On the Fekete-Szegö Problem for Certain Subclasses of Analytic Functions

T. N. Shanmugam ${ }^{1}$, S. Kavitha ${ }^{2}$, and S. Sivasubramanian ${ }^{3}$
${ }^{1}$ Department of Mathematics, College of Engineering, Anna University, Chennai-600 025, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Madras Christian College, Chennai-59, India.
${ }^{3}$ Department of Mathematics, Easwari Engineering College, Ramapuram, Chennai-600 089, Tamilnadu, India

Received March 20, 2006

Abstract

In this present investigation, the authors obtain Fekete-Szegö's inequality for certain normalized analytic functions $f(z)$ defined on the open unit disk for which $(1-\alpha)\left(\frac{f(z)}{z}\right)^{\beta}+\alpha f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\beta-1},(\beta \geq 0,0 \leq \alpha<1)$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by convolution are given. As a special case of this result, Fekete-Szegö's inequality for a class of functions defined through fractional derivatives is obtained. The motivation of this paper is to give a generalization of the Fekete-Szegö inequalities obtained by Srivastava and Mishra.

2000 AMS Mathematics Subject Classification: 30C45. Keywords: Analytic functions, Starlike functions, subordination, Coefficient problem, Fekete-Szegö inequality.

1. Introduction

Let \mathcal{A} denote the class of all analytic functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \Delta:=\{z \in \mathbb{C}| | z \mid<1\}) \tag{1.1}
\end{equation*}
$$

and \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which
maps the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^{*}(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad(z \in \Delta),
$$

and $C(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z), \quad(z \in \Delta),
$$

where \prec denotes the subordination between analytic functions. These classes were introduced and studied by Ma and Minda [3]. They have obtained the Fekete-Szegö inequality for the functions in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $z f^{\prime}(z) \in S^{*}(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^{*}(\phi)$. Recently, Shanmugam and Sivasubramanian [7] obtained Fekete- Szegö inequalities for the class of functions

$$
\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec \phi(z) \quad(\alpha \geq 0)
$$

For a brief history of Fekete-Szegö problem for the class of starlike, convex and close-to-convex functions, see the recent paper by Srivastava et al. [9].

In the present paper, we obtain the Fekete-Szegö inequality for functions in a more general class $M_{\alpha, \beta}(\phi)$ of functions which we define below. Also we give applications of our results to certain functions defined through convolution (or Hadamard product) and in particular we consider a class $M_{\alpha, \beta}^{\lambda}(\phi)$ of functions defined by fractional derivatives. The motivation of this paper is to give a generalization of the Fekete-Szegö inequalities of Srivastava and Mishra [8].

Definition 1.1. Let $\phi(z)$ be a univalent starlike function with respect to 1 which maps the unit disk Δ onto a region in the right half plane which is symmetric with respect to the real axis, $\phi(0)=1$ and $\phi^{\prime}(0)>0$. A function $f \in \mathcal{A}$ is in the class $M_{\alpha, \beta}(\phi)$ if

$$
(1-\alpha)\left(\frac{f(z)}{z}\right)^{\beta}+\alpha f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\beta-1} \prec \phi(z), \quad(\beta \geq 0,0 \leq \alpha<1)
$$

For fixed $g \in \mathcal{A}$, we define the class $M_{\alpha, \beta}^{g}(\phi)$ to be the class of functions $f \in \mathcal{A}$ for which $(f * g) \in M_{\alpha, \beta}(\phi)$.

To prove our main result, we need the following.
Lemma 1.2. [3] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is an analytic function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & \text { if } v \leq 0 \\ 2 & \text { if } 0 \leq v \leq 1 \\ 4 v-2 & \text { if } v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then the equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \lambda\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \lambda\right) \frac{1-z}{1+z} \quad(0 \leq \lambda \leq 1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if p_{1} is the reciprocal of one of the functions such that the equality holds in the case of $v=0$.

