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Abstract. In this paper we investigate the boundedness and the periodicity character

of solutions of the difference equation

xn+1 = max
{

1
xn

,
A1

n

xn−1
,

A2
n

xn−2
, ...,

Ak
n

xn−k

}
, n = 0, 1, ...

where {Ai
n}∞n=0 are sequences of positive numbers and Ai

n ∈ (0, 1] for all n = 0, 1, ...
and i = 1, 2, ..., k.
The solutions of the particular form

xn+1 = max
{

1
xn−p

,
1

xn−q

}
, n = 0, 1, ...

where p and q are nonnegative integer numbers will also be discussed.
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1. Introduction

In [5] Elabbasy et al. investigated the boundedness and the periodic nature of
solutions of the max type difference equation

xn+1 = max
{

1
xn

,
An

xn−1

}
,
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where {An}∞n=0 is a periodic sequence of period two and An > 1.

Also, Elabbasy et al. [6] studied the semicycles, the boundedness and the
periodicity of solutions of the Max-equation

xn+1 = max
{

1
xn

,
An

xn−1

}
,

where {An}∞n=0 is a periodic sequence of period three and An ∈ (0, 1] for all
n = 0, 1, ... such that the elements of one of the three subsequences {A3i}∞i=0,
{A3i+1}∞i=0 or {A3i+2}∞i=0 equal one.

In [8] Feuer et al. investigated the asymptotic behavior, the oscillatory char-
acter and periodic nature of solutions of the equation

xn+1 =
max{xn,A}

xnxn−1
,

where A is a real constant and x−1, x0 are nonzero constants.

Also, see [1–10] for some difference equations with the property that every
solution is eventually periodic.

The aim of this paper is to study the boundedness and the periodicity char-
acter of solutions of the general max-type difference equation

xn+1 = max
{

1
xn

,
A1

n

xn−1
,

A2
n

xn−2
,...,

Ak
n

xn−k

}
, n = 0,1,... (1)

where {Ai
n}∞n=0 are sequences of positive numbers and Ai

n ∈ (0, 1] for all n =
0, 1, ... and i = 1, 2, ..., k.

Also the periodicity of solutions of the missing term difference equation

xn+1 = max
{

1
xn−p

,
1

xn−q

}
, n = 0,1,... (2)

where p and q are nonnegative integer numbers will be investigated.

Max-type equations are important both for purely theoretical reasons, as
well as for applied reasons. The first purely theoretical equation, for which it
was possible to rigorously show that it has a strange attractor, was “Lozi’s map
[10]” which is a max-type equation. There are various applied models which use
max-type equations.

2. Some Basic Properties and Definitions

In this section we mention some basic properties and definitions for Equation
(1)
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Equilibrium point
Clearly Equation (1) has a unique equilibrium point x = 1.

Definitions

(1) Semicycles
(a) A positive semicycle of a solution {xn}∞n=−k of Equation (1) consists of a

“string” of terms {xl, xl+1,..., xm}, all of which are greater than or equal to
the equilibrium x with l ≥ −1 and m ≤ ∞, such that

either l = −1, or l > −1 and xl−1 < x

and

either m = ∞, or m < ∞ and xm+1 < x.

(b) A negative semicycle of a solution {xn}∞n=−k of Equation (1) consists of a
“string” of terms {xl, xl+1,..., xm}, all of which are less than the equilibrium
x, with l ≥ −1 and m ≤ ∞, such that

either l = −1, or l > −1 and xl−1 ≥ x

and

either m = ∞, or m < ∞ and xm+1 ≥ x.

The sequence {xn}∞n=−k is said to be oscillatory around an equilibrium point
x if {xn − x}∞n=−k is oscillatory around zero.

(2) Permanence
The difference equation

xn+1 = G(xn, xn−1, ..., xn−k), n = 0, 1, ...

is said to be permanent if there exist numbers m and M with 0 < m ≤ M < ∞
such that for any initial conditions x−k, x−k+1, ..., x−1, x0 ∈ (0,∞), there exists
a positive integer N which depends on the initial conditions such that

m ≤ xn ≤ M for all n ≥ N.

