On Some p-subgroups of Automorphism Group of a Finite p-group

R. Soleimani

Institute for advanced studies in basic sciences,
P.O. Box 45195-1159, Gavazang, Zanjan, Iran

Received November 29, 2006
Revised December 04, 2007

Abstract. Let G be a group and let $\text{Aut}_{Z(G)}^G(G)$ denote the group of all automorphisms of G fixing both G/G' and $Z(G)$ elementwise. In this paper, using the notion of Frattinian groups, we give some necessary and sufficient conditions on a finite non-abelian p-group G for the groups $\text{Aut}_{Z(G)}^G(G)$ and $\text{Inn}(G)$ coincide.

2000 Mathematics Subject Classification: 20D15, 20D45.
Keywords: Finite p-group, automorphism group.

1. Introduction

Let G be a group and let N be a normal subgroup of G. Let σ be an automorphism of G. If $N^\sigma = N$ (or $Ng^\sigma = Ng$ for all g in G), we shall say σ normalizes N (centralizes G/N respectively). Now let M and N be normal subgroups of a group G. We let $\text{Aut}^N_G(G)$ denote the group of all automorphisms of G normalizing N and centralizing G/N, and $\text{Aut}_M(G)$ the group of all automorphisms of G centralizing M. Moreover, $\text{Aut}_M^N(G) = \text{Aut}^N_G(G) \cap \text{Aut}_M(G)$.

Various authors have studied the groups $\text{Aut}^N_G(G)$ and $\text{Aut}_M^N(G)$ for some particular characteristic subgroups M and N of a finite p-group G. It is well known that if G is a finite p-group, then so is the group $\text{Aut}^\Phi(G)$, where Φ denotes the Frattini subgroup of G, the intersection of all the maximal subgroups of G. Liebeck in [6] gave an upper bound for the nilpotency class of $\text{Aut}^\Phi(G)$. In [1], Adney and Yen proved that if G is a finite p-group having no nontrivial abelian direct factor, then there is a one-to-one correspondence between $\text{Aut}^G(G)$ and the group $\text{Hom}(G/G', Z)$ of all homomorphisms of G into $Z = Z(G)$, where G' denotes the derived subgroup of G. For some special values of M and N the group of all inner automorphisms $\text{Inn}(G)$ of G is contained in $\text{Aut}_M^N(G)$.
Several papers have been devoted to study the group $\text{Aut}_N^G(G)/\text{Inn}(G)$ when G is a finite nonabelian p-group. Müller in [7] proved, using techniques from cohomology, that if G is a finite nonabelian p-group, then $\text{Aut}_N^G(G) = \text{Inn}(G)$ if and only if $\Phi \leq Z$ and Φ is cyclic. This turns out that $\text{Aut}_N^\Phi(G)/\text{Inn}(G)$ is nontrivial if and only if G is neither elementary abelian nor extraspecial. Cheng [3] proved, among others, the following result. Let G be a finite p-group such that $G' = \langle a \rangle$ is cyclic. Assume that either $p > 2$, or $p = 2$ and $[a, G] \leq \langle a^4 \rangle$. Then $\text{Aut}_N^G(G) = \text{Inn}(G)$. Curran and McCaughan in [5] proved that if G is a finite p-group, then $\text{Aut}_N^Z(G) = \text{Inn}(G)$ if and only if $G' = Z(G)$ and $Z(G)$ is cyclic. Finally Curran [4] showed that for any nonabelian group G, $\text{Aut}_N^Z(G) \cong \text{Hom}(G/G'Z, Z)$ obtaining some results concerning the group $\text{Aut}_N^Z(G)$, where G is a finite nonabelian p-group. In particular, he showed that $\text{Aut}_N^Z(G) = Z(\text{Inn}(G))$ if and only if $\text{Hom}(G/G', Z) \cong Z(G/Z)$.

In this paper we study closely the groups $\text{Aut}_N^G(G)$ and $\text{Aut}_N^G(G)$ for a finite nonabelian p-group G. We also give an alternative short proof for the main result of Müller mentioned earlier using an elegant theorem of Schmid [8].

In Sec. 2 we give some preliminary results that are needed for the main results of the paper. In Sec. 3 we prove the main results of the paper. Finally in Sec. 4 we give a new short proof for the Müller’s result which was mentioned earlier. This proof, based on an elegant result of Schmid [8], simplifies greatly the Müller’s proof. We use standard notation in group theory: we use the notation $\text{Hom}(G, A)$ to denote the group of homomorphisms of G into an abelian group A. $\Omega_i(G)$ the subgroup of G generated by its elements of order dividing p^i. Recall that a group G is called a central product of its subgroups A and B if A and B commute elementwise and together generate G. In this situation, we write $G = A * B$.

