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Abstract. In this paper, essentially developing the method of [1-4, 15], we give an
extension of the Gagliardo-Nirenberg inequality to Orlicz and Lorentz spaces defined
on R"!.
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Let £ > 2 and b > 0. Denote by R} , = {z € R" : z; > b,j = 1,...,n},
R o = R%} and WEVOO(R’}Hb) the set of all measurable on R} ; functions f such
that f and its generalized derivatives D f, 0 < |3 < ¢, belong to Loo (R} ;).
The following Gagliardo—Nirenberg theorem is well-known [10]: Let b > 0. For
fized o, 0 < || < £, there is the best constant C;E not depending on b such that

forany f € WE’OO(R’}ﬁb),

la]

[ -kl 2
1D° flloos < CEAAITLT (X2 107 fllc)
|Bl=¢

where || -+ [|oop is the morm of Loo(RY ;). By developing the methods of
[1-4,15], we extend the above Gagliardo—Nirenberg inequality to Orlicz spaces
Lg (R ) and Lorentz spaces Ny (R’ ). The Gagliardo-Nirenberg inequality [7, 10]
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has applications to Partial differential equations and Interpolation theory. Note
that the inequality was already proved in [4,15] for the case R™, but it is more
difficult for the case R .

1. A Gagliardo—Nirenberg Inequality for Orlicz Space Lg(R"})

Let G be a domain in R™, ® : [0, +00) — [0, 4+00] an arbitrary Young function
(see [8,11,12]), i.e., ®(0) = 0, P(t) > 0, P(¢) # 0, and assume that ® is convex.
Denote by

D(t) = §1>118 {ts —®(s)}

the Young function conjugate to ®, and by L¢(G) the space of measurable

functions u such that
(u,v) |=| / x)dx |< 00

for all v with p(v, ®, G) < 0o, where
P08, G) = /G () v(a) |)da.
Then Lg(G) is a Banach space with respect to the Orlicz norm

lullog= sup | / 2)dz |

p(v,®,G)<1
which is equivalent to the Luxemburg norm
| fll(@,c¢) = inf{A >0 / O(|f(x)]/N)dx < 1} < oc.
G
Recall that || - ||[(®,.q) = I| - llz,(q) Where ®(t) = ¥ with 1 < p < oo, and
I 1l@,c) = Il |lz.(@) when ®&(t) =0 for 0 <t < 1and ®(t) = oo for t > 1. We
have the following results (cf. [11,12]):

Lemma 1. Let u € Ly(G) and v € Lz(G). Then
| lu@ta)ide < o clvla g -

Lemma 2. Let u € Ly (R™) and v € L1 (R™). Then

[[uxvllern < [lullern o]

We have the following theorem.

Theorem 3. Let ¢ > 2 and let ® be an arbitrary Young function, f and its
generalized derivatives DP f, || = {, be in Lo(RT). Then D*f € Lo(R") for
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ala, 0 < |a| <l and
o 1 lal sl
1D° fllagy, < CF I fllagt. (22 1D Fllogy) (M)

n
1B1=¢
where the constant C;Le is defined as in the Gagliardo—Nirenberg inequality.

Proof. Step 1. We begin to prove (1) with the assumption that D f € Lg(R"})
forall 0 < |a] < /4. Fixa, 0 < |a| < . Let € > 0 be given. We choose a function
ve € Lz(R%), p(ve, @, R} ) < 1 such that

| [ D f@peea)da] > |1D° Flaz —< 2)

Fe(z)= [ f(z+y)ve(y)dy. (3)

RY
Then F(z) € Loo(R?}) by virtue of Lemma 1, and it is easy to verify that

DPF.(z)= [ DPf(z+y)v(y)dy, 0<|3<¢,

RY
in the distribution sense D'(R% ). Since p(ve, ®,R%) < 1, ||vE||(5 ) < 1. So, for
s
all z € R and 0 < |f] < ¢, clearly,

IDOFo(@)] < 1D (2 + Mo leel .y < 1Dl (4)

Now we prove the continuity of D?F.(x). We show this for $ = 0 by con-
tradiction: Assume that for some § > 0, a point xop € R’} and a sequence
{tm} CR" : t,, —» 0

| [ Ut +9) = floo + o)l )dy] 25, m 1. 5)

