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Abstract. Integral transforms of the form

g(x) =
(
1 − d2

dx2

){ +∞∫

0

f(y)[ sign (x+ y − 1)k1(|x+ y − 1|)

+ sign (x− y + 1)k1(|x− y + 1|)− k1(x+ y + 1)
− sign (x− y − 1)k1(|x− y − 1|)]dy

+

+∞∫

0

f(y)[k2(|x− y|) − k2(x+ y)]dy
}

from Lp(R+) to Lq(R+), (1 6 p 6 2, p−1 + q−1 = 1) are studied. Watson’s and

Plancherel’s Theorems are obtained. Applications to solving integral equation and

systems of integral equations are considered.
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1. Introduction

The theory of convolution for integral transforms were studied in the 20th cen-
tury. At first, the convolution for the Fourier transformation has been studied.
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Namely, the convolution of two functions f and g for the Fourier transform has
the form

(f ∗
F
g)(x) =

1√
2π

+∞∫

−∞

f(y)g(x − y)dy, x ∈ R, (1)

with the factorization property

F (f ∗
F
g)(y) = (Ff)(y)(Fg)(y), ∀y ∈ R,

where F is the Fourier integral transform

(Ff)(x) =
1√
2π

+∞∫

−∞

e−ixyf(y)dy.

Later on, convolutions for integral transforms Laplace, Mellin, Hilbert, Han-
kel, Kontorovich - Lebedev and Stieltjes have been introduced and studied. At
the same time, integral transforms of the Fourier convolution type, of the Laplace
convolution type, of the Mellin convolution type,... have also been constructed
and investigated.

In 1941, Churchill introduced the convolution of two functions f and g for
the Fourier cosine integral transform defined by the formula below [2]

(f ∗
Fc

g)(x) =
1√
2π

+∞∫

0

f(y)[g(x + y) + g(|x− y|)]dy, x > 0, (2)

for which the following factorization equality holds [8]

Fc(f ∗
Fc

g)(y) = (Fcf)(y)(Fcg)(y), ∀y > 0. (3)

Here, Fc is the Fourier cosine transform [1]

(Fcf)(x) =

√
2
π

+∞∫

0

cos(xy)f(y)dy.

The first convolution with a weight function was found by Vilenkin in 1958
for the transform Mehler - Fock. In 1967, Kakichev proposed a constructive
method for defining the convolution with a weight function for an arbitrary
integral transform (see [3]). The convolution of two functions f and g with the
weight function γ(y) = sin y for the Fourier sine integral transformation has been
studied in [3, 15]

(f
γ
∗
Fs

g)(x) =
1

2
√

2π

+∞∫

0

f(y)[ sign (x+ y − 1) g(|x+ y − 1|)

+ sign (x− y + 1) g(|x− y + 1|)− g(x+ y + 1)
− sign (x− y − 1) g(|x− y − 1|)]dy, x > 0, (4)
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for which the following factorization identity holds ([3, 15])

Fs(f
γ
∗
Fs

g)(y) = sin y(Fsf)(y)(Fsg)(y), ∀y > 0, (5)

where Fs is the Fourier sine transform ([1])

(Fsf)(x) =

√
2
π

+∞∫

0

sin(xy)f(y)dy.

In 1941, the first generalized convolution for two integral transforms was
introduced by Churchill. Namely, he defined the generalized convolution of two
functions f and g for the Fourier sine and cosine transforms [2]

(f ∗
1
g)(x) =

1√
2π

+∞∫

0

f(y)[g(|x − y|) − g(x + y)]dy, x > 0, (6)

and proved the following factorization identity [7]

Fs(f ∗
1
g)(y) = (Fsf)(y).(Fcg)(y), ∀y > 0. (7)

In the nineties of the last century, Yakubovich introduced several generalized
convolutions with index for the Mellin transform, Kontorovich-Lebedev trans-
form, G-transform and H-transform. In 1998, Kakichev and Nguyen Xuan Thao
proposed a constructive method for defining the generalized convolution for three
arbitrary integral transforms (see [4]). Up to now, based on this method, several
new generalized convolutions for integral transforms were established and inves-
tigated. For instance, the generalized convolution for Stieltjes, Hilbert, Fourier
cosine and sine integral transforms have been introduced in [11]; the general-
ized convolution for the I- transform has been studied in [17]; the generalized
convolution with a weight function for the Fourier sine, Kontorovich-Lebedev
and the Fourier cosine integral transforms and the generalized convolution for
the Kontorovich-Lebedev, Fourier sine and cosine transforms have also been in-
vestigated in [18], [19], respectively; the generalized convolution with a weight
function for the Fourier sine and cosine transforms were introduced in [14]; the
generalized convolution with a weight function for the Fourier, Fourier cosine
and sine transforms were found in [12], and so on.

