Vietnam Journal of MATHEMATICS © VAST 2007

A Gagliardo–Nirenberg Inequality for Orlicz and Lorentz Spaces on \mathbb{R}^{n}_{+}

Ha Huy Bang¹ and Mai Thi Thu²

¹Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, Hanoi, Vietnam ²Depart. of Mathematics, Industrial University, Ho Chi Minh City, Vietnam

Dedicated to Professor Hoang Tuy on the occasion of his 80th-birthday

Received October 5, 2007

Abstract. In this paper, essentially developing the method of [1-4, 15], we give an extension of the Gagliardo-Nirenberg inequality to Orlicz and Lorentz spaces defined on \mathbb{R}^n_+ .

2000 Mathematics Subject Classification: 26D10, 46E30.

Keywords: Gagliardo-Nirenberg inequality, inequality for derivatives, Orlicz-type spaces

Let $\ell \geq 2$ and $b \geq 0$. Denote by $\mathbb{R}^n_{+,b} = \{x \in \mathbb{R}^n : x_j > b, j = 1, ..., n\}$, $\mathbb{R}^n_{+,0} = \mathbb{R}^n_+$ and $W^{\ell,\infty}(\mathbb{R}^n_{+,b})$ the set of all measurable on $\mathbb{R}^n_{+,b}$ functions f such that f and its generalized derivatives $D^\beta f$, $0 < |\beta| \leq \ell$, belong to $L_\infty(\mathbb{R}^n_{+,b})$. The following Gagliardo–Nirenberg theorem is well-known [10]: Let $b \geq 0$. For fixed α , $0 < |\alpha| < \ell$, there is the best constant $C^+_{\alpha,\ell}$ not depending on b such that for any $f \in W^{\ell,\infty}(\mathbb{R}^n_{+,b})$,

$$||D^{\alpha}f||_{\infty,b} \leqslant C_{\alpha,\ell}^{+}||f||_{\infty,b}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f||_{\infty,b}\Big)^{\frac{|\alpha|}{\ell}},$$

where $\|\cdot\|_{\infty,b}$ is the norm of $L_{\infty}(\mathbb{R}^n_{+,b})$. By developing the methods of [1-4,15], we extend the above Gagliardo–Nirenberg inequality to Orlicz spaces $L_{\Phi}(\mathbb{R}^n_+)$ and Lorentz spaces $N_{\Psi}(\mathbb{R}^n_+)$. The Gagliardo–Nirenberg inequality [7,10]

^{*}This work was supported by the Natural Science Council of Vietnam

has applications to Partial differential equations and Interpolation theory. Note that the inequality was already proved in [4,15] for the case \mathbb{R}^n , but it is more difficult for the case \mathbb{R}^n_+ .

1. A Gagliardo-Nirenberg Inequality for Orlicz Space $L_{\Phi}(\mathbb{R}^n_+)$

Let G be a domain in \mathbb{R}^n , $\Phi:[0,+\infty)\to[0,+\infty]$ an arbitrary Young function (see [8,11,12]), i.e., $\Phi(0)=0, \Phi(t)\geq 0, \Phi(t)\not\equiv 0$, and assume that Φ is convex. Denote by

$$\overline{\Phi}(t) = \sup_{s>0} \left\{ ts - \Phi(s) \right\}$$

the Young function conjugate to Φ , and by $L_{\Phi}(G)$ the space of measurable functions u such that

$$|\langle u,v\rangle| = |\int_G u(x)v(x)dx| < \infty$$

for all v with $\rho(v, \overline{\Phi}, G) < \infty$, where

$$\rho(v, \overline{\Phi}, G) = \int_{G} \overline{\Phi}(|v(x)|) dx.$$

Then $L_{\Phi}(G)$ is a Banach space with respect to the Orlicz norm

$$\parallel u \parallel_{\Phi,G} = \sup_{\rho(v,\overline{\Phi},G) \leq 1} |\int_{G} u(x)v(x)dx|,$$

which is equivalent to the Luxemburg norm

$$||f||_{(\Phi,G)} = \inf\{\lambda > 0 : \int_G \Phi(|f(x)|/\lambda) dx \le 1\} < \infty.$$

Recall that $||\cdot||_{(\Phi,G)}=||\cdot||_{L_p(G)}$ where $\Phi(t)=t^p$ with $1\leqslant p<\infty$, and $||\cdot||_{(\Phi,G)}=||\cdot||_{L_\infty(G)}$ when $\Phi(t)=0$ for $0\leqslant t\leqslant 1$ and $\Phi(t)=\infty$ for t>1. We have the following results (cf. [11,12]):

Lemma 1. Let $u \in L_{\Phi}(G)$ and $v \in L_{\overline{\Phi}}(G)$. Then

$$\int_{G} |u(x)v(x)| dx \leqslant ||u||_{\Phi,G} ||v||_{(\overline{\Phi},G)}.$$

Lemma 2. Let $u \in L_{\Phi}(\mathbb{R}^n)$ and $v \in L_1(\mathbb{R}^n)$. Then

$$||u * v||_{\Phi,\mathbb{R}^n} \leq ||u||_{\Phi,\mathbb{R}^n} ||v||_1.$$

We have the following theorem.

Theorem 3. Let $\ell \geq 2$ and let Φ be an arbitrary Young function, f and its generalized derivatives $D^{\beta}f$, $|\beta| = \ell$, be in $L_{\Phi}(\mathbb{R}^n_+)$. Then $D^{\alpha}f \in L_{\Phi}(\mathbb{R}^n_+)$ for

all α , $0 < |\alpha| < \ell$ and

$$||D^{\alpha}f||_{\Phi,\mathbb{R}^n_+} \leqslant C^+_{\alpha,\ell}||f||_{\Phi,\mathbb{R}^n_+}^{1-\frac{|\alpha|}{\ell}} \left(\sum_{|\beta|=\ell} ||D^{\beta}f||_{\Phi,\mathbb{R}^n_+}\right)^{\frac{|\alpha|}{\ell}},\tag{1}$$

where the constant $C_{\alpha,\ell}^+$ is defined as in the Gagliardo-Nirenberg inequality.