2. Some Basic Results

In this section we give some known results which will be used in the rest of the paper.

Let G be a finite p-group. Following Schmid, we call G Frattinian provided $Z(G) \neq Z(M)$ for all maximal subgroups M of G. In [8], Schmid proved the following structural theorem for the Frattinian groups.

Theorem 2.1 [8]. Suppose G is a nonabelian Frattinian p-group. Then one of the following holds:

(i) G is the central product of nonabelian p-groups of order $p^2|Z(G)|$, amalgamating their centres.

(ii) $G = E * F$ is the central product of Frattinian subgroups E and F with $C_F(Z(\Phi(F))) = \Phi(F)$, $E = C_G(F)$ and $\Phi(E) \leq Z(G)$.

It is worth noting that in case (i) of the above theorem the factors of the central product are minimal nonabelian p-groups. Accordingly, in this case we have
$Z(G) = \Phi(G)$. The following simple lemmas will be used in the rest of the paper.

Lemma 2.2. Let G be a group and let M, N be normal subgroups of G with $N \leq M$ and $C_N(M) \leq Z(G)$. Then $\text{Aut}_M^N(G) \cong \text{Hom}(G/M, C_N(M))$.

Proof. It is easy to verify that the map $f_\sigma : Mx \mapsto x^{-1}x^\sigma$ defines a homomorphism from G/M into $C_N(M)$ for every $\sigma \in \text{Aut}_M^N(G)$. On the other hand, the map $\sigma \mapsto x \mapsto xf(x)$ defines an automorphism of G for every $f \in \text{Hom}(G/M, C_N(M))$. This automorphism lies in $\text{Aut}_M^N(G)$ and the map $\sigma \mapsto f_\sigma$ is an isomorphism from $\text{Aut}_M^N(G)$ to $\text{Hom}(G/M, C_N(M))$. ■

Lemma 2.3. Let $G = E \ast F$ be a central product of subgroups E and F. Assume that $\psi(G)$ is $\Phi(G)$, G' or $Z(G)$. If $\alpha \in \text{Aut}_{Z(G)}^\psi(E)$ then the map $\hat{\alpha} : xy \mapsto x^\alpha y$, where $x \in E$ and $y \in F$, defines an automorphism of G lying in $\text{Aut}_{Z(G)}^\psi(G)$.

Proof. Straightforward.

Throughout the paper we write Z and Φ for $Z(G)$ and $\Phi(G)$, respectively.

3. The Groups $\text{Aut}_Z^G(G)$ and $\text{Aut}_Z^{G'}(G)$

In this section we study the groups $\text{Aut}_Z^G(G)$ and $\text{Aut}_Z^{G'}(G)$ for a finite non-abelian p-group G.

We begin by an elementary lemma which is a consequence of Lemma 2.2.

Lemma 3.1. If G is a group of class 2, then
(i) $\text{Aut}_Z^G(G) \cong \text{Hom}(G/G', G')$,
(ii) $\text{Aut}_Z^{G'}(G) \cong \text{Hom}(G/Z(G), G')$.

Proposition 3.2. Let G be a finite p-group of class 2. Then $\text{Aut}_Z^G(G) = \text{Inn}(G)$ if and only if G' is cyclic.

Proof. Assume that G' is cyclic. Since $\exp(G/Z) = \exp(G')$, $\text{Aut}_Z^G(G) \cong \text{Hom}(G/Z, G') \cong G/Z$, as required. The converse of the result is evident from the fact that $\text{Hom}(G/Z, G') \cong G/Z$. ■

Theorem 3.3. Let G be a finite nonabelian p-group of class 2. Then $\text{Aut}_Z^{G'}(G) = \text{Inn}(G)$ if and only if G' is cyclic and $Z(G) = G'Gp^n$ where $|G'| = p^n$.

Proof. Assume that G' is cyclic and $Z(G) = G'Gp^n$, where $|G'| = p^n$. By Proposition 3.2, $\text{Aut}_Z^G(G) = \text{Inn}(G)$. Let $\alpha \in \text{Aut}_Z^{G'}(G)$ and $a \in G$. We may write $\alpha(a) = ad$ with $d \in G'$. Now we observe that $\alpha(a^p) = (\alpha(a))^p = a^p d^p = a^p$, which shows that α fixes any element of $Z(G)$. Consequently $\text{Aut}_Z^{G'}(G) \leq \text{Aut}_Z^G(G)$, and the proof is complete.