Also the above upper bound is sharp, and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2<v \leq 1)
$$

2. Fekete-Szegö Problem

Our main result is the following.
Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by (1.1) belongs to $M_{\alpha, \beta}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{2}}{(\beta+2 \alpha)}-\frac{\mu}{(\beta+\alpha)^{2}} B_{1}^{2}+\frac{1-\beta}{2(\beta+\alpha)^{2}} B_{1}^{2}, & \text { if } \mu \leq \sigma_{1} \\ \frac{B_{1}}{(\beta+2 \alpha)}, & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ -\frac{B_{2}}{(\beta+2 \alpha)}+\frac{\mu}{(\beta+\alpha)^{2}} B_{1}^{2}-\frac{1-\beta}{2(\beta+\alpha)^{2}} B_{1}^{2}, & \text { if } \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{aligned}
& \sigma_{1}:=\frac{2(\beta+\alpha)^{2}\left(B_{2}-B_{1}\right)+(1-\beta)(\beta+2 \alpha) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}} \\
& \sigma_{2}:=\frac{2(\beta+\alpha)^{2}\left(B_{2}+B_{1}\right)+(\beta+2 \alpha)(1-\lambda) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.

Proof. For $f(z) \in M_{\alpha, \beta}(\phi)$, let

$$
\begin{equation*}
p(z):=(1-\alpha)\left(\frac{f(z)}{z}\right)^{\beta}+\alpha f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\beta-1}=1+b_{1} z+b_{2} z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

From (2.1), we obtain

$$
(\beta+\alpha) a_{2}=b_{1} \quad \text { and } \quad(\beta+2 \alpha) a_{3}=b_{2}-\frac{(\beta-1)(\beta+2 \alpha)}{2} a_{2}^{2}
$$

Since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$
p_{1}(z)=\frac{1+\phi^{-1}(p(z))}{1-\phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic and has positive real part in Δ. Also we have

$$
\begin{equation*}
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{2.2}
\end{equation*}
$$

and from this equation (2.2), we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1}
$$

and

$$
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} .
$$

Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{2(\beta+2 \alpha)}\left(c_{2}-v c_{1}^{2}\right) \tag{2.3}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{(\beta-1+2 \mu)(2 \alpha+\beta)}{2(\beta+\alpha)^{2}} B_{1}\right] .
$$

Our result now follows by an application of Lemma 1.2. To show that the bounds are sharp, we define the functions $K^{\phi_{n}}(n=2,3, \ldots)$ by

$$
\begin{gathered}
(1-\alpha)\left(\frac{K^{\phi_{n}}}{z}\right)^{\beta}+\alpha\left[K^{\phi_{n}}\right]^{\prime}(z)\left(\frac{z}{K^{\phi_{n}}}\right)^{\beta-1}=\phi\left(z^{n-1}\right) \\
K^{\phi_{n}}(0)=0=\left[K^{\phi_{n}}\right]^{\prime}(0)-1
\end{gathered}
$$

and the function F^{λ} and $G^{\lambda}(0 \leq \lambda \leq 1)$ by

$$
(1-\alpha)\left(\frac{F^{\lambda}(z)}{z}\right)^{\beta}+\alpha\left[F^{\lambda}\right]^{\prime}(z)\left(\frac{z}{F^{\lambda}(z)}\right)^{\beta-1}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right)
$$

$$
F^{\lambda}(0)=0=\left(F^{\lambda}\right)^{\prime}(0)-1
$$

and

$$
\begin{gathered}
(1-\alpha)\left(\frac{G^{\lambda}(z)}{z}\right)^{\beta}+\alpha\left[G^{\lambda}\right]^{\prime}(z)\left(\frac{z}{G^{\lambda}(z)}\right)^{\beta-1}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right), \\
G^{\lambda}(0)=0=\left(G^{\lambda}\right)^{\prime}(0) .
\end{gathered}
$$

Clearly the functions $K_{\alpha}^{\phi n}, F_{\alpha}^{\lambda}, G_{\alpha}^{\lambda} \in M_{\alpha}(\phi)$. Also we write $K_{\alpha}^{\phi}:=K_{\alpha}^{\phi_{2}}$.
If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is K_{α}^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, the equality holds if and only if f is $K_{\alpha}^{\phi_{3}}$ or one of its rotations. If $\mu=\sigma_{1}$ then the equality holds if and only if f is F_{α}^{λ} or one of its rotations. If $\mu=\sigma_{2}$ then the equality holds if and only if f is G_{α}^{λ} or one of its rotations.