Proof. Step 1. We begin to prove (1) with the assumption that $D^{\alpha} f \in L_{\Phi}(\mathbb{R}^{n}_{+})$ for all $0 \leq |\alpha| \leq \ell$. Fix α , $0 < |\alpha| < \ell$. Let $\epsilon > 0$ be given. We choose a function $v_{\epsilon} \in L_{\overline{\Phi}}(\mathbb{R}^{n}_{+})$, $\rho(v_{\epsilon}, \overline{\Phi}, \mathbb{R}^{n}_{+}) \leq 1$ such that

$$\left| \int_{\mathbb{R}^n_+} D^{\alpha} f(x) v_{\epsilon}(x) dx \right| \ge \|D^{\alpha} f\|_{\Phi, \mathbb{R}^n_+} - \varepsilon. \tag{2}$$

Put

$$F_{\varepsilon}(x) = \int_{\mathbb{R}^n_+} f(x+y)v_{\epsilon}(y)dy. \tag{3}$$

Then $F_{\epsilon}(x) \in L_{\infty}(\mathbb{R}^n_+)$ by virtue of Lemma 1, and it is easy to verify that

$$D^{\beta} F_{\varepsilon}(x) = \int_{\mathbb{R}^{n}_{\perp}} D^{\beta} f(x+y) v_{\epsilon}(y) dy, \quad 0 \leqslant |\beta| \leqslant \ell,$$

in the distribution sense $\mathcal{D}'(\mathbb{R}^n_+)$. Since $\rho(v_{\epsilon}, \overline{\Phi}, \mathbb{R}^n_+) \leq 1$, $\|v_{\epsilon}\|_{(\overline{\Phi}, \mathbb{R}^n_+)} \leq 1$. So, for all $x \in \mathbb{R}^n_+$ and $0 \leq |\beta| \leq \ell$, clearly,

$$|D^{\beta}F_{\varepsilon}(x)| \leqslant ||D^{\beta}f(x+\cdot)||_{\Phi,\mathbb{R}^{n}_{+}} ||v_{\epsilon}||_{(\overline{\Phi},\mathbb{R}^{n}_{+})} \leqslant ||D^{\beta}f||_{\Phi,\mathbb{R}^{n}_{+}}. \tag{4}$$

Now we prove the continuity of $D^{\beta}F_{\varepsilon}(x)$. We show this for $\beta=0$ by contradiction: Assume that for some $\delta>0$, a point $x_0\in\mathbb{R}^n_+$ and a sequence $\{t_m\}\subset\mathbb{R}^n:t_m\to 0$

$$\left| \int_{\mathbb{R}^{n}_{+}} [f(x_0 + t_m + y) - f(x_0 + y)] v_{\epsilon}(y) dy \right| \ge \delta , \ m \ge 1.$$
 (5)

Since $f \in L_{\Phi}(\mathbb{R}_{+}^{n})$ we easily get $f \in L_{1,loc}(\mathbb{R}_{+}^{n})$. Then for any $j = 1, 2, ..., f(t_m + \cdot) \to f(\cdot)$ in $L_1([1/j, j]^n)$. Therefore, there exists a subsequence, denoted again by $\{t_m\}$, such that $f(t_m + y) \to f(y)$ a.e. in $[1/j, j]^n$. So, there exists a subsequence (for simplicity of notation we assume that it coincides with $\{t_m\}$) such that $f(x_0 + t_m + y) \to f(x_0 + y)$ a.e. in \mathbb{R}_{+}^n . For simplicity of notations we consider only the case $x_0 = 0$. Because inequality (1) holds for f if and only if it holds for f/C, where C is an arbitrary positive number, without loss of generality we may assume that $\rho(2f, \Phi, \mathbb{R}_{+}^n) < \infty$. As in [4], we have

$$|f(t_m + y) - f(y)||v_{\epsilon}(y)| \le \frac{1}{2}\Phi(2|f(t_m + y)|) + \frac{1}{2}\Phi(2|f(y)|) + \overline{\Phi}(|v_{\epsilon}(y)|).$$
 (6)

Since $\Phi(2|f|)$, $\overline{\Phi}(|v_{\epsilon}|) \in L_1(\mathbb{R}^n_+)$ and $t_m \to 0$, there are positive numbers M and h such that for all $m \geq 1$

$$\int_{\{|y|>M\}\cap\mathbb{R}^n_+} \left(\Phi(2|f(y)|) + \Phi(2|f(t_m+y)|) + \overline{\Phi}(|v_{\epsilon}(y)|)\right) dy < \frac{\delta}{2}$$
 (7)

and

$$\int_{G} \Phi(2|f(y)|) dy < \frac{\delta}{6} \int_{G} \Phi(2|f(t_{m} + y)|) dy$$

$$< \frac{\delta}{6} \int_{G} \overline{\Phi}(|v_{\epsilon}(y)|) dy < \frac{\delta}{6} \tag{8}$$

if $G \subset \mathbb{R}^n_+$, $\operatorname{mes}(G) < h$. On the other hand, by Egorov theorem, there is a set $A \subset \mathcal{B}_+(0,M)$, with $\operatorname{mes}(A) < h$, such that $f(t_m + y)v_{\epsilon}(y)$ uniformly converges to $f(y)v_{\epsilon}(y)$ on $\mathcal{B}_+(0,M) \setminus A$, where $\mathcal{B}_+(0,M)$ is the intersection of the ball of radius M centered at zero with \mathbb{R}^n_+ . Therefore, applying (6) and (8), we have as in [4]

$$\overline{\lim}_{m \to \infty} \int_{\{|y| \leqslant M\} \cap \mathbb{R}_+^n} \left| f(t_m + y) - f(y) \right| |v_{\epsilon}(y)| dy \leqslant \frac{\delta}{12} + \frac{\delta}{12} + \frac{\delta}{6} = \frac{\delta}{3}$$
 (9)