(3) Periodicity
A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all
n ≥ −k. A sequence {xn}∞n=−k is said to be periodic with prime period p if p is
the smallest positive integer having this property.
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3. Boundedness of Solutions

In this section we investigate the boundedness of positive solutions of Equation
(1). Our result is the following theorem which is a minor modification of Lemma
2.1 in [7].

Theorem 3.1 Every positive solution of Equation (1) is bounded.

Proof. First we claim that {xn}∞n=−k is bounded from above by a positive number
M > 0 if and only if {xn}∞n=−k is bounded from below by a positive number
m > 0.

Indeed, suppose {xn}∞n=−k is bounded from above by a positive number
M > 0. We shall show that {xn}∞n=−k is bounded from below by a positive
number m > 0.

It follows from Equation (1) that

xn+1 = max
{

1
xn

,
A1

n

xn−1

A2
n

xn−2
, ...,

Ak
n

xn−k

}

≥ max
{

1
M

,
A1

n

M
,
A2

n

M
, ...,

Ak
n

M

}
=

1
M

.

Then for every n ≥ 0, we see that

xn+1 ≥ 1
M

.

Conversely suppose that {xn}∞n=−k is bounded from below by a positive number
m > 0. We shall show that {xn}∞n=−k is bounded from above by a positive
number M > 0.

It follows from Equation (1) that

xn+1 = max
{

1
xn

,
A1

n

xn−1
,

A2
n

xn−2
, ...,

Ak
n

xn−k

}

≤ max
{

1
m

,
A1

n

m
,
A2

n

m
, ...,

Ak
n

m

}
=

1
m

.

Then for every n ≥ 0, we see that

xn+1 ≥ 1
m

,

and so the proof of the claim is complete. �

We are now ready to prove the theorem. To get a contradiction, suppose
that {xn}∞n=−k is not bounded from above. Then there exists N > 0 such that

max{xn : −k ≤ n < N} < xN .
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It follows that there exist integers N1 and N2 with N ≤ N2 < N1 such that

xN1 < min{xn : −k ≤ n < N1},

and
xN2 = max{xn : −k ≤ n < N1}.

Thus

xN1 = max

{
1

xN1−1
,
A1

N1−1

xN1−2
, ...,

Ak
N1−1

xN1−k−1

}

≥ max

{
1

xN2

,
A1

N1−1

xN2

Ak
N1−1

xN2

}
=

1
xN2

.

Then
xN1xN2 ≥ 1.

We also have

xN2 = max

{
1

xN2−1
,
A1

N2−1

xN2−2
, ...,

Ak
N2−1

xN2−k−1

}

< max

{
1

xN1

,
A1

N2−1

xN1

, ...,
Ak

N2−1

xN1

}
=

1
xN1

.

From which it follows that
xN1xN2 < 1.

This is a contradiction, and so the proof of the theorem is complete. �

4. Periodicity of Solutions of Equation (1)

In this section we investigate the existence of periodic solutions of Equation (1).
Two separate cases of Equation (1) will be discussed.

4.1. Ai
n = 1 , i = 1, 2, ..., k , n = 1, 2, ...

We have the following results.

Lemma 1. Let {xn}∞n=−k be a positive solution of Equation (1) which is not
eventually constant. Then the following statements are true.
(1) With the possible exception of the first negative semi-cycle, every negative

semi-cycle of {xn}∞n=−k has length equal to one.
(2) Every positive semi-cycle of {xn}∞n=−k has length equal to k + 1.

Proof. (1) Suppose there exists N ≥ 0 such that

xN−1 ≥ 1 and xN < 1.
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Then from Equation (1) we see that

xN+1 = max
{

1
xN

,
1

xN−1
,

1
xN−2

, ...,
1

xN−k

}
> 1.