Since f € Lo(R?}) we easily get f € Lioc(R}). Then for any j = 1,2,...,
fltm+-) — f() in L1([1/4, 4]™). Therefore, there exists a subsequence, denoted
again by {t,,}, such that f(t, +vy) — f(y) a.e. in [1/4,4]". So, there exists a
subsequence (for simplicity of notation we assume that it coincides with {¢,,})
such that f(zo +tm +y) — f(zro +y) a.e. in R%}. For simplicity of notations
we consider only the case o = 0. Because inequality (1) holds for f if and only
if it holds for f/C, where C' is an arbitrary positive number, without loss of
generality we may assume that p(2f, ®,R") < co. As in [4], we have

[Fltm +9) ~ FOlIcw)] < 52t +0)]) + 520 + By (©)

Since ®(2|f]), ®(|ve|) € L1(R%) and t,, — 0, there are positive numbers M and
h such that for all m > 1

4]

/{| — (@(2|f(y)|) + 02/ f(tm +y)) +5(|v5(y)|))dy <5
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and

/ (20 f(y))dy <
G

<

JRETCEEY
[ #whay < ¢
G

if G C R, mes(G) < h. On the other hand, by Egorov theorem, there is a set
AC By (O M), with mes(A4) < h, such that f(¢m, + y)ve(y) uniformly converges
to f(y)ve(y) on B (0, M)\ A, where B4(0, M) is the intersection of the ball of
radius M centered at zero with R’. Therefore, applying (6) and (8), we have as
in [4]

(8)

Do o>

lim !f(ltmﬂty)—f(y)llve(y)ldy<i+i

0 J{lyI<MINRY 212

+
D>
Il
|
—~~
NeJ
=

Combining (7), (9) and using (6), we get for sufficiently large m
[ 10 +5) = 1) welldy <
T

which contradicts (5). The cases 1 < |G| < £ are proved similarly. The continuity
of D*F., 0 < |B| < ¢ has been proved. The functions D?F., 0 < |3] < ¢
are continuous and bounded on R”}. Therefore, it follows from the Gagliardo-
Nirenberg inequality and (2)—(3) that

(ID%fllory —€) < [DF(0)] < [D*Fl,0

1,_ =
< CLAF o™ (3 1D Fell) ©
|Bl=¢
which together with (4) implies

la]

« 1*_ T
ID° fllogy — € < Chllflogt (D2 1D flozs) ©-
|Bl=¢

By letting € — 0 we have (1).

Step 2. To complete the proof, it remains to show that D*f € Lo(R%), Vo :
0<|a| <lif f,Df € Lo(RY), |8] = £. Since f, DPf € L1 10c(R%), | 8] = ¢, we
get D*f € Ly 10.(R%), 0 < |a] < € (see [9, p.7]). We define for 0 < |a| < ¢,
Def(x), xeR™
fiote) = { -
0, x € R"\R%.

Let ¢(z) € CP(R™), ¢(z) > 0, suppyy C {x e R":0< z; <1,j=1,2,...,n}

1
and [, ¢(x)dz = 1. We put ¢ (z) = A—nw(i), A>0and fy = f) * ¥ Fix
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b > 0. Then for all ¢ € C§°(R"} ;) we have for 0 <A < b,0 < [a| </

< Dfy, o >= (=Dl < £, D% >

=(-1 'al/ (/ foy(@—y)aly )dy> Dp(x)dx
= (=D ~/B+(O,)\) ( R
- ~/B+(O,)\) ( RT ,

_ / ( / Daf(x—y)w(y)dy> p(z)dz
R? . \/B1(0,))

- /  (f * 2 @p(a)da

= (fla) *x, @)

So, we have proved for 0 < A <band 0 < |o| </
D% fx = f(a) * ¥a

n
+.b

D f(z — y)w(x)dx> Ya(y)dy

foy(z — y)Daw(x)dﬂc) Ya(y)dy

419

(10)

in the D'(R’ ;) sense. Therefore, for 0 < A < b and a = 0 or |a| = £ we have

D% (foy * 1/)A)||<D,R1,b = () * Vallorn ,
[ f(ay * ¥allo rr
I fiollorm

= [l foll o,

= ||Daf||<D,R1-

<
<

On the other hand, by using D (f)*¥x) = f0)*D*¥x € La(R™),V 0 <

(11)

and the inequality proved in Step 1 for functions on R”} ;, we get for 0 < |a| < ¢,

fe 1*_
1D ller, < Cllillars, (D2 1D filles )
|Bl=¢

Hence, by combining (10), (11) we obtain for all 0 < A < b, 0 < |a| < ¢,

lo]