Combining (7), (9) and using (6), we get for sufficiently large m

$$\int_{\mathbb{R}^n_+} | (f(t_m + y) - f(y)) v_{\epsilon}(y) | dy < \delta,$$

which contradicts (5). The cases $1 \leq |\beta| \leq \ell$ are proved similarly. The continuity of $D^{\alpha}F_{\varepsilon}$, $0 \leq |\beta| \leq \ell$ has been proved. The functions $D^{\beta}F_{\varepsilon}$, $0 \leq |\beta| \leq \ell$ are continuous and bounded on \mathbb{R}^n_+ . Therefore, it follows from the Gagliardo–Nirenberg inequality and (2)–(3) that

$$(\|D^{\alpha}f||_{\Phi,\mathbb{R}^{n}_{+}} - \epsilon) \leq |D^{\alpha}F_{\varepsilon}(0)| \leq \|D^{\alpha}F_{\varepsilon}\|_{\infty,0}$$
$$\leq C^{+}_{\alpha,\ell}\|F_{\varepsilon}\|_{\infty,0}^{1 - \frac{|\alpha|}{\ell}} \Big(\sum_{|\beta| = \ell} \|D^{\beta}F_{\varepsilon}\|_{\infty,0}\Big)^{\frac{|\alpha|}{\ell}},$$

which together with (4) implies

$$||D^{\alpha}f||_{\Phi,\mathbb{R}^n_+} - \epsilon \leqslant C^+_{\alpha,\ell}||f||_{\Phi,\mathbb{R}^n_+}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f||_{\Phi,\mathbb{R}^n_+}\Big)^{\frac{|\alpha|}{\ell}}.$$

By letting $\epsilon \to 0$ we have (1).

Step 2. To complete the proof, it remains to show that $D^{\alpha}f \in L_{\Phi}(\mathbb{R}^{n}_{+}), \forall \alpha : 0 < |\alpha| < \ell \text{ if } f, D^{\beta}f \in L_{\Phi}(\mathbb{R}^{n}_{+}), |\beta| = \ell. \text{ Since } f, D^{\beta}f \in L_{1,loc}(\mathbb{R}^{n}_{+}), |\beta| = \ell, \text{ we get } D^{\alpha}f \in L_{1,loc}(\mathbb{R}^{n}_{+}), 0 < |\alpha| < \ell \text{ (see [9, p. 7])}. We define for <math>0 \leq |\alpha| \leq \ell$,

$$f_{(\alpha)}(x) = \begin{cases} D^{\alpha} f(x), & x \in \mathbb{R}_{+}^{n} \\ 0, & x \in \mathbb{R}^{n} \setminus \mathbb{R}_{+}^{n}. \end{cases}$$

Let $\psi(x) \in C_0^{\infty}(\mathbb{R}^n)$, $\psi(x) \ge 0$, $\operatorname{supp} \psi \subset \{x \in \mathbb{R}^n : 0 \le x_j \le 1, j = 1, 2, \dots, n\}$ and $\int_{\mathbb{R}^n} \psi(x) dx = 1$. We put $\psi_{\lambda}(x) = \frac{1}{\lambda^n} \psi(\frac{x}{\lambda})$, $\lambda > 0$ and $f_{\lambda} = f_{(0)} * \psi_{\lambda}$. Fix b > 0. Then for all $\varphi \in C_0^{\infty}(\mathbb{R}^n_{+,b})$ we have for $0 < \lambda < b, 0 \leqslant |\alpha| \leqslant \ell$:

$$< D^{\alpha} f_{\lambda}, \varphi > = (-1)^{|\alpha|} < f_{\lambda}, D^{\alpha} \varphi >$$

$$= (-1)^{|\alpha|} \int_{\mathbb{R}^{n}_{+}} \left(\int_{\mathbb{R}^{n}_{+}} f_{(0)}(x - y) \psi_{\lambda}(y) dy \right) D^{\alpha} \varphi(x) dx$$

$$= (-1)^{|\alpha|} \int_{\mathcal{B}_{+}(0,\lambda)} \left(\int_{\mathbb{R}^{n}_{+,b}} f_{(0)}(x - y) D^{\alpha} \varphi(x) dx \right) \psi_{\lambda}(y) dy$$

$$= \int_{\mathcal{B}_{+}(0,\lambda)} \left(\int_{\mathbb{R}^{n}_{+,b}} D^{\alpha} f(x - y) \varphi(x) dx \right) \psi_{\lambda}(y) dy$$

$$= \int_{\mathbb{R}^{n}_{+,b}} \left(\int_{\mathcal{B}_{+}(0,\lambda)} D^{\alpha} f(x - y) \psi_{\lambda}(y) dy \right) \varphi(x) dx$$

$$= \int_{\mathbb{R}^{n}_{+,b}} \left(f_{(\alpha)} * \psi_{\lambda} \right) (x) \varphi(x) dx$$

$$= \langle f_{(\alpha)} * \psi_{\lambda}, \varphi \rangle.$$

So, we have proved for $0 < \lambda < b$ and $0 \le |\alpha| \le \ell$

$$D^{\alpha} f_{\lambda} = f_{(\alpha)} * \psi_{\lambda} \tag{10}$$

in the $\mathcal{D}'(\mathbb{R}^n_{+,b})$ sense. Therefore, for $0 < \lambda < b$ and $\alpha = 0$ or $|\alpha| = \ell$ we have

$$||D^{\alpha}(f_{(0)} * \psi_{\lambda})||_{\Phi,\mathbb{R}^{n}_{+,b}} = ||f_{(\alpha)} * \psi_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}}$$

$$\leq ||f_{(\alpha)} * \psi_{\lambda}||_{\Phi,\mathbb{R}^{n}}$$

$$\leq ||f_{(\alpha)}||_{\Phi,\mathbb{R}^{n}}$$

$$= ||f_{(\alpha)}||_{\Phi,\mathbb{R}^{n}_{+}}$$

$$= ||D^{\alpha}f||_{\Phi,\mathbb{R}^{n}_{+}}.$$
(11)

On the other hand, by using $D^{\alpha}(f_{(0)}*\psi_{\lambda}) = f_{(0)}*D^{\alpha}\psi_{\lambda} \in L_{\Phi}(\mathbb{R}^n), \forall 0 \leq |\alpha| \leq \ell$ and the inequality proved in Step 1 for functions on $\mathbb{R}^n_{+,b}$, we get for $0 < |\alpha| < \ell$,

$$||D^{\alpha}f_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}} \leqslant C^{+}_{\alpha,\ell}||f_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}}\Big)^{\frac{|\alpha|}{\ell}}.$$