(2) Suppose there exists N ≥ 0 such that xN < 1. Then from Equation (1)
we see that

xN+1 = max
{

1
xN

,
1

xN−1
,

1
xN−2

, ...,
1

xN−k

}
> 1,

xN+2 = max
{

1
xN+1

,
1

xN
,

1
xN−1

, ...,
1

xN−k+1

}
> 1,

xN+3 = max
{

1
xN+2

,
1

xN+1
,

1
xN

, ...,
1

xN−k+2

}
> 1,

.

.

.

xN+k+1 = max
{

1
xN+k

,
1

xN+k−1
,

1
xN+k−2

, ...,
1

xN

}
> 1,

and

xN+k+2 = max
{

1
xN+k+1

,
1

xN+k
,

1
xN+k−1

, ...,
1

xN+1

}
< 1.

This completes the proof. �

Theorem 4.1. Every positive solution of Equation (1) is eventually a periodic
solution of period k + 2.

Proof. It follows from Lemma 1 that every positive semi-cycle of every solution
{xn}∞n=−k of Equation (1) eventually of length k + 1 and every negative semi-
cycle of length one. Thus {xn}∞n=−k is a periodic solution of period k + 2. The
proof is complete. �

4.2. Ai
n = 1, 1 ≤ i ≤ r and Aj

n < 1, r + 1 ≤ j ≤ k.

In this section we consider Equation (1) where Ai
n = 1, 1 ≤ i ≤ r and Aj

n <
1, r + 1 ≤ j ≤ k. That is

xn+1 = max
{

1
xn

,
1

xn−1
, ...,

1
xn−r

,
Ar+1

n

xn−r−1
,...,

Ak
n

xn−k

}
, n = 0, 1, ... (3)

Here we state and prove the following results.

Lemma 2. Let {xn}∞n=−k be a positive solution of Equation (3) which is not
eventually constant. Then the following statements are true.
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(1) With the possible exception of the first negative semi-cycle, every negative
semi-cycle of {xn}∞n=−k has length equal to one.

(2) Every positive semi-cycle of {xn}∞n=−k has length at least equals r +1 and at
most equal to k + 1.

Proof. (1) Suppose there exists N ≥ 0 such that

xN−1 ≥ 1 and xN < 1.

Then it follows from Equation (3) that

xN+1 = max
{

1
xN

,
1

xN−1
, ...,

1
xN−r

,
Ar+1

N

xN−r−1
,...,

Ak
N

xN−k

}
> 1.

(2) Suppose there exists N ≥ 0 such that xN < 1. Then from Equation (3), we
see that

xN+1 = max
{

1
xN

,
1

xN−1
, ...,

1
xN−r

,
Ar+1

N

xN−r−1
, ...,

Ak
N

xN−k

}
> 1,

xN+2 = max

{
1

xN+1
,

1
xN

, ...,
1

xN−r+1
,
Ar+1

N+1

xN−r
, ...,

Ak
N+1

xN−k+1

}
> 1,

.

.

.

xN+r+1 = max

{
1

xN+r
,

1
xN+r−1

, ...,
1

xN
,
Ar+1

N+r

xN−1
, ...,

Ak
N+r

xN−k+r

}
> 1,

and

xN+r+2 = max

{
1

xN+r+1
,

1
xN+r

, ...,
1

xN+1
,
Ar+1

N+r+1

xN
,...,

Ak
N+r+1

xN−k+r+1

}
.

It is clear that
1

xN+i
< 1 for all 1 ≤ i ≤ r + 1.

However, one of the following inequalities holds

Ar+j
N+r+1

xN−i
≥ 1 for some 1 ≤ j ≤ k, 0 ≤ i ≤ k − r − 1.

Therefore
either xN+r+2 > 1 or xN+r+2 < 1.
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Thus every positive semi-cycle has length at least r + 1.
Similarly, we see that

either xN+r+i ≥ 1 or xN+r+i < 1 for i = 3, 4, ..., k + 1.