Remark 2.2. If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then, in view of Lemma 1.2, Theorem 2.1 can be improved. Let σ_{3} be given by

$$
\sigma_{3}:=\frac{2(\beta+\alpha)^{2} B_{2}+(\beta+2 \alpha)(\beta-1) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then
$\left|a_{3}-\mu a_{2}^{2}\right|+\frac{(\beta+\alpha)^{2}}{(\beta+2 \alpha) B_{1}^{2}}\left[B_{1}-B_{2}+\frac{(\beta-1+2 \mu)(2 \alpha+\beta)}{2(\beta+\alpha)^{2}} B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{(\beta+2 \alpha)}$.

If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then
$\left|a_{3}-\mu a_{2}^{2}\right|+\frac{(\beta+\alpha)^{2}}{(\beta+2 \alpha) B_{1}^{2}}\left[B_{1}+B_{2}+\frac{(\beta-1+2 \mu)(2 \alpha+\beta)}{2(\beta+\alpha)^{2}} B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{(\beta+2 \alpha)}$.

3. Applications to Functions Defined by Fractional Derivatives

In order to introduce the class $M_{\alpha, \beta}^{\lambda}(\phi)$, we need the following.
Definition 3.1. (see [4, 5]; see also [10, 11]). Let $f(z)$ be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$
D_{z}^{\lambda} f(z):=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d \zeta \quad(0 \leq \lambda<1)
$$

where the multiplicity of $(z-\zeta)^{\lambda}$ is removed by requiring that $\log (z-\zeta)$ is real for $z-\zeta>0$.

Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [4] introduced the operator $\Omega^{\lambda}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\left(\Omega^{\lambda} f\right)(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z), \quad(\lambda \neq 2,3,4, \ldots)
$$

The class $M_{\alpha, \beta}^{\lambda}(\phi)$ consists of functions $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in M_{\alpha, \beta}(\phi)$. Note that $M_{1,0}^{0}(\phi) \equiv S^{*}(\phi)$ and $M_{\alpha, \beta}^{\lambda}(\phi)$ is the special case of the class $M_{\alpha, \beta}^{g}(\phi)$ when

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n} \tag{3.1}
\end{equation*}
$$

Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}\left(g_{n}>0\right)$. Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in M_{\alpha, \beta}^{g}(\phi)$ if and only if $(f * g)=z+\sum_{n=2}^{\infty} g_{n} a_{n} z^{n} \in M_{\alpha, \beta}(\phi)$, we obtain the coefficient estimate for functions in the class $M_{\alpha, \beta}^{g}(\phi)$, from the corresponding estimate for functions in the class $M_{\alpha, \beta}(\phi)$. Applying Theorem 2.1 for the function $(f *$ $g)(z)=z+g_{2} a_{2} z^{2}+g_{3} a_{3} z^{3}+\cdots$, we get the following Theorem 3.2 after an obvious change of the parameter μ.