Hence, by combining (10), (11) we obtain for all $0 < \lambda < b$, $0 < |\alpha| < \ell$,

$$||D^{\alpha}f_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}} \leqslant C^{+}_{\alpha,\ell}||f_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}}^{1-\frac{|\alpha|}{\ell}} \left(\sum_{|\beta|=\ell} ||D^{\beta}f_{\lambda}||_{\Phi,\mathbb{R}^{n}_{+,b}}\right)^{\frac{|\alpha|}{\ell}}$$

$$\leqslant C^{+}_{\alpha,\ell}||f_{\lambda}||_{\Phi,\mathbb{R}^{n}}^{1-\frac{|\alpha|}{\ell}} \left(\sum_{|\beta|=\ell} ||D^{\beta}f_{\lambda}||_{\Phi,\mathbb{R}^{n}}\right)^{\frac{|\alpha|}{\ell}}$$

$$\leqslant C^{+}_{\alpha,\ell}||f||_{\Phi,\mathbb{R}^{n}_{+}}^{1-\frac{|\alpha|}{\ell}} \left(\sum_{|\beta|=\ell} ||D^{\beta}f||_{\Phi,\mathbb{R}^{n}_{+}}\right)^{\frac{|\alpha|}{\ell}}.$$

$$(12)$$

Fix α $(0 < |\alpha| < \ell)$. For j = 1, since $D^{\alpha} f \in L_{1,loc}(\mathbb{R}^n_+)$, there is a sequence of positive numbers $\{\lambda_m^1\}, \lambda_m^1 \to 0$ such that

$$\lim_{m \to \infty} D^{\alpha} f_{\lambda_m^1}(x) = D^{\alpha} f(x) \text{ a.e. in } \mathbb{R}^n_{+,1}.$$

For j=2, since $\lambda_m^1 \to 0$, there exists a subsequence $\{\lambda_m^2\}$ of $\{\lambda_m^1\}$ such that

$$\lim_{m \to \infty} D^{\alpha} f_{\lambda_m^2}(x) = D^{\alpha} f(x) \text{ a.e. in } \mathbb{R}^n_{+,1/2}.$$

By repeating this argument for $j=3,4,\ldots$ and by the diagonal process, we get a sequence of positive numbers $\{\lambda_m^*\}:\lambda_m^*\to 0$ such that

$$\lim_{m \to \infty} D^{\alpha} f_{\lambda_m^*}(x) = D^{\alpha} f(x) \text{ a.e. in } \mathbb{R}_+^n.$$

Hence,

$$\lim_{m \to \infty} f_{(\alpha)} * \psi_{\lambda_m^*}(x) = f_{(\alpha)}(x) = D^{\alpha} f(x) \quad \text{a.e. in } \mathbb{R}_+^n.$$
 (13)

For each function $v \in L_{\overline{\Phi}}(\mathbb{R}^n_+)$, $\rho(v, \overline{\Phi}, \mathbb{R}^n_+) \leq 1$ and $m \geq 1$, by (12) - (13) and the definition of the Orlicz norm we get

$$\int_{\mathbb{R}^{n}_{+}} \left| (D^{\alpha} f_{\lambda_{m}^{*}})(x) v(x) \right| dx \leqslant C_{\alpha,\ell}^{+} \|f\|_{\Phi,\mathbb{R}^{n}_{+}}^{1 - \frac{|\alpha|}{\ell}} \left(\sum_{|\beta| = \ell} \|D^{\beta} f\|_{\Phi,\mathbb{R}^{n}_{+}} \right)^{\frac{|\alpha|}{\ell}}. \tag{14}$$

Therefore, by using Fatou's lemma, (13) and (14), we obtain

$$\left| \int_{\mathbb{R}^{n}_{+}} D^{\alpha} f(x) v(x) dx \right| \leqslant \int_{\mathbb{R}^{n}_{+}} \liminf_{m \to \infty} \left| D^{\alpha} f_{\lambda_{m}^{*}}(x) v(x) \right| dx$$

$$\leqslant \liminf_{m \to \infty} \int_{\mathbb{R}^{n}_{+}} \left| (D^{\alpha} f_{\lambda_{m}^{*}})(x) v(x) \right| dx$$

$$\leqslant C_{\alpha, \ell}^{+} \|f\|_{\Phi, \mathbb{R}^{n}_{+}}^{1 - \frac{|\alpha|}{\ell}} \left(\sum_{|\beta| = \ell} \|D^{\beta} f\|_{\Phi, \mathbb{R}^{n}_{+}} \right)^{\frac{|\alpha|}{\ell}}. \tag{15}$$

Because (15) is true for all $v \in L_{\overline{\Phi}_{,}}(\mathbb{R}^{n}_{+}), \ \rho(v, \overline{\Phi}, \mathbb{R}^{n}_{+}) \leqslant 1$, by definition of the Orlicz norm we have

$$||D^{\alpha}f||_{\Phi,\mathbb{R}^{n}_{+}} \leqslant C^{+}_{\alpha,\ell}||f||_{\Phi,\mathbb{R}^{n}_{+}}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f||_{\Phi,\mathbb{R}^{n}_{+}}\Big)^{\frac{|\alpha|}{\ell}} < \infty, \ 0 < |\alpha| < \ell.$$

The proof is complete.

