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Abstract. Let G be a group and let AutG
′

Z(G)(G) denote the group of all automor-

phisms of G fixing both G/G′ and Z(G) elementwise. In this paper, using the notion

of Frattinian groups, we give some necessary and sufficient conditions on a finite non-

abelian p-group G for the groups AutG
′

Z(G)(G) and Inn(G) coincide.
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1. Introduction

Let G be a group and let N be a normal subgroup of G. Let σ be an auto-
morphism of G. If Nσ = N (or Ngσ = Ng for all g in G), we shall say σ
normalizes N (centralizes G/N respectively). Now let M and N be normal sub-
groups of a group G. We let AutN (G) denote the group of all automorphisms
of G normalizing N and centralizing G/N , and AutM (G) the group of all au-
tomorphisms of G centralizing M . Moreover, AutNM(G)= AutN (G)

⋂
AutM (G).

Various authors have studied the groups AutN (G) and AutNM(G) for some par-
ticular characteristic subgroups M and N of a finite p-group G. It is well known
that if G is a finite p-group, then so is the group AutΦ(G), where Φ denotes
the Frattini subgroup of G, the intersection of all the maximal subgroups of G.
Liebeck in [6] gave an upper bound for the nilpotency class of AutΦ(G). In [1],
Adney and Yen proved that if G is a finite p-group having no nontrivial abelian
direct factor, then there is a one-to-one correspondence between AutZ(G) and
the group Hom(G/G′, Z) of all homomorphisms of G into Z = Z(G), where
G′ denotes the derived subgroup of G. For some special values of M and N
the group of all inner automorphisms Inn(G) of G is contained in AutNM (G).
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Several papers have been devoted to study the group AutNM(G)/Inn(G) when
G is a finite nonabelian p-group. Müller in [7] proved, using techniques from
cohomology, that if G is a finite nonabelian p-group, then AutΦZ(G) = Inn(G)
if and only if Φ ≤ Z and Φ is cyclic. This turns out that AutΦ(G)/Inn(G)
is nontrivial if and only if G is neither elementary abelian nor extraspecial.
Cheng [3] proved, among others, the following result. Let G be a finite p-
group such that G′ = 〈a〉 is cyclic. Assume that either p > 2, or p = 2 and
[a,G] ≤ 〈a4〉. Then AutG

′

Z (G) = Inn(G). Curran and McCaughan in [5] proved
that if G is a finite p-group, then AutZ(G) = Inn(G) if and only if G′ = Z(G)
and Z(G) is cyclic. Finally Curran [4] showed that for any nonabelian group
G, AutZZ(G) ∼= Hom(G/G′Z,Z) obtaining some results concerning the group
AutZZ(G), where G is a finite nonabelian p-group. In particular, he showed that
AutZ(G) = Z(Inn(G)) if and only if Hom(G/G′, Z) ∼= Z(G/Z).

In this paper we study closely the groups AutG
′

Z (G) and AutG
′
(G) for a finite

nonabelian p-group G. We also give an alternative short proof for the main result
of Müller mentioned earlier using an elegant theorem of Schmid [8].

In Sec. 2 we give some preliminary results that are needed for the main
results of the paper. In Sec. 3 we prove the main results of the paper. Finally
in Sec. 4 we give a new short proof for the Müller’s result which was mentioned
earlier. This proof, based on an elegant result of Schmid [8], simplifies greatly the
Müller’s proof. We use standard notation in group theory: we use the notation
Hom(G,A) to denote the group of homomorphisms ofG into an abelian group A,
Ωi(G) the subgroup of G generated by its elements of order dividing pi. Recall
that a group G is called a central product of its subgroups A and B if A and
B commute elementwise and together generate G. In this situation, we write
G = A ∗B.

2. Some Basic Results

In this section we give some known results which will be used in the rest of the
paper.

Let G be a finite p-group. Following Schmid, we call G Frattinian provided
Z(G) 6= Z(M ) for all maximal subgroups M of G. In [8], Schmid proved the
following structural theorem for the Frattinian groups.

Theorem 2.1 [8]. Suppose G is a nonabelian Frattinian p-group. Then one of
the following holds:
(i) G is the central product of nonabelian p-groups of order p2|Z(G)|, amalga-

mating their centres.
(ii) G = E ∗ F is the central product of Frattinian subgroups E and F with

CF (Z(Φ(F ))) = Φ(F ), E = CG(F ) and Φ(E) ≤ Z(G).

It is worth noting that in case (i) of the above theorem the factors of the central
product are minimal nonabelian p-groups. Accordingly, in this case we have
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Z(G) = Φ(G). The following simple lemmas will be used in the rest of the
paper.