Conversely suppose that $\text{Aut}_Z^{G'}(G) = \text{Inn}(G)$. We deduce that G' is cyclic,
because \(\text{Aut}_Z^G(G) = \text{Inn}(G) \). Since \(G \) is of class 2, \(G' \leq G'G^{p^n} \leq Z(G) \). It follows that

\[
\text{Inn}(G) \cong \text{Hom}(G/Z(G), G') \hookrightarrow \text{Hom}(G/G^{p^n}, G') \hookrightarrow \text{Hom}(G/G', G')
\]

\[
\cong \text{Aut}^G(G) = \text{Inn}(G).
\]

So that \(\text{Hom}(G/G^{p^n}, G') \cong \text{Hom}(G/Z(G), G') \).

However \(\exp(G') = \exp(G/Z(G)) = |G'| \), which gives \(|G/Z(G)| = |G/G^{p^n}| \), as required.

Remark. In [2], Berkovich shows that if \(G \) is a finite \(p \)-group with \(\text{rank}(G/G') = r \) and \(|G'| \leq |G/Z| \), then \(\text{Aut}^G(G) = \text{Inn}(G) \).

As an application of Theorem 3.3, we get another proof of the main result of [5].

Corollary 3.4. [5]. If \(G \) is a finite \(p \)-group then \(\text{Aut}^Z(G) = \text{Inn}(G) \) if and only if \(G' = Z(G) \) and \(Z(G) \) is cyclic.

Proof. If \(G' = Z(G) \) and \(Z(G) \) is cyclic then \(G' \) is cyclic and obviously \(Z(G) = G'G^{p^n} \), and hence \(\text{Aut}^G(G) = \text{Aut}^Z(G) = \text{Inn}(G) \), by Theorem 3.3. Conversely, suppose that \(\text{Aut}^Z(G) = \text{Inn}(G) \). So \(G \) is of class 2 and we have \(\text{Aut}^G(G) \leq \text{Aut}^Z(G) \). It follows that \(\text{Aut}^G(G) = \text{Inn}(G) \). Therefore \(G' \) is cyclic and \(Z(G) = G'G^{p^n} \), from which we conclude that \(G \) has no nontrivial abelian direct factor. So, by [1], we have

\[
|\text{Hom}(G/G', Z(G))| = |\text{Aut}^Z(G)| = |\text{Aut}^G(G)| = |\text{Hom}(G/G', G')|.
\]

Using [5, Lemma 1],

\[
|\text{Aut}^Z(G)| = |\text{Hom}(G/G', Z(G))| \geq |\text{Hom}(G/Z(G), G')||Z(G) : G'|
\]

\[
= |\text{Aut}^G(G)||Z(G) : G'|.
\]

Thus \(Z(G) = G' \) as required.

Corollary 3.5. If \(G \) is a finite nonabelian \(p \)-group, then \(\text{Aut}^Z(G) = \text{Inn}(G) \) if and only if \(G \) is of class 2 and \(Z(G) \) is cyclic.

Proof. Let \(\text{Aut}^Z(G) = \text{Inn}(G) \). Obviously \(G \) is of class 2. By Lemma 2.2, \(\text{Aut}^Z(G) \cong \text{Hom}(G/Z, Z) \). Now since \(\exp(G/Z) = \exp(G') \leq \exp(Z) \), we conclude that \(Z \) is cyclic. The converse of the result is immediate.

Theorem 3.6. Let \(G \) be a finite nonabelian \(p \)-group such that \(Z(\Phi(G)) \leq Z(G) \). Then \(\text{Aut}^G(G) = \text{Inn}(G) \) if and only if \(G \) is of class 2 and \(G' \) is cyclic.

Proof. Assume that \(\text{Aut}^G(G) = \text{Inn}(G) \). We distinguish two cases:
Case I. $Z(G) \not\subseteq \Phi(G)$.
We may write $G = MZ(G)$ for some maximal subgroup M of G. It is evident that $Z(\Phi(M)) \subseteq Z(\Phi(G))$, whence $Z(\Phi(M)) \subseteq Z(G) \cap M = Z(M)$. Let $\alpha \in \text{Aut}_{Z(M)}^M(M)$. Then the map $\tilde{\alpha} : xz \mapsto x^\alpha z$, where $x \in M$ and $z \in Z(G)$, defines an automorphism of G which lies in $\text{Aut}_{Z}^G(G) = \text{Inn}(G)$. Since $G = MZ(G)$, it implies that $\alpha \in \text{Inn}(M)$. Therefore $\text{Aut}_{Z(M)}^M(M) = \text{Inn}(M)$. Using induction, we conclude that M' is cyclic and M is of class 2. It follows that G' is cyclic and G is of class 2.