By Theorem 3, we have

Theorem 4. Let Φ be an arbitrary Young function, $\ell \geq 2$, f and its generalized derivatives $D^{\beta}f$ be in $L_{\Phi}(\mathbb{R}^n_+)$, $|\beta| = \ell$. Then $D^{\alpha}f \in L_{\Phi}(\mathbb{R}^n_+)$ for all α , $0 < |\alpha| = r < \ell$ and

$$\sum_{|\alpha|=r} \|D^{\alpha} f\|_{\Phi,\mathbb{R}^{n}_{+}} \leqslant C_{r,\ell} \|f\|_{\Phi,\mathbb{R}^{n}_{+}}^{1-\frac{r}{\ell}} \Big(\sum_{|\beta|=\ell} \|D^{\beta} f\|_{\Phi,\mathbb{R}^{n}_{+}} \Big)^{\frac{r}{\ell}}.$$

Corollary 5. Let Φ be an arbitrary Young function, $\ell \geq 2$, f and its generalized derivatives $D^{\beta}f$ be in $L_{\Phi}(\mathbb{R}^n_+)$, $|\beta| = \ell$. Then $D^{\alpha}f \in L_{\Phi}(\mathbb{R}^n_+)$ for all α , $0 < |\alpha| = r < \ell$ and

$$\sum_{|\alpha|=r} \|D^{\alpha} f\|_{\Phi,\mathbb{R}^n_+} \leqslant C h^{-\frac{r}{\ell-r}} \|f\|_{\Phi,\mathbb{R}^n_+} + C h \sum_{|\beta|=\ell} \|D^{\beta} f\|_{\Phi,\mathbb{R}^n_+},$$

for all h > 0 and C does not depend on f.

Remark 1. By the representation [12, 11]

$$\parallel u \parallel_{(\Phi,\mathbb{R}^n_+)} = \sup_{\parallel v \parallel_{\overline{\Phi}}} \Big| \int_{\mathbb{R}^n_+} u(x) v(x) dx \Big|,$$

it is easy to see that Theorems 3, 4 still hold for any Luxemburg norm.

Remark 2. By the same method, it is easier to obtain similar results for $L_{\Phi}(G)$, where G is a product domain

$$-\infty < x_s < \infty, \ b_j < x_j < \infty, \ b_j \in \mathbb{R}^1, s = 1, \dots, k, \ j = k + 1, \dots, n.$$

2. A Gagliardo-Nirenberg Inequality for Lorentz Space $N_{\Psi}(\mathbb{R}^n_+)$

Let $\Psi: [0, \infty) \to [0, \infty)$ be a non-zero concave function which is non-decreasing and $\Psi(0+) = \Psi(0) = 0$. We put $\Psi(\infty) = \lim_{t \to \infty} \Psi(t)$. For an arbitrary measurable function f we define

$$||f||_{N_{\Psi}(G)} = \int_0^\infty \Psi(\lambda_f(y)) dy,$$

where $\lambda_f(y) = \max\{x \in G : |f(x)| > y\}$, $y \ge 0$. If the space $N_\Psi(G)$ consists of measurable functions f such that $\|f\|_{N_\Psi(G)} < \infty$ then $N_\Psi(G)$ is a Banach space. Denote by $M_\Psi(G)$ the space of measurable functions g such that

$$\|g\|_{M_{\Psi}(G)} = \sup \Big\{ \frac{1}{\Psi(\text{mes }\Delta)} \int_{\Delta} |g(x)| dx: \ \Delta \subset G, \ 0 < \text{mes }\Delta < \infty \Big\} < \infty.$$

Then $M_{\Psi}(G)$ is a Banach space, too [12–14].

We have the following results [13, 14]:

Lemma 6. If
$$f \in N_{\Psi}(G)$$
, $g \in M_{\Psi}(G)$ then $fg \in L_1(G)$ and
$$\int_{G} |f(x)g(x)| dx \leq \|f\|_{N_{\Psi}(G)} \|g\|_{M_{\Psi}(G)}.$$

Lemma 7. If $f \in N_{\Psi}(G)$ then

$$||f||_{N_{\Psi}(G)} = \sup_{\|g\|_{M_{\pi}(G)} \le 1} \Big| \int_{G} f(x)g(x)dx \Big|.$$

We have the following theorem.

Theorem 8. Let $\ell \geq 2$ f and its generalized derivatives $D^{\beta}f$, $|\beta| = \ell$ be in $N_{\Psi}(\mathbb{R}^{n}_{+})$. Then $D^{\alpha}f \in N_{\Psi}(\mathbb{R}^{n}_{+})$ for all α , $0 < |\alpha| < \ell$ and

$$||D^{\alpha}f||_{N_{\Psi}(\mathbb{R}^{n}_{+})} \leq C^{+}_{\alpha,\ell}||f||_{N_{\Psi}(\mathbb{R}^{n}_{+})}^{1-\frac{|\alpha|}{\ell}} (\sum_{|\beta|=\ell} ||D^{\beta}f||_{N_{\Psi}(\mathbb{R}^{n}_{+})})^{\frac{|\alpha|}{\ell}}.$$
(16)

Proof. Step 1. We begin to prove (16) with the assumption that $D^{\alpha}f \in N_{\Psi}(\mathbb{R}^{n}_{+}), 0 \leq |\alpha| \leq \ell$. Fix $0 < |\alpha| < \ell$ and let $\epsilon > 0$. By Lemma 7 we have a function $v_{\epsilon} \in M_{\Psi}(\mathbb{R}^{n}_{+})$ such that $\|v_{\epsilon}\|_{M_{\Psi}(\mathbb{R}^{n}_{+})} = 1$ and

$$\left| \int_{\mathbb{R}^n_+} f(x) v_{\epsilon}(x) dx \right| \ge ||f||_{N_{\Psi}(\mathbb{R}^n_+)} - \epsilon/2.$$

By Lemma 7, there is $\mathcal{H} := [0, H]^n$ such that

$$\left| \int_{\mathbb{R}^n_+} f(x)v(x)dx \right| \ge ||f||_{N_{\Psi}(\mathbb{R}^n_+)} - \epsilon, \tag{17}$$

where $v = v(\mathcal{H}, \epsilon) := \chi_{\mathcal{H}} v_{\epsilon}$ and $\chi_{\mathcal{H}}$ is the characteristic function of \mathcal{H} . Put

$$F_{\epsilon}(x) = \int_{\mathbb{R}^n_{\perp}} f(x+y)v(y)dy.$$

Then $F_{\epsilon} \in L_{\infty}(\mathbb{R}^n_+)$ by virtue of Lemma 6, and it is easy to check that

$$D^{\beta} F_{\varepsilon}(x) = \int_{\mathbb{R}^{n}_{+}} D^{\beta} f(x+y) v(y) dy, \ 0 \le |\beta| \le \ell$$
 (18)

in the distribution sense.