Lemma 2.2. Let G be a group and let M , N be normal subgroups of G with
N ≤M and CN (M ) ≤ Z(G). Then AutNM (G) ∼= Hom(G/M,CN (M )).

Proof. It is easy to verify that the map fσ : Mx 7→ x−1xσ defines a homo-
morphism from G/M into CN (M ) for every σ in AutNM(G). On the other
hand, the map σf : x 7→ xf(x) defines an automorphism of G for every f in
Hom(G/M,CN(M )). This automorphism lies in AutNM(G) and the map σ 7→ fσ
is an isomorphism from AutNM (G) to Hom(G/M,CN(M )). �

Lemma 2.3. Let G = E ∗F be a central product of subgroups E and F . Assume
that ψ(G) is Φ(G), G′ or Z(G). If α ∈ Aut

ψ(E)
Z(E)(E) then the map α̂ : xy 7→ xαy,

where x ∈ E and y ∈ F , defines an automorphism of G lying in Aut
ψ(G)
Z(G)(G).

Proof. Straightforward. �

Throughout the paper we write Z and Φ for Z(G) and Φ(G), respectively.

3. The Groups AutG
′

Z (G) and AutG
′
(G)

In this section we study the groups AutG
′

Z (G) and AutG
′
(G) for a finite non-

abelian p-group G.

We begin by an elementary lemma which is a consequence of Lemma 2.2.

Lemma 3.1. If G is a group of class 2 , then
(i) AutG

′
(G) ∼= Hom(G/G′, G′).

(ii) AutG
′

Z (G) ∼= Hom(G/Z(G), G′).

Proposition 3.2. Let G be a finite p-group of class 2. Then AutG
′

Z (G) = Inn(G)
if and only if G′ is cyclic.

Proof. Assume that G′ is cyclic. Since exp(G/Z) = exp(G′), AutG
′

Z (G) ∼=
Hom(G/Z,G′) ∼= G/Z, as required. The converse of the result is evident from
the fact that Hom(G/Z,G′) ∼= G/Z. �

Theorem 3.3. Let G be a finite nonabelian p-group of class 2. Then AutG
′
(G) =

Inn(G) if and only if G′ is cyclic and Z(G) = G′Gp
n

where |G′| = pn.

Proof. Assume that G′ is cyclic and Z(G) = G′Gp
n

, where |G′| = pn. By
Proposition 3.2, AutG

′

Z (G) = Inn(G). Let α ∈ AutG
′
(G) and a ∈ G. We

may write α(a) = ad with d ∈ G′. Now we observe that α(ap
n

) = α(a)p
n

=
ap

n

dp
n

= ap
n

, which shows that α fixes any element of Z(G). Consequently
AutG

′
(G) ≤ AutG

′

Z (G), and the proof is complete.
Conversely suppose that AutG

′
(G) = Inn(G). We deduce that G′ is cyclic,
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because AutG
′

Z (G) = Inn(G). Since G is of class 2, G′ ≤ G′Gp
n ≤ Z(G). It

follows that

Inn(G) ∼= Hom(G/Z(G), G′) � Hom(G/G′Gp
n

, G′) � Hom(G/G′, G′)

∼= AutG
′
(G) = Inn(G).

So that Hom(G/G′Gp
n

, G′) ∼= Hom(G/Z(G), G′).
However exp(G′) = exp(G/Z(G)) = |G′|, which gives |G/Z(G)| = |G/G′Gp

n |,
as required. �

Remark. In [2], Berkovich shows that if G is a finite p-group with rank(G/G′)=r
and |G′|r ≤ |G/Z|, then AutG

′
(G) = Inn(G).

As an application of Theorem 3.3, we get another proof of the main result
of [5].

Corollary 3.4. [5]. If G is a finite p-group then AutZ(G) = Inn(G) if and only
if G′ = Z(G) and Z(G) is cyclic.

Proof. If G′ = Z(G) and Z(G) is cyclic then G′ is cyclic and obviously Z(G) =
G′Gp

n

, and hence AutG
′
(G) = AutZ(G) = Inn(G), by Theorem 3.3. Conversely,

suppose that AutZ(G) = Inn(G). So G is of class 2 and we have AutG
′
(G) ≤

AutZ(G). It follows that AutG
′
(G) = Inn(G). Therefore G′ is cyclic and Z(G) =

G′Gp
n

, from which we conclude that G has no nontrivial abelian direct factor.
So, by [1], we have

|Hom(G/G′, Z(G))| = |AutZ(G)| = |AutG
′
(G)| = |Hom(G/G′, G′)|.