Now assume that

xN+i ≥ 1 for all i = r + 2, r + 3, ..., k + 1.

It follows from Equation (3) that

xN+k+2 = max

{
1

xN+k+1
,

1
xN+k

, ...,
1

xN+k−r+1
,
Ar+1

N+k+1

xN+k−r
,...,

Ak
N+k+1

xN+1

}
< 1.

Thus every positive semi-cycle has length at most k + 1.
The proof is complete. �

Theorem 4.2. Equation (3) possesses a periodic solution of period r + 2.

Proof. Let {xn}∞n=−k be a positive solution of Equation (3). Assume there exists
an integer N ≥ 0 such that

xN−k, xN−k+1, ..., xN−1 ≥ 1,

and

max{
√

Ai
n} ≤ xN < 1 for all i = r + 1, r + 2, ..., k.

Then from Equation (3) we obtain

xN+1 = max
{

1
xN

,
1

xN−1
, ...,

1
xN−r

,
Ar+1

N

xN−r−1
, ...,

Ak
N

xN−k

}
=

1
xN

,

xN+2 = max

{
1

xN+1
,

1
xN

, ...,
1

xN−r+1
,
Ar+1

N+1

xN−r
, ...,

Ak
N+1

xN−k+1

}
=

1
xN

,

.

.

.

xN+r+1 = max

{
1

xN+r
,

1
xN+r−1

, ...,
1

xN
,
Ar+1

N+r

xN−1
, ...,

Ak
N+r

xN−k+r

}
=

1
xN

,

xN+r+2 = max

{
1

xN+r+1
,

1
xN+r

, ...,
1

xN+1
,
Ar+1

N+r+1

xN
, ...,

Ak
N+r+1

xN−k+r+1

}
= xN ,
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and

xN+r+3 = max

{
1

xN+r+2
,

1
xN+r+1

, ...,
1

xN+2
,
Ar+1

N+r+2

xN+1
, ...,

Ak
N+r+2

xN−k+r+2

}
=

1
xN

.

Thus
xN+r+3 = xN+1.

Then it follows by induction that {xn}∞n=−k is periodic solution of period r + 2.
This completes the proof. �

Conjecture 1. Every positive solution of Equation (3) is periodic with period
r + 2.

Previous results [1-3], show that this conjecture is true. However, we do not
require that {An}∞n=0 is a periodic sequence. Although, we are not able to prove
this conjecture in the general case, we prove it for the following particular case.

Consider the difference equation

xn+1 = max
{

1
xn

,
1

xn−1
,

An

xn−2

}
, n = 0, 1, ... (4)

where {An}∞n=0 is a periodic sequence of period two as {..., α, β, α, β, ...}, and
α, β ∈ (0, 1). Suppose that α > β.

Lemma 3. Every solution of Equation (4) which is bounded below by
√

α

belongs to the interval
[
√

α,
1√
α

]
.

Proof. Let {xn}∞n=−2 be a positive solution of Equation (4) and let there exist
N ≥ 0 such that

xn−2 ≥
√

α for all n ≥ N.

It follows from Equation (4) that

xN+1 = max
{

1
xN

,
1

xN−1
,

AN

xN−2

}
≤ max

{
1√
α

,
1√
α

,
AN√

α

}
=

1√
α

.

Similarly, we see that

xN+2 = max
{

1
xN+1

,
1

xN
,
AN+1

xN−1

}
≤ max

{
1√
α

,
1√
α

,
AN+1√

α

}
=

1√
α

.

Similarly to the above, the proof follows. �

Lemma 4. Every positive semi-cycle of any solution of Equation (4) which is
bounded below by

√
α has exactly length two.
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Proof. Suppose there exists N ≥ 0 such that

xN−1 < 1 and xN ≥ 1.