The first generalized convolution which was constructed basing on that method
was introduced in 1998 in [5]. Namely, the generalized convolution of two func-
tions f and g for the Fourier cosine and sine transforms has the form

(f ∗
2
g)(x) =

1√
2π

+∞∫

0

f(y)[ sign (y − x)g(|y − x|) + g(y + x)]dy, x > 0, (8)

where the following factorization property has been established [5]

Fc(f ∗
2
g)(y) = (Fsf)(y)(Fsg)(y), ∀y > 0. (9)
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Another generalized convolution with the weight function γ(y) = sin y for
the Fourier cosine and Fourier sine transforms has been studied in [16]

(f
γ
∗
2
g)(x) =

1
2
√

2π

+∞∫

0

f(u)[g(|x+ u− 1|) + g(|x− u+ 1|) (10)

− g(x + u+ 1) − g(|x− u− 1|)]du, x > 0.

It satisfies the factorization property [16]

Fc(f
γ
∗
2
g)(y) = sin y(Fsf)(y)(Fcg)(y), ∀y > 0. (11)

Recently, in 2000, classes of integral transforms related to the generalized con-
volutions (6) and (8) was constructed and investigated by Vu Kim Tuan in [6,
7]. In this paper we will consider a new class of integral transforms which is
related to the convolution with a weight function for the Fourier sine transform
(4) and the generalized convolution for the Fourier sine and cosine transforms
(6), namely, the transforms of the form

g(x) =
(
1 − d2

dx2

){ +∞∫

0

f(y)[ sign (x+ y − 1)k1(|x+ y − 1|)

+ sign (x− y + 1)k1(|x− y + 1|)
− k1(x+ y + 1) − sign (x− y − 1)k1(|x− y − 1|)]dy

+

+∞∫

0

f(y)[k2(|x− y|) − k2(x+ y)]dy
}
. (12)

We will show that with certain conditions of k1 and k2, transform (12) defines
a bounded operator from Lp(R+) to Lq(R+) (1 6 p 6 2), p−1 + q−1 = 1.
Moreover, we will show that with these conditions of k1 and k2, the transform
(12) is a unitary operator in L2(R+). Watson and Plancherel type Theorem for
transform (12) in L2(R+) are also obtained.

2. A Watson Type Theorem

Lemma 1. Let f and g be L2(R+) functions. Then the following Parseval
identity holds

+∞∫

0

f(u)[ sign (x+ u− 1)g(|x+ u− 1|) + sign (x− u+ 1)g(|x− u+ 1|)

− g(x+ u+ 1) − sign (x− u− 1)g(|x− u− 1|)]du
= 2

√
2πFs

(
sinu(Fsf)(u)(Fsg)(u)

)
(x), ∀x > 0. (13)
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Proof. Let f1 and g1 be the odd extension of f and g from R+ to R, respectively.
Then on R+ we have Ff1 = −iFsf and Fg1 = −iFsg. Applying the Parseval
identity for Fourier transform

+∞∫

−∞

f(y)g(x − y)dy =

+∞∫

−∞

(Ff)(y)(Fg)(y)eixydy,

we have

+∞∫

0

f(u)[ sign (x+ u− 1)g(|x+ u− 1|) + sign (x− u+ 1)g(|x− u+ 1|)

− g(x+ u+ 1) − sign (x− u− 1)g(|x− u− 1|)]du

=

+∞∫

0

f1(u)[g1(x+ u− 1) + g1(x− u+ 1) − g1(x+ u+ 1) − g1(x− u− 1)]du

=

+∞∫

−∞

f1(u)g1(x− u+ 1)du−
+∞∫

−∞

f1(u)g1(x− u− 1)du

=

+∞∫

−∞

(Ff1)(u)(Fg1)(u)ei(x+1)udu−
+∞∫

−∞

(Ff1)(u)(Fg1)(u)ei(x−1)udu

=

+∞∫

−∞

(Ff1)(u)(Fg1)(u){cos((x+ 1)u) + i sin
(
(x+ 1)u

)
}du

−
+∞∫

−∞

(Ff1)(u)(Fg1)(u){cos((x − 1)u) + i sin
(
(x− 1)u

)
}du.

On the other hand, note that (Ff1)(u)(Fg1)(u) sin
(
(x+1)u

)
and (Ff1)(u)(Fg1)(u) sin

(
(x−

1)u
)

are odd functions in u. Hence their integrals over R vanish, and therefore,

+∞∫

0

f(u)[ sign (x+ u− 1)g(|x+ u− 1|) + sign (x − u+ 1)g(|x− u+ 1|)

− g(x + u+ 1) − sign (x− u− 1)g(|x− u− 1|)]du

=

+∞∫

−∞

(Ff1)(u)(Fg1)(u) cos
(
(x+ 1)u

)
du−

+∞∫

−∞

(Ff1)(u)(Fg1)(u) cos
(
(x− 1)u

)
du

= − 2

+∞∫

−∞

(Ff1)(u)(Fg1)(u) sinu sin(xu)du
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= − 4

+∞∫

0

(Ff1)(u)(Fg1)(u) sinu sin(xu)du

= 2
√

2πFs

(
sinu(Fsf)(u)(Fsg)(u)

)
(x).