« 1*_ T
1D alle.zr,, < Coollalogd, (D 1D lless,)
|Bl=¢

la]

17_ -
<At (3 1D fallasr )
|Bl=¢

lo]

CEll et (32 10% flazy ) ™

|B]=¢

(12)
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Fix a (0 < |a] < £). For j =1, since D*f € L1 1o.(R"}), there is a sequence of
positive numbers {A\} }, AL — 0 such that
1im Do‘fA}n (r) = D“f(x) a.e. inRY .
For j =2, since A\l — 0, there exists a subsequence {\2 } of {\l } such that
n}iian [z (z) = D% f(z) ae inRY, ).
By repeating this argument for j = 3,4, ... and by the diagonal process, we get
a sequence of positive numbers {Af 1} : )\* — 0 such that
mliﬁmOo D% fx: (x) = D f(x) a.e. in RY.
Hence,
n}iinm fay ¥ Uxs (x) = fa)(x) = D*f(z) a.e. inRY. (13)
For each function v € Lz(R%), p(v, ®,R}) < 1 and m > 1, by (12) - (13) and

the definition of the Orlicz norm we get

1,_ Lo
[ @ ) @ptolde < LA TRE (3 10°Mlesy) T (10
+ |B]=¢
Therefore, by using Fatou’s lemma, (13) and (14), we obtain

D* f(z)v(x)dx g/ hrnlnf’ D% fx (w ’daz
Ri R" m— 00
glirninf/ ’(D ae ) (@ ’daj

la]

Colflozt (0D flass )~ (1)
|Bl=¢

Because (15) is true for all v € Lg (R7), p(v, ®,R}) < 1, by definition of the
Orlicz norm we have

la]

[} 1*_ 2
ID° fllogy < CElflomi (D 1D flloss) © < o0, 0<a] <t
|Bl=¢

The proof is complete. [ |
By Theorem 3, we have

Theorem 4. Let ® be an arbitrary Young function, £ > 2, f and its generalized
derivatives DP f be in Lo(R7), |3 = €. Then D*f € Lo(R%) for all a, 0 <
la| =71 < £ and

[} 1-7 %
> 1D oz < Crellfllody (30 107 fllagr )"

lo|=r |Bl=¢
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Corollary 5. Let ® be an arbitrary Young function, £ > 2, f and its generalized
derivatives DP f be in Lo(R%), |B| = €. Then D*f € Lo(R7%) for all i, 0 <
la| =71 < £ and

Y 1D llery < CR7 | flopy +Ch Y [1D°flloss,
lor|=r |B1=¢
for all h > 0 and C' does not depend on f.

Remark 1. By the representation [12, 11]
[ w H<<1>,R1>— Sup ’ /n
it is easy to see that Theorems 3, 4 stlll hold for any Luxemburg norm.

Remark 2. By the same method, it is easier to obtain similar results for L (G),
where G is a product domain

—00 < T, < 00, by <z < o0, bjERl,s:l,...,k,j:k+1,...,n

2. A Gagliardo—Nirenberg Inequality for Lorentz Space Ny (R"})
Let ¥ : [0,00) — [0, 00) be a non-zero concave function which is non-decreasing

and ¥(04+) = ¥(0) = 0. We put ¥(co) = limy_o U(t). For an arbitrary
measurable function f we define

1 fllve e = / (A () dy.

where A\f(y) = mes{x € G : |f(z)| > y} ,y > 0. If the space Ng(G) consists of
measurable functions f such that || f[|n, (¢) < 0o then Ny (G) is a Banach space.
Denote by My (G) the space of measurable functions g such that

lgllare(ay = SUP{@/A lg(x)|dz: A C G, 0<mes A< oo} < 0.
Then My (G) is a Banach space, too [12—14].
We have the following results [13, 14]:
Lemma 6. If f € Ny(G), g € My(G) then fg € L1(G) and
[ 15@o@ldz < 1l ol o

Lemma 7. If f € Ny(G) then

e = s | [ f@

llgllarg (o) <1
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We have the following theorem.