Case II. $Z(G) \subseteq \Phi(G)$.
In this case we show that G is Frattinian. Let M be an arbitrary maximal subgroup of G, and $z \in G \setminus M$. We write $G = M \langle z \rangle$ and choose an element u in $\Omega_1(G' \cap Z(G))$. Clearly the map $\alpha : hz^i \mapsto h(zu)^i$, where $h \in M$ and $0 \leq i < p$, defines an automorphism of G which is in $\text{Aut}_{Z}^G(G) = \text{Inn}(G)$. Assume that α is the inner automorphism of G induced by x. It turns out that $x \in C_G(M) = Z(M)$ which shows that $Z(G) \neq Z(M)$. So G is Frattinian and one of the statements (i),(ii) of Theorem 2.1 holds. If (i) is fulfilled, then $\Phi(G) = Z(G)$ and G is of class 2. So the result follows at once from Proposition 3.2. However, the second statement of Theorem 2.1 cannot occur, because in this case, by $\Phi(G) = \Phi(E) \Phi(F) \leq Z(G) \Phi(F)$, we have $Z(\Phi(F)) \leq Z(\Phi(G)) \leq Z(G)$, which gives the contradiction $F = C_F(Z(\Phi(F))) = \Phi(F)$. The converse follows at once from Proposition 3.2.

Theorem 3.7. Let G be a finite nonabelian p-group such that $Z(\Phi(G)) \leq Z(G)$. Then $\text{Aut}_{Z}^G(G) = \text{Inn}(G)$ if and only if $Z(G) = \Phi(G)$ and G' is of order p.

Proof. We claim that $Z(G) \subseteq \Phi(G)$. Assume that this is false, then $G = M \langle z \rangle$ for some maximal subgroup M of G and for some z in $Z(G) \setminus M$. We choose an element u in $\Omega_1(G' \cap Z(G))$. The map $\alpha : hz^i \mapsto h(zu)^i$, where $h \in M$ and $0 \leq i < p$, is in $\text{Aut}_{Z}^G(G) = \text{Inn}(G)$ from which we conclude that $u = 1$, a contradiction. So $Z(G) \subseteq \Phi(G)$. By a similar argument given for the proof of Theorem 3.6, G is Frattinian. Thus one of the statements of Theorem 2.1 holds. However, the second statement of Theorem 2.1 cannot occur by a similar argument given for the proof of Theorem 3.6. If the first statement occurs, then $\Phi(G) = Z(G)$. Hence by Proposition 3.2, G is of class 2 and G' is cyclic. Now since $\exp(G') = \exp(G/Z(G)) = \exp(G/\Phi(G))$, we conclude that $|G'| = p$.

The converse is immediate.

4. The Groups $\text{Aut}_{Z}^\Phi(G)$ and $\text{Aut}^\Phi(G)$

In this section we give an alternative proof for the Müller’s result on the groups $\text{Aut}_{Z}^\Phi(G)/\text{Inn}(G)$ and $\text{Aut}^\Phi(G)/\text{Inn}(G)$ using Theorem 2.1 and the following Proposition due to Schmid [8] which is readily proved by cohomological methods.

Proposition 4.1 [8, Proposition 3]. Let G be a finite Frattinian p-group. If $\text{Aut}_{Z}^\Phi(G) = \text{Inn}(G)$ then $C_G(Z(\Phi(G))) \neq \Phi(G)$.
Theorem 4.2 [7, Proposition 3.1]. Let G be a finite nonabelian p-group. Then $\text{Aut}_Z^G(G) = \text{Inn}(G)$ if and only if $\Phi(G) \leq Z(G)$ and $\Phi(G)$ is cyclic.

Proof. Assume first that $\Phi(G) \leq Z(G)$ and $\Phi(G)$ is cyclic. By Lemma 2.2, $\text{Aut}_Z^G(G) \cong \text{Hom}(G/Z, \Phi)$. Now since G is of class 2, $\exp(G/Z) = \exp(G') \leq \exp(\Phi(G))$, whence $\text{Aut}_Z^G(G) \cong G/Z$.

Conversely let $\text{Aut}_Z^G(G) = \text{Inn}(G)$. Assume either $\Phi(G) \not\leq Z(G)$ or $\Phi(G)$ is noncyclic. We consider two cases:

Case I. $Z(G) \not\leq \Phi(G)$.