Then from Equation (4) we see that

xN+1 = max
{

1
xN

,
1

xN−1
,

AN

xN−2

}
> 1

and

xN+2 = max
{

1
xN+1

,
1

xN
,
AN+1

xN−1

}
< 1,

where xN−1 >
√

α ⇒ AN+1

xN−1
<

AN+1√
α

≤ α√
α

=
√

α < 1.

This completes the proof. �

Remark 1. By Lemma 2, every negative semi-cycle has length one.

Theorem 4.3. Every positive solution of Equation (4) which is bounded below
by

√
α is eventually periodic with period three.

Proof. Since the positive semi-cycle has length exactly two and the negative
semi-cycle is of length exactly one, we consider only the following cases for an
integer N ≥ 0
(a) xN−2, xN−1 ≥ 1 and xN < 1;
(b) xN−2, xN ≥ 1 and xN−1 < 1;
(c) xN−1, xN ≥ 1 and xN−2 < 1.
We will consider only the case (a) (the other cases are similar and the proof will
be omitted). Assume (a) holds, then it is easy to see from Equation (4) that the
solution is of the form

{
..., xN,

1
xN

,
1

xN
, xN ,

1
xN

,
1

xN
, ...

}
.

Therefore {xn}∞n=−2 is a periodic solution with period three. �

Lemma 5. Assume {xn}∞n=−2 is a positive solution of Equation (4) and suppose
there exists m ≥ 2 such that

xm−2 <
√

α.

Then either {xn}∞n=−2 is an eventually periodic solution with period three or

lim inf
n→∞

xn ≥
√

α.

Proof. It follows from Equation (4) that

xm+1 = max
{

1
xm

,
1

xm−1
,

Am

xm−2

}
=

α

xm−2
,



Qualitative Behavior of Some Max-type Difference Equations 57

where xm−1, xm >
1√
α

. So αxm−1 >
√

α > xm−2, and similarly αxm > xm−2.

xm+2 = max
{

1
xm+1

,
1

xm
,
Am+1

xm−1

}
= max

{
xm−2

α
,

1
xm

,
β

xm−1

}
=

xm−2

α
,

and

xm+3 = max
{

1
xm+2

,
1

xm+1
,
Am+2

xm

}
= max

{
α

xm−2
,
xm−2

α
,

α

xm

}
.

We consider the following two cases:

(A1) xm+3 =
xm−2

α
. In this case, by some simple computations, we see that

the solution is of the form
{

...,
α

xm−2
,
xm−2

α
,
xm−2

α
,

α

xm−2
,
xm−2

α
,
xm−2

α
,...

}
.

Therefore {xn}∞n=−2 is a periodic solution with period three.

(A2) xm+3 =
α

xm−2
. In this case we see that

xm+4 = max
{

1
xm+3

,
1

xm+2
,
Am+3

xm+1

}
= max

{
xm−2

α
,

α

xm−2
,
βxm−2

α

}
=

α

xm−2
,

and

xm+5 = max
{

1
xm+4

,
1

xm+3
,
Am+4

xm+2

}
= max

{
xm−2

α
,
xm−2

α
,

α2

xm−2

}
.

We consider the following two cases:

(B1) xm+5 = xm−2
α

. In this case we see that the solution is of the form

{
...,

xm−2

α
,

α

xm−2
,

α

xm−2
,
xm−2

α
,

α

xm−2
,

α

xm−2
,...

}
.

Therefore {xn}∞n=−2 is a periodic solution with period three.

(B2) xm+5 =
α2

xm−2
. Then

xm+6 = max
{

1
xm+5

,
1

xm+4
,
Am+5

xm+3

}
= max

{
xm−2

α2
,
xm−2

α
,
βxm−2

α

}
=

xm−2

α2
,
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and in this case we see that

xm−2 < xm+2 =
xm−2

α
< xm+6 =

xm−2

α2
.

Thus

lim inf
n→∞

xn ≥
√

α.

�

Theorem 4.3 and Lemma 5 lead to the following main result of this section.