For all $x \in \mathbb{R}^n_+$, clearly,

$$|D^{\beta} F_{\varepsilon}(x)| \le ||D^{\beta} f(x+\cdot)||_{N_{\Psi}(\mathbb{R}^{n}_{+})} ||v||_{M_{\Psi}(\mathbb{R}^{n}_{+})} \le ||D^{\beta} f||_{N_{\Psi}(\mathbb{R}^{n}_{+})}.$$
(19)

Now we prove the continuity of $D^{\beta}F_{\varepsilon}$ on \mathbb{R}^{n}_{+} $(0 \leq |\beta| \leq \ell)$. We show this for $\beta = 0$. Clearly, it suffices to prove that for any $x \in \mathbb{R}^{n}_{+}$,

$$\lim_{t\to 0} \|\chi_{\mathcal{H}}(\cdot) (f(x+t+\cdot) - f(x+\cdot))\|_{N_{\Psi}(\mathbb{R}^n_+)} = 0.$$

Assume the contrary that for some $\delta > 0$, point x^0 and sequence $t_m \to 0$,

$$\|\chi_{\mathcal{H}}(\cdot)\left(f(x^0 + t_m + \cdot) - f(x^0 + \cdot)\right)\|_{N_{\Psi}(\mathbb{R}^n_+)} \ge \delta, \quad m \ge 1.$$
 (20)

For simplicity of notation we suppose $x^0 = 0$. Since $f \in N_{\Psi}(\mathbb{R}^n_+)$, $f \in L_{1,loc}(\mathbb{R}^n_+)$. It is known that

$$\int_{\mathcal{H}} |f(x+t_m) - f(x)| dx \to 0 \quad \text{as } m \to \infty.$$

Therefore, there exists a subsequence $\{t_{m_j}\}$, we still denote by $\{t_m\}$, such that $f(\cdot + t_m) \to f$ a.e. on \mathcal{H} . Define

$$g_n(x) = \inf_{m \ge n} |f(x + t_m)|, \ x \in \mathcal{H},$$

then $\{g_n\}$ is a non-decreasing sequence and $g_n \to |f|$ a.e. on \mathcal{H} . It is easy to see that

$$\lambda_{\chi_{\mathcal{H}}g_n}(t) \to \lambda_{\chi_{\mathcal{H}}|f|}(t)$$
 as $n \to \infty$, for every $t > 0$.

We have

$$\Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) = \lim_{m \to \infty} \Psi(\lambda_{\chi_{\mathcal{H}}|g_m|}(t)) \le \lim_{m \to \infty} \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m)|}(t)), \ t > 0.$$
 (21)

It follows from the definition of Ψ that $\Psi(a+b) \leq \Psi(a) + \Psi(b)$ for $a,b \geq 0$. Observe that, for any $f,g \in N_{\Psi}(\mathbb{R}^n_+)$ and t>0, so we have $\lambda_{\chi_{\mathcal{H}}(f+g)}(2t) \leq \lambda_{\chi_{\mathcal{H}}f}(t) + \lambda_{\chi_{\mathcal{H}}g}(t)$, then for all $m \geq 1$,

$$\Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot+t_m)-f|}(2t)) \leq \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot+t_m)|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)).$$

Hence

$$0 \leq \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m)|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) - \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m) - f|}(2t)), \ \forall t > 0.$$

It is easy to check that (see [5])

$$\lim_{m \to \infty} \|\chi_{\mathcal{H}} f(\cdot + t_m)\|_{N_{\Psi}(\mathbb{R}^n_+)} = \|\chi_{\mathcal{H}} f\|_{N_{\Psi}(\mathbb{R}^n_+)}, \ \forall m \ge 1.$$

Applying Fatou's lemma to the sequence

$$\{\Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot+t_m)|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) - \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot+t_m)-f|}(2t))\},$$

we obtain

$$\int_{0}^{\infty} \underline{\lim}_{m \to \infty} \left[\Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_{m})|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) - \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_{m}) - f|}(2t)) \right] dt$$

$$\leq \underline{\lim}_{m \to \infty} \int_{0}^{\infty} \left[\Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_{m})|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) - \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_{m}) - f|}(2t) \right] dt$$

$$= 2 \int_{0}^{\infty} \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) dt - \frac{1}{2} \overline{\lim}_{m \to \infty} \int_{0}^{\infty} \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_{m}) - f|}(t)) dt. \tag{22}$$

On the other hand.

$$\lambda_{\chi_{\mathcal{H}}|f(\cdot+t_m)-f|}(t) = \max\{x \in \mathcal{H} : |f(x+t_m)-f(x)| > t\}.$$

Therefore, taking account of $f(\cdot + t_m) \to f$ a.e. on \mathcal{H} , we have

$$\lim_{m \to \infty} \lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m) - f|}(t) = 0$$

and then

$$\lim_{m \to \infty} \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m) - f|}(t)) = 0.$$

So, by (21) we get for any t > 0

$$2\Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) = \lim_{m \to \infty} \Psi(\lambda_{\chi_{\mathcal{H}}|g_m|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) - \lim_{m \to \infty} \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m) - f|}(2t))$$

$$\leq \underline{\lim}_{m \to \infty} \left[\Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m)|}(t)) + \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t)) - \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m) - f|}(2t)) \right]. \tag{23}$$

From (22) and (23), we have

$$2\int_0^\infty \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t))dt \leq 2\int_0^\infty \Psi(\lambda_{\chi_{\mathcal{H}}|f|}(t))dt - \frac{1}{2}\overline{\lim_{m\to\infty}}\int_0^\infty \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot+t_m)-f|}(t))dt.$$

Hence

$$\int_0^\infty \Psi(\lambda_{\chi_{\mathcal{H}}|f(\cdot + t_m) - f|}(t))dt \to 0 \ \text{ as } m \to \infty,$$

i.e.,

$$\lim_{m \to \infty} \|\chi_{\mathcal{H}} (f(\cdot + t_m) - f)\|_{N_{\Psi}(\mathbb{R}^n_+)} = 0,$$

which contradicts (20).