We choose a maximal subgroup M of G such that $Z(G) \not\leq M$. So $G = MZ(G)$ and $Z(M) = Z(G) \cap M$. Now if $\Phi(M) \leq Z(M)$ then $\Phi(G) \leq Z(G)$ and hence by Lemma 2.2, $\text{Aut}_Z^G(Z(M)) \cong \text{Hom}(G/Z, \Phi)$. Since $\Phi(G)$ is noncyclic, it follows that $|\text{Aut}_Z^G(Z(M))| > |G/Z|$ which is impossible. So we suppose that $\Phi(M) \not\leq Z(M)$. In this situation we may use induction to deduce that $\text{Aut}_Z^{\Phi(M)}(M) \neq \text{Inn}(M)$. Let $\beta \in \text{Aut}_Z^{\Phi(M)}(M) \setminus \text{Inn}(M)$. We write $G = M(z)$ where $z \in Z(G)/M$, and extend β to an automorphism $\hat{\beta} \in \text{Aut}_Z^G(G)$ by setting $(hz^i)^{\hat{\beta}} = h^\beta z^i$, where $h \in M$ and $0 \leq i < p$. We therefore have $\hat{\beta} \in \text{Inn}(G)$. It follows that $\beta \in \text{Inn}(M)$, a contradiction.

Case II. $Z(G) \leq \Phi(G)$.

In this case we claim that G is Frattinian. To see this, let M be an arbitrary maximal subgroup of G. Choose an element z in $G \setminus M$ and let $u \in \Omega_1(Z(G))$. The map $\alpha : hz^i \mapsto h(zu)^i$, where $h \in M$ and $0 \leq i < p$, defines an automorphism of G which is in $\text{Aut}_Z^G(G)$. So α is an inner automorphism of G induced by an element t in G. It follows that $t \in C_G(M) = Z(M)$. Now since $t \notin Z(G)$, we see that G is Frattinian. By Theorem 2.1, one of the statements (i),(ii) of the theorem holds. If the statement (i) holds then $Z(G) = \Phi(G)$ and hence $\text{Inn}(G) = \text{Aut}_Z^G(G) = \text{Aut}_Z^G(G)$. Consequently $Z(G)$ is cyclic by Corollary 3.5, a contradiction. We therefore suppose that the second statement of Theorem 2.1 is fulfilled. If E is abelian then $E \leq Z(G) \leq \Phi(G)$ and we have $G = F$ whence $C_G(Z(\Phi(G))) = \Phi(G)$, a contradiction to Proposition 4.1. So we may suppose that E is nonabelian. Now let $\alpha \in \text{Aut}_Z^{Z(E)}(E)$ and extend α to an automorphism $\hat{\alpha} \in \text{Aut}_Z^G(G)$ according to Lemma 2.3. It follows that $\hat{\alpha}$ is an inner automorphism of G induced by some element in E. Therefore, $\alpha \in \text{Inn}(E)$, and hence $\text{Aut}_Z^{Z(E)}(E) = \text{Inn}(E)$. By Corollary 3.5, $Z(E)$ is cyclic. Since $E = C_G(F)$, we deduce that $Z(G) = Z(E)$ is cyclic. Now if $\Phi(F) \leq Z(G)$, then $\Phi(G) = \Phi(E)\Phi(F) \leq Z(G)$ and hence $Z(G) = \Phi(G)$, a contradiction. Thus $\Phi(F) \not\leq Z(G)$ from which we deduce that $\Phi(F) \not\leq Z(F)$. Again by induction hypothesis $\text{Aut}_Z^{\Phi(F)}(F) \neq \text{Inn}(F)$, which is impossible, by a similar argument given in Case I.

Corollary 4.3 [7]. If G is a finite nonabelian p-group then $\text{Aut}_Z^G(G) = \text{Inn}(G)$ if and only if G is extraspecial.

Proof. If $\text{Aut}_Z^G(G) = \text{Inn}(G)$, then $\Phi(G) \leq Z(G)$ and $\Phi(G)$ is cyclic by Theorem 4.2. So G is of class 2 and hence $Z(G) \leq \Phi(G)$ by Theorem 3.3. It follows that
$Z(G) = \Phi(G)$. Now according to Corollary 3.4, $G' = Z(G)$ and $Z(G)$ is cyclic. Finally $\exp(G') = \exp(G/\Phi) = p$ which completes the proof of the first part.

The converse is straightforward.

References