This completes the proof of the lemma. �

Theorem 1. Let k1, k2 ∈ L2(R+). Then

|2 sin y(Fsk1)(y) + (Fck2)(y)| =
1√

2π(1 + y2)
(14)

is a necessary and sufficient condition to ensure that the integral transform f 7→
g:

g(x) =
(
1 − d2

dx2

){ +∞∫

0

f(u)[sign(x+ u− 1)k1(|x+ u− 1|)

+ sign(x − u+ 1)k1(|x− u+ 1|) − k1(x+ u+ 1)
− sign(x − u− 1)k1(|x− u− 1|)]du

+

+∞∫

0

f(u)[k2(|x− u|) − k2(x + u)]du
}

(15)

is unitary on L2(R+) and the inverse transformation has the form

f(x) =
(
1 − d2

dx2

){ +∞∫

0

k1(u)[sign(x+ u− 1)g(|x+ u− 1|)

+ sign(x− u+ 1)g(|x− u+ 1|) − g(x + u+ 1)
− sign(x− u− 1)g(|x− u− 1|)]du

+

+∞∫

0

g(u)[k2(|x− u|) − k2(x+ u)]du
}
. (16)

Proof.

Necessity. Suppose that k1 and k2 satisfy condition (14). It is well-known that
h(y), yh(y), y2h(y) belong to L2(R+) if and only if (Fh)(x), d

dx (Fh)(x) and
d2

dx2
(Fh)(x) are also L2(R+) functions (Theorem 68, page 92, [10]). Moreover,

d2

dx2
(Fh)(x) =

1√
2π

d2

dx2

+∞∫

−∞

h(y)e−ixydy = F
(
(−iy)2h(y)

)
(x).
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In particular, if h is an even or odd function such that (1 + y2)h(y) ∈ L2(R+),
then the following equalities hold

(
1 − d2

dx2

)
(Fch)(x) = Fc

(
(1 + y2)h(y)

)
(x),

(17)
(
1 − d2

dx2

)
(Fsh)(x) = Fs

(
(1 + y2)h(y)

)
(x).

Using the Lemma 1 and the factorization equalities for generalized convolutions
(6), (8) we have

g(x) =
(
1 − d2

dx2

)
Fs

(
2
√

2π sin y(Fsk1)(y)(Fsf)(y) +
√

2π(Fsf)(y)(Fck2)(y)
)
(x)

=Fs

(√
2π(1 + y2)

(
2 sin y(Fsk1)(y) + (Fck2)(y)

)
(Fsf)(y)

)
(x).

By virtue of Parseval equality for the Fourier sine transform ‖f‖L2(R+) = ‖Fsf‖L2(R+)

and note that k1 and k2 satisfy condition (14) we have

‖g‖L2(R+) = ‖2
√

2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsf)(y)‖L2 (R+)

= ‖Fsf‖L2(R+) = ‖f‖L2(R+).

It follows that the transformation (15) is unitary.

On the other hand, in view of condition (14),
√

2π(1+y2)(2 sin y(Fsk1)(y)+
(Fck2)(y)) is bounded, hence

√
2π(1+y2)(2 sin y(Fsk1)(y)+(Fck2)(y))(Fsf)(y) ∈

L2(R+). We have

(Fsg)(y) =
√

2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsf)(y).

It follows that

(Fsf)(y) =
√

2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsg)(y).

Again, condition (14) of k1, k2 yields
√

2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsg)(y) ∈ L2(R+).

Using formulae (17) we obtain

f(x) = Fs

[√
2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsg)(y)

]
(x)

=
(
1 − d2

dx2

)
Fs

(
2
√

2π sin y(Fsk1)(y)(Fsg)(y) +
√

2π(Fsg)(y)(Fck2)(y)
)
(x)

=
(
1 − d2

dx2

){ +∞∫

0

k1(y)[sign(x + y − 1)g(|x+ y − 1|)

+ sign(x− y + 1)g(|x− y + 1|) − g(x + y + 1)
− sign(x− y − 1)g(|x− y − 1|)]dy

+

+∞∫

0

g(y)[k2(|x− y|) − k2(x + y)]dy
}
.
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Therefore the transformation (15) is unitary on L2(R+) and the inverse trans-
formation has the form (16).

Sufficiency. Suppose that transform (15) is unitary on L2(R+) with the inverse
transformation defined by (16). Then Parseval identity for the Fourier sine
transform yields

‖g‖L2(R+) = ‖
√

2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsf)(y)‖L2(R+)

= ‖Fsf‖L2(R+) = ‖f‖L2(R+).

However, the middle equality holds for all f ∈ L2(R+) if and only if

|
√

2π(1 + y2)(2 sin y(Fsk1)(y) + (Fck2)(y))(Fsf)(y)| = |(Fsf)(y)|.