The cases $1 \leq |\beta| \leq \ell$ are proved similarly. The continuity of $D^{\alpha}F_{\varepsilon}$, $0 \leq |\beta| \leq \ell$ has been proved.

The functions $D^{\beta}F_{\varepsilon}$, $0 \leq |\beta| \leq \ell$ are continuous and bounded on \mathbb{R}^{n}_{+} . Therefore, it follows from the Gagliardo-Nirenberg inequality and (17)–(18) that

$$(\|D^{\alpha}f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})} - \epsilon) \leq |D^{\alpha}F_{\varepsilon}(0)| \leq \|D^{\alpha}F_{\varepsilon}\|_{\infty} \leq$$

$$\leq C_{\alpha,\ell}^{+} \|F_{\varepsilon}\|_{\infty}^{1 - \frac{|\alpha|}{\ell}} \left(\sum_{|\beta| = \ell} \|D^{\beta}F_{\varepsilon}\|_{\infty}\right)^{\frac{|\alpha|}{\ell}},$$

which together with (19) implies

$$||D^{\alpha}f||_{N_{\Psi}(\mathbb{R}^n_+)} - \epsilon \leq C_{\alpha,\ell}^+ ||f||_{N_{\Psi}(\mathbb{R}^n_+)}^{1 - \frac{|\alpha|}{\ell}} \Big(\sum_{|\beta| = \ell} ||D^{\beta}f||_{N_{\Psi}(\mathbb{R}^n_+)}\Big)^{\frac{|\alpha|}{\ell}}.$$

By letting $\epsilon \to 0$ we have (16).

Step 2. To complete the proof, it remains to show that $D^{\alpha}f \in N_{\Psi}(\mathbb{R}^{n}_{+}), \ \forall \alpha : 0 < |\alpha| < \ell \text{ if } f, D^{\alpha}f \in N_{\Psi}(\mathbb{R}^{n}_{+}), \ |\alpha| = \ell.$ Fix b > 0. With notations as in the proof of Theorem 3, we have for $0 < \lambda < b, 0 \le |\alpha| \le \ell$:

$$D^{\alpha} f_{\lambda} = f_{(\alpha)} * \psi_{\lambda} \tag{24}$$

in the $\mathcal{D}'(\mathbb{R}^n_{+,b})$ sense.

Taking Lemma 6 into account, we get easily $D^{\beta} f_{\lambda} = f * D^{\beta} \psi_{\lambda} \in N_{\Psi}(\mathbb{R}^n), \ 0 \leq$

 $|\beta| \le \ell$ and

$$||f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})} = ||f_{(0)} * \psi_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})} \le ||f_{(0)}||_{N_{\Psi}(\mathbb{R}^{n})} ||\psi_{\lambda}(x - \cdot)||_{1}$$

$$= ||f_{(0)}||_{N_{\Psi}(\mathbb{R}^{n})}, \tag{25}$$

$$||D^{\alpha} f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})} = ||f_{(\alpha)} * \psi_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})} \le ||f_{(\alpha)}||_{N_{\Psi}(\mathbb{R}^{n})} ||\psi_{\lambda}(x - \cdot)||_{1}$$

$$= ||f_{(\alpha)}||_{N_{\Psi}(\mathbb{R}^{n})}.$$
(26)

Therefore, for $0 < \lambda < b$ and $\alpha = 0$ or $|\alpha| = \ell$ we have

$$||D^{\alpha}(f_{(0)} * \psi_{\lambda})||_{N_{\Psi}(\mathbb{R}^{n}_{+,b})} = ||f_{(\alpha)} * \psi_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n}_{+,b})}$$

$$\leq ||f_{(\alpha)} * \psi_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})}$$

$$\leq ||f_{(\alpha)}||_{N_{\Psi}(\mathbb{R}^{n})}$$

$$= ||f_{(\alpha)}||_{N_{\Phi}(\mathbb{R}^{n}_{+})}$$

$$= ||D^{\alpha}f||_{N_{\Phi}(\mathbb{R}^{n}_{+})}. \tag{27}$$

On the other hand, using $D^{\alpha}(f_{(0)} * \psi_{\lambda}) = f_{(0)} * D^{\alpha}\psi_{\lambda} \in N_{\Psi}(\mathbb{R}^n), \forall 0 \leq |\alpha| \leq \ell$, (25)–(27) and the inequality proved in Step 1 for functions on $\mathbb{R}^n_{+,b}$, we get for all $0 < \lambda < b, 0 < |\alpha| < \ell$,

$$||D^{\alpha}f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n}_{+,b})} \leqslant C^{+}_{\alpha,\ell}||f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n}_{+,b})}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n}_{+,b})} \Big)^{\frac{|\alpha|}{\ell}}$$

$$\leqslant C^{+}_{\alpha,\ell}||f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f_{\lambda}||_{N_{\Psi}(\mathbb{R}^{n})} \Big)^{\frac{|\alpha|}{\ell}}$$

$$\leqslant C^{+}_{\alpha,\ell}||f||_{N_{\Psi}(\mathbb{R}^{n}_{+})}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f||_{N_{\Psi}(\mathbb{R}^{n}_{+})} \Big)^{\frac{|\alpha|}{\ell}}. \tag{28}$$

Fix α (0 < $|\alpha|$ < ℓ). Repeating the arguments used in the proof of Theorem 3, we get a sequence of positive numbers $\{\lambda_m^*\}: \lambda_m^* \to 0$ such that

$$\lim_{m \to \infty} D^{\alpha} f_{\lambda_m^*}(x) = D^{\alpha} f(x) \text{ a.e. in } \mathbb{R}_+^n.$$

Hence,

$$\lim_{m \to \infty} f_{(\alpha)} * \psi_{\lambda_m^*}(x) = f_{(\alpha)}(x) = D^{\alpha} f(x) \quad \text{a.e. in } \mathbb{R}_+^n.$$
 (29)