Theorem 3.2. Let the function $\phi(z)$ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+$ \cdots. If $f(z)$ given by (1.1) belongs to $M_{\alpha, \beta}^{g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{1}{g_{3}}\left[\frac{B_{2}}{\beta+2 \alpha}-\frac{\mu g_{3}}{g_{2}^{2}(\beta+\alpha)^{2}} B_{1}^{2}+\frac{1-\beta}{2(\beta+\alpha)^{2}} B_{1}^{2}\right], & \text { if } \mu \leq \sigma_{1} \\ \frac{1}{g_{3}} \frac{B_{1}}{\beta+2 \alpha}, & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{1}{g_{3}}\left[-\frac{B_{2}}{\beta+2 \alpha}+\frac{\mu g_{3}}{g_{2}^{2}(\beta+\alpha)^{2}} B_{1}^{2}-\frac{1-\beta}{2(\beta+\alpha)^{2}} B_{1}^{2}\right], & \text { if } \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{aligned}
\sigma_{1} & :=\frac{g_{2}^{2}}{g_{3}} \frac{2(\beta+\alpha)^{2}\left(B_{2}-B_{1}\right)+(1-\beta)(\beta+2 \alpha) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}} \\
\sigma_{2} & :=\frac{g_{2}^{2}}{g_{3}} \frac{2(\beta+\alpha)^{2}\left(B_{2}+B_{1}\right)+(1-\beta)(\beta+2 \alpha) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.
Since

$$
\left(\Omega^{\lambda} f\right)(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_{n} z^{n}
$$

we have

$$
\begin{equation*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\lambda)}{\Gamma(3-\lambda)}=\frac{2}{2-\lambda} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}:=\frac{\Gamma(4) \Gamma(2-\lambda)}{\Gamma(4-\lambda)}=\frac{6}{(2-\lambda)(3-\lambda)} \tag{3.3}
\end{equation*}
$$

For g_{2} and g_{3} given by (3.2) and (3.3), Theorem 3.2 reduces to the following:

Theorem 3.3. Let the function $\phi(z)$ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+$ \cdots. If $f(z)$ given by (1.1) belongs to $M_{\alpha, \beta}^{\lambda}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{(2-\lambda)(3-\lambda)}{6} \gamma & \text { if } \mu \leq \sigma_{1} \\ \frac{(2-\lambda)(3-\lambda)}{6} \frac{B_{1}}{2(1+2 \alpha)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ -\frac{(2-\lambda)(3-\lambda)}{6} \gamma & \text { if } \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{gathered}
\gamma:=\frac{B_{2}}{\beta+2 \alpha}-\frac{3(2-\lambda)}{2(3-\lambda)} \frac{\mu}{(\beta+\alpha)^{2}} B_{1}^{2}+\frac{1-\beta}{2(\beta+\alpha)^{2}} B_{1}^{2} \\
\sigma_{1} \\
:=\frac{2(3-\lambda)}{3(2-\lambda)} \cdot \frac{2(\beta+\alpha)^{2}\left(B_{2}-B_{1}\right)+(1-\beta)(\beta+2 \alpha) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}} \\
\sigma_{2} \\
:=\frac{2(3-\lambda)}{3(2-\lambda)} \cdot \frac{2(\beta+\alpha)^{2}\left(B_{2}+B_{1}\right)+(1-\beta)(\beta+2 \alpha) B_{1}^{2}}{2(\beta+2 \alpha) B_{1}^{2}}
\end{gathered}
$$

The result is sharp.
Remark 3.4. When $\alpha=1, \beta=0, B_{1}=8 / \pi^{2}$ and $B_{2}=16 /\left(3 \pi^{2}\right)$, the above Theorem 3.2 reduces to a recent result of Srivastava and Mishra [8, Theorem 8, p. 64] for a class of functions for which $\Omega^{\lambda} f(z)$ is a parabolic starlike function $[2,6]$.

References

1. B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737-745.
2. A. W. Goodman, Uniformly convex functions, Ann. Polon. Math. 56 (1991) 87-92.
3. W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Int. Press (1994) 157-169.
4. S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987) 1057-1077.
5. S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978) $53-58$.
6. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993) 189-196.
7. T.N.Shanmugam and S.Sivasubramanian, On the Fekete-Szegö Problem for Some Subclasses of Analytic Functions, Preprint.
8. H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computer Math. Appl. 39 (2000) 57-69.
9. H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables, Theory Appl. 44 (2001) 145-163.
10. H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29 (1984) 383-389.
11. H. M. Srivastava and S. Owa, Univalent functions, Fractional Calculus, and their Applications, Halsted Press/John Wiley and Songs, Chichester/New York, (1989).