It shows that k1 and k2 satisfy condition (14). The proof of the theorem has
been completed. �

Let h1, h2 ∈ L2(R+) satisfy the following condition

|(Fsh1)(y)(Fsh2)(y)| =
1

(1 + y2)(1 + sin2 y)
. (18)

For example, consider

h1(x) = Fs

( eiu(y)

√
(1 + y2)(1 + sin2 y)

)
(x),

h2(x) = Fs

( eiv(y)

√
(1 + y2)(1 + sin2 y)

)
(x),

where u, v are some functions defined on R+.
Let k1, k2 be defined by

k1(x) =
1

2
√

2π
(h1

γ
∗
Fs

h2)(x), k2(x) =
1√
2π

(h1 ∗
2
h2)(x).

Then k1, k2 ∈ L2(R+) and from (5) and (9) we have

∣∣∣2 sin y(Fsk1)(y) + (Fck2)(y)
∣∣∣

=
∣∣∣ 1√

2π
sin2 y(Fsh1)(y)(Fsh2)(y) +

1√
2π

(Fsh1)(y)(Fsh2)(y)
∣∣∣

=
∣∣∣ 1√

2π
(1 + sin2 y)(Fsh1)(y)(Fsh2)(y)

∣∣∣

=
1√

2π(1 + y2)
.
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Thus k1 and k2 satisfy condition (14).

For another example, let h1 and h2 be L2(R+) functions and satisfy the
condition

|(Fch1)(y)(Fch2)(y)| =
1

(1 + y2)(1 + sin2 y)
(19)

and let k1, k2 be defined by

k1(x) =
1

2
√

2π
(h1

γ
∗
3
h2)(x), k2(x) =

1√
2π

(h1 ∗
Fc

h2)(x).

Then k1, k2 ∈ L2(R+) and we have

∣∣∣2 sin y(Fsk1)(y) + (Fck2)(y)
∣∣∣

=
∣∣∣ 1√

2π
sin2 y(Fch1)(y)(Fch2)(y) +

1√
2π

(Fch1)(y)(Fch2)(y)
∣∣∣

=
∣∣∣ 1√

2π
(1 + sin2 y)(Fch1)(y)(Fch2)(y)

∣∣∣

=
1√

2π(1 + y2)
.

Thus k1 and k2 satisfy condition (14).

3. A Plancherel Type Theorem

Theorem 2. Let k1, k2 be functions satisfying condition (14) and suppose that

K1(x) = (1 − d2

dx2
)k1(x) and K2(x) = (1 − d2

dx2
)k2(x) are locally bounded. Let

f ∈ L2(R+) and for each positive integer N , put

gN (x) =
{ N∫

0

f(u)[ sign (x+ u− 1)K1(|x+ u− 1|)

+ sign(x − u+ 1)K1(|x− u+ 1|) −K1(x+ u+ 1)
− sign (x− u− 1)K1(|x− u− 1|)]du

+

N∫

0

f(u)[K2(|x− u|) −K2(x + u)]du
}
. (20)

Then
1) gN ∈ L2(R+) and as N → +∞, gNconverges in L2(R+)-norm to a function

g, furthermore ‖g‖L2(R+) = ‖f‖L2(R+).
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2) Put gN = g.χ(0,N), then

fN (x) =
{ +∞∫

0

K1(u)[ sign (x+ u− 1)gN (|x+ u− 1|)

+ sign (x− u+ 1)gN (|x− u+ 1|)− gN (x+ u+ 1)
− sign (x− u− 1)gN (|x− u− 1|)]du

+

N∫

0

g(u)[k2(|x− u|)− k2(x+ u)]du
}

(21)

belongs to L2(R+) and converges in L2(R+)-norm to f as N → +∞.

Remark 1. The integrals defining fN and gN are defined over finite intervals and
therefore converge.

Proof. Put fN = f.χ(0,N) then

gN (x) =

N∫

0

f(u)[ sign (x+ u− 1)K1(|x+ u− 1|)

+ sign (x− u+ 1)K1(|x− u+ 1|)
−K1(x+ u+ 1) − sign (x− u− 1)K1(|x− u− 1|)]du

+

N∫

0

f(u)[K2(|x− u|) −K2(x+ u)]du

=
(
1 − d2

dx2

) +∞∫

0

fN (u)[ sign (x+ u− 1)k1(|x+ u− 1|)

+ sign (x− u+ 1)k1(|x− u+ 1|) − k1(x + u+ 1)
− sign (x− u− 1)k1(|x− u− 1|)]du

+

+∞∫

0

fN (u)[k2(|x− u|)− k2(x+ u)]du.