Theorem 8. Let { > 2 f and its generalized derivatives DPf, |3| = € be in
Ny (R?%). Then D*f € Ngy(R%}) for all o, 0 < || < € and

- 17— laf
1D Fllva ) < Coall Fllney Gy (D 107 Fllva eey)) 7 - (16)
|Bl=¢

Proof. Step 1. We begin to prove (16) with the assumption that D*f €
Ng(R%}),0 < |af < ¢ Fix 0 < |af < £ and let ¢ > 0. By Lemma 7 we
have a function ve € My (R’) such that ||vE||MW(R1) =1 and

(
lw/R" f(fE)’Ue(fE)de’ > HfHN\I/(Ri) —6/2,

By Lemma 7, there is H := [0, H]|"™ such that

!/ Fao)de] > [l — e (1)
where v = v(H, €) := xnv. and x is the characteristic function of H. Put
Fe(z) = A f(@ +y)u(y)dy.
+

Then F, € Lo (R”}) by virtue of Lemma 6, and it is easy to check that

DPF(x)= | D°fla+yy(y)dy, 0< |8 <! (18)

in the distribution sense.
For all z € R?}, clearly,

IDFe(2)] < ID°f(a + vwep 10l @y < ID°flvemy.  (19)

Now we prove the continuity of D?F. on R" (0 < |8| < £). We show this for
B = 0. Clearly, it suffices to prove that for any = € R,

tim xa(4) (f(z +1+2) = F@+)) [ voey) = 0.

Assume the contrary that for some § > 0, point z° and sequence t,, — 0,
I () (F @+t + ) = f(@° + ) vy ®r) 26, m>1 (20)

For simplicity of notation we suppose £ = 0. Since f € Ny (R%), f € L1 goc(R7).
It is known that

/|f($+tm)—f(x)|dx—>0 as m — 0o.
H

Therefore, there exists a subsequence {t,,,}, we still denote by {t,,}, such that
fG+tn) — fae. on H. Define

gn(x) = inf |f(z+tm)|, = €H,
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then {g,} is a non-decreasing sequence and g, — |f| a.e. on H. It is easy to see
that

Axregn () = Ayaels)(t) as n — oo, for every t > 0.

We have

el (1) = Tm T(Ayyqg,,() < Hm Uy gt (1), > 0. (21)
It follows from the definition of ¥ that ¥(a + b) < ¥(a) + ¥(b) for a,b >

0.
Observe that, for any f,g € Ng(R’) and ¢t > 0, so we have A, (514)(2t) <
Are £ (£) + Ay g (t), then for all m > 1,

W Axrel £ Atm)—£1(20) < WA £ (41 (1) + ¥ (A 11 (1))

Hence
0 < W £(4ta)| (D) + W11 () = WA f ()11 (20)), VE > 0.
It is easy to check that (see [5])
T e+ v ) = e v ). ¥ = 1.

Applying Fatou’s lemma to the sequence

LU £ 1 (0) + Y g 111(8) = U Ay () — 11 (20))

we obtain

/00" W [ (A ) (8) 2 N1 () = U (A )1 (28)) ]

< lm o O () + PO 1(0) = ¥l -1 (20)]
o0 1 — o0
=2 /0 YAy p(1)dt = 5 lim | W (Axrelf (tom)— g1 (£)) . (22)

On the other hand,
Aol f(4t)—p| () = mes{a € H o |f(z + tm) — f(z)| > 1}
Therefore, taking account of f(- + t,,) — f a.e. on H, we have
T A7t 51 (8) = 0
and then

Hm WAy, f(atm)—r () = 0.

m—0o0
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So, by (21) we get for any ¢ > 0

29 (A 11 (8)) = T W(Aysq1g,, 1 (1)) + WAy 1 (1) = T W(Ays0 () 11(28))
< lm [T (01 (D) + e 1) = T 1 tt) -1 (20)] -
o0 (23)
From (22) and (23), we have

o0

o0 o0 1 -
2 [ WO <2 [ w0 @) B[ V0 (O)t
0

Hence

/ \IJ(AXHU'('thm)*ﬂ(t))dt — 0 asm — oo,
0

ie.
i e (FC 4 ) = S g e =0

which contradicts (20).

The cases 1 < |3 < £ are proved similarly. The continuity of D*F,, 0 <
|8] < ¢ has been proved.

