
Vietnam Journal of Mathematics 36:1(2008) 71–78

 

 

Vietnam Journal  

o f   

MATHEMATICS  

     © VAST 2008 

  
 
 
 
 
 
 
 
 

Quasiconformal Analogues of the
Hardy-Littlewood Property in

Uniformly John Domains ∗

Xiaohui Zhang, Gendi Wang, and Yuming Chu

Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China

Received January 17, 2007

Revised January 12, 2008

Abstract. A result of Hardy-Littlewood relates Hölder continuity of analytic functions

over the unit disk to the growth of the derivative. Astala and Gehring extend this

result to a quasiconformal analogue in uniform domain in n−dimensional space. In

this paper, we prove some quasiconformal analogues of Hardy-Littlewood’s result in

uniformly John domains.
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1. Introduction

Hardy and Littlewood proved the following results in [6].

Theorem 1.1. Suppose that f is analytic in the unit disk B = {z : |z| < 1} and
0 < α ≤ 1. If there exists a constant C1 such that

|f ′(z)| ≤ C1(1 − |z|)α−1 = C1dist(z, ∂B)α−1 (1)
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for all z ∈ B, then f has a continuous extension to B = {z : |z| ≤ 1} and

|f(z1) − f(z2)| ≤ C2|z1 − z2|α (2)

for all z1, z2 ∈ B and some constant C2 which depends only on C1 and α.

Suppose next that D and D′ are domains in Rn and that f : D → D′ is
K−quasiconformal with Jacobian Jf . Then logJf is integrable over each ball
B ⊂ D and for x ∈ D we set

af (x) = exp

(
1

nm(B(x))

∫

B(x)

log Jfdm

)
, (3)

where B(x) = B(x, dist(x, ∂D)), the open ball with center x and radius equal
to the distance dist(x, ∂D) from x to ∂D, m(B(x)) denotes the n−dimensional
Lebesgue measure of B(x). If n = 2 and f is conformal in D, then log Jf

is harmonic and hence af (x) = |f ′(x)|. Astala and Gehring observed firstly
that for certain distortion properties of quasiconformal mappings the function
af plays a role exactly analogous to that played by |f ′| when n = 2 and f is
conformal, see[1, 2, 7].

Astala and Gehring [1, 2] use the characteristic of quasiconformal mapping,
af (x), to study quasiconformal analogues of theorem of Hardy-Littlewood in
uniform domains. They obtain the following theorem and other variants of this
analogue.

Theorem 1.2. [1] Suppose that D is a uniform domain in Rn and that α and
m are constants with 0 < α ≤ 1 and m ≥ 0. If f is K−quasiconformal in D
with f(D) ⊂ Rn and if

af (x) ≤ m dist(x, ∂D)α−1

for x ∈ D, then f has a continuous extension to D \ {∞} and

|f(x1) − f(x2)| ≤ cm(|x1 − x2| + dist(x1, ∂D))α

for x1, x2 ∈ D \ {∞}, where c is a constant which depends only on K, n, α and
the constants for D.

In this paper, we shall give some quasiconformal analogues of theorem of
Hardy-Littlewood in uniformly John domains. The main results are as follows.

Theorem 1.3. Suppose that D is a uniformly John domain in Rn and that α
and m are constants with 0 < α ≤ 1 and m ≥ 0. If f is K−quasiconformal in
D with f(D) ⊂ Rn and if

af (x) ≤ m dist(x, ∂D)α−1 (4)

for x ∈ D, then
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|f(x1) − f(x2)| ≤ cm(ρD (x1, x2) + dist(x1, ∂D))α (5)

for x1, x2 ∈ D, where c is a constant which depends only on K, n, α and the
constants for D, and ρD (x, y) = inf dia(γ) for x, y ∈ D, the infimums are taken
over all open arcs γ joining x and y in D with diameter dia(γ).

Simple examples show that the term dist(x1, ∂D) cannot in general be omit-
ted, see [1, Remark 3.12] and [7]. On the other hand, the following alter-
native quasiconformal analogue of Theorem 1.1 yields a sharper estimate for
|f(x1) − f(x2)| in the special case where α ≤ K1/(1−n).

Theorem 1.4. Suppose that D is a uniformly John domain in Rn and that α and
m are constants with 0 < α ≤ K1/(1−n) and m ≥ 0. If f is K−quasiconformal
in D with f(D) ⊂ Rn and if

af (x) ≤ m dist(x, ∂D)α−1

for x ∈ D, then

|f(x1) − f(x2)| ≤ cmρD (x1, x2)α (6)

for x1, x2 ∈ D, where c is a constant which depends only on K, n, α and the
constants for D.

2. Notations and Preliminary Results

Throughout this paper, assume that D is a domain in Euclidean n−space Rn.
We say that D is a uniformly John domain if there exist positive constants a
and b such that each pair of points x1, x2 ∈ D can be joined by a rectifiable arc
γ ⊂ D for which

l(γ) ≤ aρD (x1, x2) (7)

and

min
j=1,2

l(γj) ≤ b dist(x, ∂D) (8)

for each x ∈ γ; here l(γ) denotes the euclidean length of γ and γ1, γ2 the
components of γ \ {x}.