Interchanging the order of integration and differentiation here is legitimate since
the integral was over a finite interval. Theorem 1 guarantees that gN ∈ L2(R+).
Moreover, if g is the image of f under the transform (15), we obtain that
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‖g‖L2(R+) = ‖f‖L2(R+) and the reciprocal formula (16) holds. We have

(g − gN )(x) =
(
1 − d2

dx2

) +∞∫

0

(f − fN )(u)[ sign (x+ u− 1)k1(|x+ u− 1|)

+ sign (x− u+ 1)k1(|x− u+ 1|) − k1(x+ u+ 1)
− sign (x− u− 1)k1(|x− u− 1|)]du

+

+∞∫

0

(f − fN )(u)[k2(|x− u|) − k2(x+ u)]du,

so again by Theorem 1, g − gN ∈ L2(R+) and

‖g − gN‖L2(R+) = ‖f − fN‖L2(R+),

and since ‖f − fN ‖L2(R+) → 0 as N → +∞, it follows that gN converges in
L2(R+)-norm to g as N → +∞. This completes the first part of the theorem.

Note that the convolution of two functions f, g with the weight function
γ(y) = sin y for the Fourier sine transform is commutative [15], hence the fol-
lowing identity holds

+∞∫

0

K1(u)[ sign (x+ u− 1)gN (|x+ u− 1|) + sign (x− u+ 1)gN (|x− u+ 1|)

− gN (x+ u+ 1) − sign (x − u− 1)gN (|x− u− 1|)]du

=

+∞∫

0

gN (u)[ sign (x+ u− 1)K1(|x+ u− 1|) + sign (x− u+ 1)K1(|x− u+ 1|)

−K1(x+ u+ 1) − sign (x− u− 1)K1(|x− u− 1|)]du.

Therefore, in a similar way, one can obtain the second part of the theorem. �

Remark 2. Theorem 1 shows that transformation (15) is unitary in L2(R+) and
the inverse transformation has the form (16). Furthermore, Theorem 2 proved
that these transformations (15) and (16) can be approximated in L2(R+)-norm
by the integral operators (20) and (21), respectively.

We assume additionally now that K1(x) and K2(x) are bounded on R+.
Then transform (15) is a bounded operator from the space L1(R+) into the
space L∞(R+). Moreover, by Theorem 2 transform (15) is bounded on L2(R+).
Hence, Riesz interpolation theorem [9] yields the following.

Theorem 3. Let k1, k2 be functions satisfying condition (14) and suppose that
K1(x) and K2(x) are bounded on R+. Let 1 6 p 6 2 and q be its conjugate
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exponent 1
p + 1

q = 1. Then the transformations

g(x) = lim
N→+∞

{ N∫

0

f(u)[ sign (x+ u− 1)K1(|x+ u− 1|)

+ sign (x− u+ 1)K1(|x− u+ 1|)
−K1(x+ u+ 1) − sign (x− u− 1)K1(|x− u− 1|)]du

+

N∫

0

f(u)[K2(|x− u|)−K2(x+ u)]du
}

(22)

and

g(x) = lim
N→+∞

{ +∞∫

0

K1(u)[ sign (x + u− 1)fN (|x+ u− 1|)

+ sign (x− u+ 1)fN (|x− u+ 1|)− fN (x+ u+ 1)
− sign (x− u− 1)fN (|x− u− 1|)]du

+

N∫

0

f(u)[K2(|x− u|)−K2(x+ u)]du
}

(23)

are bounded operators from Lp(R+) into Lq(R+), here the limits are understood
in Lq(R+)-norm.

4. Applications to Integral Equation and Systems of Integral Equa-
tions

4.1. Consider the System of Intergral Equations

f(x) + λ1

{ +∞∫

0

f(y)θ(x, y)dy +

+∞∫

0

ψ(y)[g(|x − y|) − g(x+ y)]dy
}

= h(x),

λ2

+∞∫

0

f(y)[ sign (y − x)ξ(|y − x|) + ξ(y + x)]dy + g(x) = k(x). (24)

Here and throughout this section we will denote by θ(x, y) the following
function

θ(x, y) = sign (x+ y − 1)ϕ(|x+ y − 1|) + sign (x − y + 1)ϕ(|x− y + 1|)
− ϕ(x+ y + 1) − sign (x− u− 1)ϕ(|x− u− 1|),

ϕ(x) =(ϕ1 ∗
1
ϕ2)(x).
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λ1 and λ2 are complex constants and ϕ1, ϕ2, ψ, ξ, h, k are functions from L1(R+),
f and g are unknown functions.

Theorem 4. With the condition

1 + 2
√

2πλ1 sin y(Fsϕ)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y) 6= 0, ∀y > 0

there exists a unique solution in L1(R+) of system (24) which has the form

f(x) =h(x) − λ1

√
2π(ψ ∗

1
k)(x) − (h ∗

1
l)(x) + λ1

√
2π

(
(ψ ∗

1
k) ∗

1
l
)
(x),

g(x) =k(x) + λ12
√

2π(ϕ
γ
∗
2
k)(x) − λ2

√
2π(ξ ∗

2
h)(x) − (k ∗

Fc

l)(x)

− λ12
√

2π
(
(ϕ

γ
∗
2
k) ∗

Fc

l
)
(x) + λ2

√
2π

(
(ξ ∗

2
h) ∗

Fc

l
)
(x), (25)

where l ∈ L1(R+) is defined by

(Fcl)(y) =
λ12

√
2π sin y(Fsϕ)(y) − λ1λ2

√
2π(Fsξ)(y)(Fsψ)(y)

1 + λ12
√

2π sin y(Fsϕ)(y) − λ1λ2

√
2π(Fsξ)(y)(Fsψ)(y)

.

