proposition 1.2}) \text{ Let } R \text{ be a reduced ring. Then }
\end{array} \]

\[R_3 = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} : a, b, c, d \in R \right\} \]

is a semicommutative (and an Armendariz) ring.

Given a ring \(R \) and a bimodule \(_RM_R \), the trivial extension of \(R \) by \(M \) is the ring \(T(R, M) = R \oplus M \) with the usual addition and the following multiplication:

\[(r_1, m_1)(r_2, m_2) = (r_1 r_2, r_1 m_2 + m_1 r_2). \]

This is isomorphic to the ring of all matrices

\[\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}, \]

where \(r \in R \) and \(m \in M \) and the usual matrix operations are used.

\[\begin{array}{l}
\textbf{Corollary 2.4.} \quad \text{Let } R \text{ be a reduced ring. Then } T(R, R) \text{ is a semicommutative (and an Armendariz) ring.}
\end{array} \]
References