Using [5, Lemma I],

|AutZ(G)| = |Hom(G/G′, Z(G))| ≥ |Hom(G/Z(G), G′)||Z(G) : G′|
= |AutG

′

Z (G)||Z(G) : G′|.

Thus Z(G) = G′ as required. �

Corollary 3.5. If G is a finite nonabelian p-group, then AutZZ(G) = Inn(G) if
and only if G is of class 2 and Z(G) is cyclic.

Proof. Let AutZZ(G) = Inn(G). Obviously G is of class 2. By Lemma 2.2,
AutZZ(G) ∼= Hom(G/Z,Z). Now since exp(G/Z) = exp(G′) ≤ exp(Z), we con-
clude that Z is cyclic. The converse of the result is immediate. �

Theorem 3.6. Let G be a finite nonabelian p-group such that Z(Φ(G)) ≤ Z(G).
Then AutG

′

Z (G) = Inn(G) if and only if G is of class 2 and G′ is cyclic.

Proof. Assume that AutG
′

Z (G) = Inn(G). We distinguish two cases:
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Case I. Z(G) � Φ(G).
We may write G = MZ(G) for some maximal subgroup M of G. It is evident
that Z(Φ(M )) ≤ Z(Φ(G)), whence Z(Φ(M )) ≤ Z(G)

⋂
M = Z(M ). Let α ∈

AutM
′

Z(M)(M ). Then the map ᾱ : xz 7→ xαz, where x ∈M and z ∈ Z(G), defines

an automorphism of G which lies in AutG
′

Z (G) = Inn(G). Since G = MZ(G), it
implies that α ∈ Inn(M ). Therefore AutM

′

Z(M)(M ) = Inn(M ). Using induction,
we conclude that M ′ is cyclic and M is of class 2. It follows that G′ is cyclic
and G is of class 2.

Case II. Z(G) ≤ Φ(G).
In this case we show that G is Frattinian. Let M be an arbitrary maximal
subgroup of G, and z ∈ G\M . We write G = M 〈z〉 and choose an element
u in Ω1(G′ ⋂Z(G)). Clearly the map α : hzi 7→ h(zu)i, where h ∈ M and
0 ≤ i < p, defines an automorphism of G which is in AutG

′

Z (G) = Inn(G).
Assume that α is the inner automorphism of G induced by x. It turns out that
x ∈ CG(M ) = Z(M ) which shows that Z(G) 6= Z(M ). So G is Frattinian
and one of the statements (i),(ii) of Theorem 2.1 holds. If (i) is fulfilled, then
Φ(G) = Z(G) and G is of class 2. So the result follows at once from Proposition
3.2. However, the second statement of Theorem 2.1 cannot occur, because in this
case, by Φ(G) = Φ(E)Φ(F ) ≤ Z(G)Φ(F ), we have Z(Φ(F )) ≤ Z(Φ(G)) ≤ Z(G),
which gives the contradiction F = CF (Z(Φ(F ))) = Φ(F ). The converse follows
at once from Proposition 3.2. �

Theorem 3.7. Let G be a finite nonabelian p-group such that Z(Φ(G)) ≤ Z(G).
Then AutG

′
(G) = Inn(G) if and only if Z(G) = Φ(G) and G′ is of order p.

Proof. We claim that Z(G) ≤ Φ(G). Assume that this is false, then G = M 〈z〉
for some maximal subgroup M of G and for some z in Z(G)\M . We choose
an element u in Ω1(G′ ⋂Z(G)). The map α : hzi 7→ h(zu)i, where h ∈ M
and 0 ≤ i < p, is in AutG

′
(G) = Inn(G) from which we conclude that u = 1,

a contradiction. So Z(G) ≤ Φ(G). By a similar argument given for the proof
of Theorem 3.6, G is Frattinian. Thus one of the statements of Theorem 2.1
holds. However, the second statement of Theorem 2.1 cannot occur by a similar
argument given for the proof of Theorem 3.6. If the first statement occurs, then
Φ(G) = Z(G). Hence by Proposition 3.2, G is of class 2 and G′ is cyclic. Now
since exp(G′) = exp(G/Z(G)) = exp(G/Φ(G)), we conclude that |G′| = p.

The converse is immediate. �

4. The Groups AutΦ
Z(G) and AutΦ(G)

In this section we give an alternative proof for the Müller’s result on the groups
AutΦZ(G)/Inn(G) and AutΦ(G)/Inn(G) using Theorem 2.1 and the following
Proposition due to Schmid [8] which is readily proved by cohomological methods.