Remark 3. By the condition that ϕ1 and ϕ2 be L1(R+) functions, it is clear
that ϕ belongs to L1(R+).

Proof. In view of the factorization properties of convolutions (4), (6) and (8),
one can rewrite the system (24) in the form

(Fsf)(y) + λ1.2
√

2π sin y(Fsf)(y)(Fsϕ)(y) + λ1

√
2π(Fsψ)(y)(Fcg)(y) = (Fsh)(y)

(26)

λ2

√
2π(Fsf)(y)(Fsξ)(y) + (Fcg)(y) = (Fck)(y).

Accordingly, we have

∆ =
∣∣∣∣
1 + λ12

√
2π sin y(Fsϕ)(y) λ1

√
2π(Fsψ)(y)

λ2

√
2π(Fsξ)(y) 1

∣∣∣∣

= 1 + 2
√

2πλ1 sin y(Fsϕ)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y) 6= 0.

Under the hypothesis and by Wiener - Levy’s Theorem we have

1
∆

=
1

1 + 2
√

2πλ1 sin y(Fsϕ)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y)

=1 − 2
√

2πλ1 sin y(Fsϕ)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y)
1 + 2

√
2πλ1 sin y(Fsϕ)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y)

=1 − 2
√

2πλ1 sin y(Fsϕ1)(y)(Fcϕ2)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y)
1 + 2

√
2πλ1 sin y(Fsϕ1)(y)(Fcϕ2)(y) − 2πλ1λ2(Fsψ)(y)(Fsξ)(y)

=1 −
2
√

2πλ1Fc(ϕ1
γ
∗
2
ϕ2)(y) − 2πλ1λ2Fc(ψ ∗

2
ξ)(y)

1 + 2
√

2πλ1Fc(ϕ1
γ
∗
2
ϕ2)(y) − 2πλ1λ2Fc(ψ ∗

2
ξ)(y)

=1 − (Fcl)(y),
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for some l ∈ L1(R+).

On the other hand

∆1 =
∣∣∣∣
(Fsh)(y)

√
2πλ1(Fsψ)(y)

(Fck)(y) 1

∣∣∣∣ = (Fsh)(y) −
√

2πλ1(Fsψ)(y)(Fck)(y).

Therefore

(Fsf)(y) =
∆1

∆
=[(Fsh)(y) −

√
2πλ1(Fsψ)(y)(Fck)(y)][1 − (Fcl)(y)]

=(Fsh)(y) −
√

2πλ1Fs(ψ ∗
1
k)(y)

− Fs(h ∗
1
l)(y) +

√
2πλ1Fs((ψ ∗

1
k) ∗

1
l)(y).

It follows that

f(x) = h(x) −
√

2πλ1(ψ ∗
1
k)(x) − (h ∗

1
l)(x) +

√
2πλ1((ψ ∗

1
k) ∗

1
l)(x).

Similarly,

∆2 =
∣∣∣∣
1 + 2

√
2πλ1 sin y(Fsϕ)(y) (Fsh)(y)√
2πλ2(Fsξ)(y) (Fck)(y)

∣∣∣∣

= (Fck)(y) + 2
√

2πλ1 sin y(Fsϕ)(y)(Fck)(y) −
√

2πλ2(Fsξ)(y)(Fsh)(y).

Hence,

(Fcg)(y) =
∆1

∆
=

[
(Fck)(y) + 2

√
2πλ1 sin y(Fsϕ)(y)(Fck)(y)

−
√

2πλ2(Fsξ)(y)(Fsh)(y)][1 − (Fcl)(y)
]

=(Fck)(y) + 2
√

2πλ1Fc(ϕ
γ
∗
2
k)(y) −

√
2πλ2Fc(ξ ∗

2
h)(y)

− Fc(k ∗
Fc

l)(y) − 2
√

2πλ1Fc((ϕ
γ
∗
2
k) ∗

Fc

h)(y)

+
√

2πλ2Fc((ξ ∗
2
h) ∗

Fc

l)(y),

consequently,

g(x) =k(x) + 2
√

2πλ1(ϕ
γ
∗
2
k)(x) −

√
2πλ2(ξ ∗

2
h)(x) − (k ∗

Fc

l)(x)

− 2
√

2πλ1((ϕ
γ
∗
2
k) ∗

Fc

h)(x) +
√

2πλ2((ξ ∗
2
h) ∗

Fc

l)(x).