For each function $v \in M_{\Psi}(\mathbb{R}^n_+)$, $||v||_{M_{\Psi}((\mathbb{R}^n_+))} \leq 1$ and $m \geq 1$, by (18) - (19) and the definition of the Lorentz norm we get

$$\int_{\mathbb{R}^{n}_{+}} \left| (D^{\alpha} f_{\lambda_{m}^{*}})(x) v(x) \right| dx \leqslant C_{\alpha, \ell}^{+} \|f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})}^{1 - \frac{|\alpha|}{\ell}} \left(\sum_{|\beta| = \ell} \|D^{\beta} f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})} \right)^{\frac{|\alpha|}{\ell}}. \tag{30}$$

Therefore, by using Fatou's lemma, (29) and (30), we obtain

$$\left| \int_{\mathbb{R}^{n}_{+}} D^{\alpha} f(x) v(x) dx \right| \leq \int_{\mathbb{R}^{n}_{+}} \liminf_{m \to \infty} \left| D^{\alpha} f_{\lambda_{m}^{*}}(x) v(x) \right| dx$$

$$\leq \liminf_{m \to \infty} \int_{\mathbb{R}^{n}_{+}} \left| (D^{\alpha} f_{\lambda_{m}^{*}})(x) v(x) \right| dx$$

$$\leq C_{\alpha, \ell}^{+} \|f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})}^{1 - \frac{|\alpha|}{\ell}} \left(\sum_{|\beta| = \ell} \|D^{\beta} f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})} \right)^{\frac{|\alpha|}{\ell}}. \tag{31}$$

Because (31) is true for all $v \in M_{\Psi}(\mathbb{R}^n_+)$, $||v||_{M_{\Psi}((\mathbb{R}^n_+))} \leq 1$, by definition of the Lorentz norm we have

$$||D^{\alpha}f||_{N_{\Psi}(\mathbb{R}^{n}_{+})} \leqslant C^{+}_{\alpha,\ell}||f||_{N_{\Psi}(\mathbb{R}^{n}_{+})}^{1-\frac{|\alpha|}{\ell}} \Big(\sum_{|\beta|=\ell} ||D^{\beta}f||_{N_{\Psi}(\mathbb{R}^{n}_{+})}\Big)^{\frac{|\alpha|}{\ell}} < \infty, \ 0 < |\alpha| < \ell.$$

The proof is complete.

By Theorem 8, we have

Theorem 9. Let $\ell \geq 2$, f and its generalized derivatives $D^{\beta}f$, $|\beta| = \ell$ be in $N_{\Psi}(\mathbb{R}^{n}_{+})$. Then $D^{\alpha}f \in N_{\Psi}(\mathbb{R}^{n}_{+})$ for all α , $0 < |\alpha| = r < \ell$ and

$$\sum_{|\alpha|=r} \|D^{\alpha} f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})} \leq C_{r,\ell} \|f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})}^{1-\frac{r}{\ell}} \Big(\sum_{|\beta|=\ell} \|D^{\beta} f\|_{N_{\Psi}(\mathbb{R}^{n}_{+})} \Big)^{\frac{r}{\ell}}.$$

Corollary 10. Let $\ell \geq 2$, f and its generalized derivatives $D^{\beta}f$, $|\beta| = \ell$ be in $N_{\Psi}(\mathbb{R}^{n}_{+})$. Then $D^{\alpha}f \in N_{\Psi}(\mathbb{R}^{n}_{+})$ for all α , $0 < |\alpha| = r < \ell$ and

$$\sum_{|\alpha|=r} \|D^{\alpha} f\|_{N_{\Psi}(\mathbb{R}^n_+)} \leq C h^{-\frac{r}{\ell-r}} \|f\|_{N_{\Psi}(\mathbb{R}^n_+)} + C h \sum_{|\beta|=\ell} \|D^{\beta} f\|_{N_{\Psi}(\mathbb{R}^n_+)},$$

for all h > 0 and C does not depend on f.

Remark 3. Note that the techniques applied in the proof of Theorem 3 for Orlicz spaces $L_{\Psi}(\mathbb{R}^n_+)$ cannot be used for Lorentz spaces $N_{\Psi}(\mathbb{R}^n_+)$.

References

- H. H. Bang, A remark on the Kolmogorov-Stein inequality, J. Math. Anal. Appl. 203 (1996) 861–867.
- 2. H. H. Bang and H. M. Le, On the Kolmogorov–Stein inequality, *J. Ineq. Appl.* 4 (1998) 1–8.
- 3. H. H. Bang and M. T. Thu, A Landau–Kolmogorov inequality for Lorentz spaces, *Tokyo J. Math.* **27** (2004) 13–19.

- 4. H. H. Bang and M. T. Thu, A Gagliardo–Nirenberg inequality for Orlicz spaces, East J. on Approximations 10 (2004) 371–377.
- 5. H. H. Bang, On a F. Riesz's theorem for the spaces N_{Φ} and its applications–Russian Doklady Akad. Nauk, **63** (2001) 263–265. English transl. in Doklady Mathematics, **377** (2001) 746–748.
- O. V. Besov, V. P. Ilin, and S. M. Nikol'skii, Integral Representation of Functions and Imbedding Theorems, V. H. Winston and Sons, Washington, D. C., Vol. 1–2, 1978, 1979.
- E. Gagliardo, Ulterori proprietà di alcune classi di funzioni in più variabili, Ricerche di Math. 8 (1959) 24–51.
- 8. W. Luxemburg, *Banach function spaces*, Thesis, Technische Hoge-schoolte Delft., The Netherlands, 1965.
- 9. V. G. Maz'ja, *Sobolev Spaces*, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1980.
- N. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. di Pisa, ser. III, 13 (1959) 115–162.
- R. O'Neil, Fractional integration in Orlicz space I, Trans. Amer. Math. Soc. 115 (1965) 300–328.
- M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991.
- 13. M.S. Steigerwalt and A.J. White, Some function spaces related to L_p , Proc. London. Math. Soc. 22 (1971) 137–163.
- M. S. Steigerwalt, Some Banach function spaces related to Orlicz spaces, Thesis, University of Aberdeen, 1967.
- 15. M. T. Thu, A Gagliardo-Nirenberg inequality for Lorentz spaces, $Vietnam\ J.$ $Math.\ {\bf 33}\ (2005)\ 207-213.$