The functions DF., 0 < || < ¢ are continuous and bounded on R". There-
fore, it follows from the Gagliardo-Nirenberg inequality and (17)—(18) that

(1D fl| 3o 3) — €) < |D*FL(0)] < [ D*Fe |0 <

1,_ i
SCFAllFelloe ™ (D D Felloe) ™
1B1=¢

which together with (19) implies

la]

1,_ Lo
1D fllva ) = € < Cd ol Fllvg ey ( D2 1D Fllmvaey) ™ -
|Bl=¢

By letting € — 0 we have (16).

Step 2. To complete the proof, it remains to show that D*f € Ng(R"}), Vo :
0<|al <tlif f,D*f € Ny(R%}), |af = ¢. Fix b > 0. With notations as in the
proof of Theorem 3, we have for 0 < A < b,0 < |a] < £:

DYfx = f(a) *¥x (24)

in the D'(R? ;) sense.
Taking Lemma 6 into account, we get easily D? fy = fxDPy € Ng(R™), 0 <
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|8 < ¢ and

I Axll vy @) = 1 f0) * UallNg @) < [ f0) | vg @) 192 (2 = )11

= [| (o) | vg (). (25)
||Daf/\||Nw(R") = ||f(a) * 1/’A||Nw(R") < ||f(a)||Nw(R")||1/)A(33 =)l
= || fio)ll vo ®7)- (26)

Therefore, for 0 < A < b and o = 0 or |a| = £ we have

D% (f0) * ) lvw ey ) = (@) * ¥allvw s )
< [ f) * Uallve @)
<ol ve @)
= lf(e) | va ()
= D% fllno mr)- (27)

On the other hand, using D*( f(o) * 1/»\) Joyx DYy € Ny(R™),V 0 < |af <4
(25)—(27) and the inequality proved in Step 1 for functions on R ,, we get for
all0 < A <b,0< o <,

lod
3

DAl vw @ ,) < aEHf)\HN\I,(R" )( Z 107 £all v 2. )
=/

lo]

17_ a
< g ey (Z 1D fallva e )
|Bl=¢

la]

CEl ey ey (32 1D% Fly ) ™ (28)
|B=¢

Fix a (0 < |a] < £). Repeating the arguments used in the proof of Theorem 3 ,
we get a sequence of positive numbers {\%,} : A%, — 0 such that

lim D®f\« (z) = D*f(x) a..in RY.

Hence,
n}iinm fla) *¥ax, () = fla)(w) = Df(x) a.e. in RY. (29)

For each function v € My (R?), ||v||MW((R ny < 1and m > 1, by (18) - (19) and
the definition of the Lorentz norm we get

lo]

[ pe)@ete)lds < C M o (X 1D flw) - (30)
+ |B=¢
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Therefore, by using Fatou’s lemma, (29) and (30), we obtain

D f(x)v(x)dx g/ hrnlnf’ D% fx: (v ’daj
Ri R" m— o0
glirninf/ ’(D f)\*) ’daz

lo]

e Lot
<CEM My (D 1D flvaeny) ©- (3D)
|Bl=¢

Because (31) is true for all v € My (R?), H’UHM\I’((Ri) < 1, by definition of the
Lorentz norm we have

lo]
o a
1D Fllva ) < Ol ey ( 3 1D Flvaey) ) < 00, 0 <lal <€
|Bl=¢

The proof is complete. [ |
By Theorem 8, we have

Theorem 9. Let { > 2, f and its generalized derivatives D°f, |B| = ¢ be in
Ng(R%) . Then D*f € Ny(R%) for all o, 0 < |a| =7 < £ and

o 1—-r r
S 1D fll ) < Cral ey (32 1D Pl ) -
la|=r |8]=¢

Corollary 10. Let ¢ > 2, f and its generalized derivatives D f, |3| = ¢ be in
Ny (R?%). Then D f € Ny (R%) for all o, 0 < |a| =1 < { and

D D fllvg @y < Ch™ 77 (| fllng ny + Ch Y 11D fll vy e
lal=r |Bl=¢

for all h > 0 and C' does not depend on f.

Remark 3. Note that the techniques applied in the proof of Theorem 3 for Orlicz
spaces Ly (R") cannot be used for Lorentz spaces Ny (R ).
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