Theorem 4.4. Every solution of Equation (4) is periodic with period three.

5. Periodicity of Equation (2)

It is well known that every solution of the difference equation

xn+1 =
1

xn−j
, n = 0, 1, ...

is periodic with period 2j + 2, where j is a nonnegative integer number.

One may think of a relation between the period of the periodic solution of
Equation (2) and the period of the solution of equations

xn+1 =
1

xn−p
, and xn+1 =

1
xn−q

.

Amazingly, there is a relation. This relation will be given by the following
theorem.

Theorem 5.1. The following statements are true.
(1) If q 6= 3p + 2, then every positive solution of Equation (2) is periodic with

period q + p + 2.

(2) If q = 3p + 2, then every positive solution of Equation (2) is periodic with
period 2p + 2.

Proof. (1) It suffices to show that every positive semi-cycle of any solution of
Equation (2) has length q+1 and that every negative semi-cycle has length p+1.

Assume that there exists an integer N ≥ 0 such that

xN−q, xN−q+1, ..., xN−1 ≥ 1 and xN < 1.
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It follows from Equation (2) that

xN+1 = max
{

1
xN−p

,
1

xN−q

}
< 1,

xN+2 = max
{

1
xN−p+1

,
1

xN−q+1

}
< 1,

.

.

.

xN+p−1 = max
{

1
xN−2

,
1

xN−q+p−2

}
< 1,

xN+p = max
{

1
xN−1

,
1

xN−q+p−1

}
< 1,

and

xN+p+1 = max
{

1
xN

,
1

xN−q+p

}
> 1.

Therefore the negative semi-cycle has length exactly p + 1.

Again, we see from Equation (2) that

xN+p+2 = max
{

1
xN+1

,
1

xN−q+p+1

}
> 1,

xN+p+3 = max
{

1
xN+2

,
1

xN−q+p+2

}
> 1,

.

.

.

xN+p+q = max
{

1
xN+q−1

,
1

xN+p−1

}
> 1,

xN+p+q+1 = max
{

1
xN+q

,
1

xN+p

}
> 1,

and

xN+p+q+2 = max
{

1
xN+q+1

,
1

xN+p+1

}
< 1.

This gives that the positive semi-cycle has exactly length q + 1. The proof is
complete.

(2) As in Case (1), assume that there exists an integer N ≥ 0 such that

xN−3p−2, xN−3p−1, ..., xN−1 ≥ 1 and xN < 1.
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It follows from Equation (2) that

xN+1 = max
{

1
xN−p

,
1

xN−3p−2

}
< 1,

xN+2 = max
{

1
xN−p+1

,
1

xN−3p−1

}
< 1,

.

.

.

xN+p−1 = max
{

1
xN−2

,
1

xN−2p−4

}
< 1,

xN+p = max
{

1
xN−1

,
1

xN−2p−3

}
< 1,

and

xN+p+1 = max
{

1
xN

,
1

xN−2p−2

}
> 1.

Therefore the negative semi-cycle has exactly length p + 1.

Again, we see from Equation (2) that

xN+p+2 = max
{

1
xN+1

,
1

xN−2p−1

}
> 1,

xN+p+3 = max
{

1
xN+2

,
1

xN−2p

}
> 1,

.

.

.

xN+2p = max
{

1
xN+p−1

,
1

xN−p−3

}
> 1,

xN+2p+1 = max
{

1
xN+p

,
1

xN−p−2

}
> 1,

and

xN+2p+2 = max
{

1
xN+p+1

,
1

xN−p−1

}
< 1.

This means that the positive semi-cycle has exactly length p + 1. The proof is
complete. �

Remark 2. Note that the period of the difference equation
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xn+1 = max
{

1
xn

,
1

xn−1
,

1
xn−2

,...,
1

xn−k

}
,

is the average of the periods of the equations

xn+1 =
1

xn−i
, i = 0, 1, ..., k.
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