This completes the proof of the theorem. �
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4.2. Consider the System of Integral Equations

f(x) + λ1

+∞∫

0

g(y)θ(x, y)dy = h(x)

(27)

λ2

{ +∞∫

0

f(y)θ(x, y)dy +

+∞∫

0

f(y)[ξ(|x − y| − ξ(x+ y)]dy
}

+ g(x) = k(x),

in which ϕ(x) = (ϕ1∗
1
ϕ2)(x), λ1 and λ2 are complex constants and ϕ1, ϕ2, ψ, ξ, h, k ∈

L1(R+), f and g are unknown functions.

Theorem 5. With the condition

1 − λ1λ2 sin2 y(Fsϕ)(y)(Fsψ)(y) − λ1λ2 sin y(Fsϕ)(y)(Fcξ)(y) 6= 0, ∀y > 0,

the system (27) has a unique solution in L1(R+) which has the form

f(x) =h(x) + (h ∗
1
l)(x) − 2

√
2πλ1(ϕ

γ
∗
Fs

k)(x) − 2
√

2πλ1((ϕ
γ
∗
Fs

k) ∗
1
l)(x),

g(y) =k(x) − 2
√

2πλ2(ψ
γ
∗
Fs

h)(x) +
√

2πλ2(h ∗
1
ξ)(x) + (k ∗

1
l)(x) (28)

− 2
√

2πλ2((ψ
γ
∗
Fs

h) ∗
1
l)(x) +

√
2πλ2((h ∗

1
ξ) ∗

1
l)(x),

where l ∈ L1(R+) is defined by

(Fcl)(y) =
8πλ1λ2 sin2 y(Fsϕ)(y)(Fsψ)(y) − 4πλ1λ2 sin y(Fsϕ)(y)(Fcξ)(y)

1 − 8πλ1λ2 sin2 y(Fsϕ)(y)(Fsψ)(y) − 4πλ1λ2 sin y(Fsϕ)(y)(Fcξ)(y)
.

Proof. It is obvious that ϕ also is a function in the space L1(R+). Using the
factorization properties of convolutions (4), (6) we can rewrite system (27) as
follows

(Fsf)(y) + 2
√

2πλ1 sin y(Fsg)(y)(Fsϕ)(y) = (Fsh)(y),
(29)

2
√

2πλ2 sin y(Fsf)(y)(Fsψ)(y) +
√

2πλ2(Fsf)(y)(Fcξ)(y) + (Fsg)(y) = (Fsk)(y).

We have

∆ =
∣∣∣∣

1 2
√

2πλ1 sin y(Fsϕ)(y)
2
√

2πλ2 sin y(Fsψ)(y) +
√

2πλ2(Fcξ)(y) 1

∣∣∣∣
= 1 − 8πλ1λ2 sin2 y(Fsϕ)(y)(Fsψ)(y) − 4πλ1λ2 sin y(Fsϕ)(y)(Fcξ)(y).
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From the hypothesis that ϕ(x) = (ϕ1 ∗
1
ϕ2)(x), and in view of Wiener-Levy’s

Theorem we obtain

1
∆

=
1

1 − 8πλ1λ2 sin2 y(Fsϕ)(y)(Fsψ)(y) − 4πλ1λ2 sin y(Fsϕ)(y)(Fcξ)(y)

=
1

1 − 8πλ1λ2 sin2 y(Fsϕ1)(y)(Fcϕ2)(y)(Fsψ)(y) − 4πλ1λ2 sin y(Fsϕ)(y)(Fcξ)(y)

=
1

1 − 8πλ1λ2Fc

(
(ϕ1

γ
∗
Fs

ψ)
γ
∗
2
ϕ2

)
(y) − 4πλ1λ2Fc

(
ϕ

γ
∗
2
ξ
)
(y)

=1 +
8πλ1λ2Fc

(
(ϕ1

γ
∗
Fs

ψ)
γ
∗
2
ϕ2

)
(y) − 4πλ1λ2Fc

(
ϕ

γ
∗
2
ξ
)
(y)

1 − 8πλ1λ2Fc

(
(ϕ1

γ
∗
Fs

ψ)
γ
∗
2
ϕ2

)
(y) − 4πλ1λ2Fc

(
ϕ

γ
∗
2
ξ
)
(y)

=1 + (Fcl)(y),

for some l ∈ L1(R+).