Proposition 4.1 [8, Proposition 3]. Let G be a finite Frattinian p-group. If
AutΦZ(G) = Inn(G) then CG(Z(Φ(G))) 6= Φ(G).
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Theorem 4.2 [7, Proposition 3.1]. Let G be a finite nonabelian p-group. Then
AutΦZ(G) = Inn(G) if and only if Φ(G) ≤ Z(G) and Φ(G) is cyclic.

Proof. Assume first that Φ(G) ≤ Z(G) and Φ(G) is cyclic. By Lemma 2.2,
AutΦZ(G) ∼= Hom(G/Z,Φ). Now since G is of class 2, exp(G/Z) = exp(G′) ≤
exp(Φ(G)), whence AutΦZ(G) ∼= G/Z.

Conversely let AutΦZ(G) = Inn(G). Assume either Φ(G) � Z(G) or Φ(G) is
noncyclic. We consider two cases:

Case I. Z(G) � Φ(G).
We choose a maximal subgroup M of G such that Z(G) � M . So G = MZ(G)
and Z(M ) = Z(G)

⋂
M . Now if Φ(M ) ≤ Z(M ) then Φ(G) ≤ Z(G) and hence by

Lemma 2.2, AutΦZ(G) ∼= Hom(G/Z,Φ). Since Φ(G) is noncyclic, it follows that
|AutΦZ(G)| > |G/Z| which is impossible. So we suppose that Φ(M ) � Z(M ). In
this situation we may use induction to deduce that AutΦ(M)

Z(M)(M ) 6= Inn(M ). Let

β ∈ AutΦ(M)
Z(M)(M )\Inn(M ). We write G = M 〈z〉 where z ∈ Z(G)\M , and extend

β to an automorphism β̂ ∈ AutΦZ(G) by setting (hzi)β̂ = hβzi, where h ∈ M

and 0 ≤ i < p. We therefore have β̂ ∈ Inn(G). It follows that β ∈ Inn(M ), a
contradiction.

Case II. Z(G) ≤ Φ(G).
In this case we claim that G is Frattinian. To see this, let M be an arbitrary
maximal subgroup of G. Choose an element z in G\M and let u ∈ Ω1(Z(G)).
The map α : hzi 7→ h(zu)i, where h ∈ M and 0 ≤ i < p, defines an auto-
morphism of G which is in AutΦZ(G). So α is an inner automorphism of G
induced by an element t in G. It follows that t ∈ CG(M ) = Z(M ). Now since
t 6∈ Z(G), we see that G is Frattinian. By Theorem 2.1, one of the statements
(i),(ii) of the theorem holds. If the statement (i) holds then Z(G) = Φ(G) and
hence Inn(G) = AutΦZ(G) = AutZZ(G). Consequently Z(G) is cyclic by Corol-
lary 3.5, a contradiction. We therefore suppose that the second statement of
Theorem 2.1 is fulfilled. If E is abelian then E ≤ Z(G) ≤ Φ(G) and we have
G = F whence CG(Z(Φ(G))) = Φ(G), a contradiction to Proposition 4.1. So
we may suppose that E is nonabelian. Now let α ∈ AutZ(E)

Z(E)(E) and extend
α to an automorphism α̂ ∈ AutZZ(G) according to Lemma 2.3. It follows that
α̂ is an inner automorphism of G induced by some element in E. Therefore,
α ∈ Inn(E), and hence AutZ(E)

Z(E)(E) = Inn(E). By Corollary 3.5, Z(E) is cyclic.
Since E = CG(F ), we deduce that Z(G) = Z(E) is cyclic. Now if Φ(F ) ≤ Z(G),
then Φ(G) = Φ(E)Φ(F ) ≤ Z(G) and hence Z(G) = Φ(G), a contradiction. Thus
Φ(F ) � Z(G) from which we deduce that Φ(F ) � Z(F ). Again by induction
hypothesis AutΦ(F )

Z(F )(F ) 6= Inn(F ), which is impossible, by a similar argument
given in Case I. �

Corollary 4.3 [7]. If G is a finite nonabelian p-group then AutΦ(G) = Inn(G)
if and only if G is extraspecial.

Proof. If AutΦ(G) = Inn(G), then Φ(G) ≤ Z(G) and Φ(G) is cyclic by Theorem
4.2. So G is of class 2 and hence Z(G) ≤ Φ(G) by Theorem 3.3. It follows that
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Z(G) = Φ(G). Now according to Corollary 3.4, G′ = Z(G) and Z(G) is cyclic.
Finally exp(G′) = exp(G/Φ) = p which completes the proof of the first part.

The converse is straightforward. �
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