On the other hand

∆1 =
∣∣∣∣
(Fsh)(y) 2

√
2πλ1 sin y(Fsϕ)(y)

(Fsk)(y) 1

∣∣∣∣

= (Fsh)(y) − 2
√

2πλ1 sin y(Fsϕ)(y)(Fsk)(y)

∆2 =
∣∣∣∣

1 (Fsh)(y)
2
√

2πλ2 sin y(Fsψ)(y) +
√

2πλ2(Fcξ)(y) (Fsk)(y)

∣∣∣∣

= (Fsk)(y) − 2
√

2πλ2 sin y(Fsψ)(y)(Fsh)(y) +
√

2πλ2(Fcξ)(y)(Fsh)(y)

So the system (29) has a solution defined by

(Fsf)(y) =
∆1

∆
= [(Fsh)(y) − 2

√
2πλ1 sin y(Fsϕ)(y)(Fsk)(y)][1 + (Fcl)(y)]

=(Fsh)(y) + Fs(h ∗
1
l)(y) − 2

√
2πλ1Fs(ϕ

γ
∗
Fs

k)(y)

− 2
√

2πλ1Fs((ϕ
γ
∗
Fs

k) ∗
1
l)(y),

(Fsg)(y) =
∆2

∆
= [(Fsk)(y) − 2

√
2πλ2 sin y(Fsψ)(y)(Fsh)(y)

+
√

2πλ2(Fcξ)(y)(Fsh)(y)][1 + (Fcl)(y)]

=(Fsk)(y) − 2
√

2πλ2Fs(ψ
γ
∗
Fs

h)(y) +
√

2πλ2Fs(h ∗
1
ξ)(y) + Fs(k ∗

1
l)(y)

− 2
√

2πλ2Fs((ψ
γ
∗
Fs

h) ∗
1
l)(y) +

√
2πλ2Fs((h ∗

1
ξ) ∗

1
l)(y).
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It follows that

f(x) =h(x) + (h ∗
1
l)(x) − 2

√
2πλ1(ϕ

γ
∗
Fs

k)(x) − 2
√

2πλ1((ϕ
γ
∗
Fs

k) ∗
1
l)(x),

g(y) =k(x) − 2
√

2πλ2(ψ
γ
∗
Fs

h)(x) +
√

2πλ2(h ∗
1
ξ)(x) + (k ∗

1
l)(x)

− 2
√

2πλ2((ψ
γ
∗
Fs

h) ∗
1
l)(x) +

√
2πλ2((h ∗

1
ξ) ∗

1
l)(x).

This completes the proof of the theorem. �

4.3. Consider the Integral Equation of the Form

f(x) + λ
{ +∞∫

0

f(y)θ(x, y)dy +

+∞∫

0

f(y)[ψ(|x − y| − ψ(x+ y)]dy
}

= h(x), (30)

where ϕ(x) = (ϕ1∗
1
ϕ2)(x), λ is a complex parameter, ϕ1, ϕ2, ψ and h are L1(R+)

functions and f is an unknown function.

Theorem 6. Assume that the condition

1 + λ
(
2
√

2π sin y(Fsϕ)(y) +
√

2π(Fcψ)(x)
)
6= 0, ∀x > 0,

is satisfied. Then the unique solution of integral equation (30) in L1(R+) is of
the form

f(x) = h(x) − λ(h ∗
1
l)(x).

Here l ∈ L1(R+) is defined by

(Fcl)(y) =
2
√

2πFc(ϕ1
γ
∗
2
ϕ2)(y) +

√
2π(Fcψ)(y)

1 + λ
(
2
√

2πFc(ϕ1
γ
∗
2
ϕ2)(y) +

√
2π(Fcψ)(y)

) .

Proof. Applying Fourier sine transform to (30) and using the factorization iden-
tities of convolutions (4) and (6), one gets

(Fsf)(y) + λ
(
2
√

2π sin y(Fsf)(y)(Fsϕ)(y) +
√

2π(Fsf)(y)(Fcψ)(y)
)

= (Fsh)(y).

It follows that

(Fsf)(y) =(Fsh)(y)
1

1 + λ
(
2
√

2π sin y(Fsϕ)(y) +
√

2π(Fcψ)(y)
)

=(Fsh)(y)
(
1 − λ

2
√

2π sin y(Fsϕ1)(y)(Fcϕ2)(y) +
√

2π(Fcψ)(y)
1 + λ

(
2
√

2π sin y(Fsϕ1)(y)(Fcϕ2)(y) +
√

2π(Fcψ)(y)
)
)

=(Fsh)(y)
(
1 − λ

2
√

2πFc(ϕ1
γ
∗
2
ϕ2)(y) +

√
2π(Fcψ)(y)

1 + λ
(
2
√

2πFc(ϕ1
γ
∗
2
ϕ2)(y) +

√
2π(Fcψ)(y)

)
)
.
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By virtue of Wiener - Levy’s Theorem, there exist functions l ∈ L1(R+) such
that

2
√

2πFc(ϕ1
γ
∗
2
ϕ2)(y) +

√
2π(Fcψ)(y)

1 + λ
(
2
√

2πFc(ϕ1
γ
∗
2
ϕ2)(y) +

√
2π(Fcψ)(y)

) = (Fcl)(y).

Therefore,
(Fsf)(y) = (Fsh)(y)

(
1 − λ(Fcl)(y)

)
.

Hence
f(x) = h(x) − λ(h ∗

1
l)(x).

The theorem is proved. �
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