A uniformly John domain is a domain intermediate between a uniform do-
main and a John domain. Balogh and Volberg [3, 4] introduced the uniformly
John domain in connection with conformal dynamics.

Given a set D in Rn, we let Lipα
h (D), 0 < α ≤ 1, denote the Lipschitz class

of mappings f : D → Rp satisfying for some constant m < ∞ the inequality

|f(x1) − f(x2)| ≤ mh(x1, x2)α (9)
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for all x1 and x2 in D, where h(· , ·) is a metric defined in D. If D is a domain in
Rn, then f : D → Rp is said to belong to the local Lipschitz class, locLipα

h (D),
if there is a constant m < ∞ such that (9) holds whenever x1, x2 lie in any open
ball contained in D.

In Lipα
h (D) and locLipα

h (D) we shall use seminorms ||f ||h,α and ||f ||loc
h,α re-

spectively, which mean the infimum of the numbers m for which (9) holds in the
corresponding set. We say that a domain D ⊂ Rn is a Lipα

h−extension domain
if there exists a constant a depending on D and α such that f ∈ locLipα

h (D)
implies f ∈ Lipα

h (D) with

||f ||h,α ≤ a||f ||loc
h,α.

When h(x, y) = |x− y|, Gehring and Martio [5] prove that uniform domains
are Lipα

h−extension domains. We give an analogous theorem for uniformly John
domains as follows.

Lemma 2.1. Uniformly John domains are Lipα
ρ−extension domains for all

0 < α 6 1.

Proof. Let D be a uniformly John domain, fix x1, x2 ∈ D. Since D is a uni-
formly John domain, we can find a rectifiable arc γ joining x1 and x2 in D which
satisfies (7) and (8). Choose x0 ∈ γ such that l(γ(x1, x0)) = l(γ(x0, x2)). Be-
cause dist(γ, ∂D) > 0, we can choose points y0, y1, · · · , yl ∈ γ with the following
properties





y0 = x0,

yj+1 ∈ γ(yj , x1),
|yj+1 − yj | = r dist(yj , ∂D),
|yl − x1| ≤ r dist(yl, ∂D),
yl+1 = x1,

(10)

with 0 < r < 1. Obviously we may assume that l ≥ 1. Set

uj =
{ |yj+1 − yj |, if 0 ≤ j ≤ l,

0, if l + 1 ≤ j < ∞.

If 0 ≤ k ≤ l − 1, then

∞∑

j=k

uj =
l∑

j=k

|yj+1 − yj | ≤ l(γ(yk , x1)) ≤ l(γ(yk , x2)),

while by (8)

l(γ(yk , x1)) ≤ b dist(yk, ∂D) =
b

r
|yk+1 − yk| =

b

r
uk.

Hence
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∞∑

j=k

uj ≤ b

r
uk. (11)

If k ≥ l + 1 the inequality (11) is trivially true. For the case of k = l,
ρD (yl , x1) = |yl − x1| since |yl − x1| ≤ rdist(yl , ∂D), and by (7) we have

l(γ(yl , x1)) ≤ aρ
D

(yl, x1) = a|yl − x1| = aul,

hence

∞∑

j=l

uj ≤ aul.

Suppose that f ∈ locLipα
ρ (D) with ||f ||loc

ρ,α = m. Since in a ball, the metric
ρD is the same as euclidean metric, we can apply (7), (10) and [1, Lemma 3.1]
to obtain

|f(x1) − f(x0)| ≤
l∑

j=0

m|yj+1 − yj|α

≤ c0m|y1 − y0|α

≤ c0ml(γ(x1, x0))α

= c0m(l(γ(x1, x2))/2)α

≤ (a/2)αc0mρ
D

(x1, x2)α

= c1mρD (x1, x2)α,

where c1 = (a
2 )αc0 depends only on b, r, α and the constants for D. By the same

argument with x2 in place of x1,

|f(x2) − f(x0)| ≤ c1mρD (x1, x2)α.

Hence we obtain

|f(x1) − f(x2)| ≤ 2c1mρ
D

(x1, x2)α

for any x1, x2 ∈ D. �

Lemma 2.2. Suppose that D is a uniformly John domain in Rn and that α, r
and m are constants with 0 < α ≤ 1, 0 < r < 1 and m ≥ 0. If g : D → Rn is an
open mapping and if

|g(x1) − g(x2)| ≤ m|x1 − x2|α (12)

for x1, x2 ∈ D with |x1 − x2| = r dist(x1, ∂D), then

|g(x1) − g(x2)| ≤ cm(ρ
D

(x1, x2) + dist(x1, ∂D))α (13)
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for x1, x2 ∈ D , where c is a constant which depends only on α, r and the
constants for D.

Proof. Fix x1, x2 ∈ D. Because D is a uniformly John domain, we can find a
rectifiable arc γ joining x1 and x2 in D which satisfies (7) and (8) with constants
a and b which depend only on D. Let x0 denote the midpoint of γ. We can
choose points y0, y1, · · · , yl ∈ γ with the following properties





y0 = x0,

yj+1 ∈ γ(yj , x1),
|yj+1 − yj | = r dist(yj , ∂D),
|yl − x1| ≤ r dist(yl, ∂D).

(14)

Similar to the proof of Theorem 2.1, we can show that

|g(yl) − g(x0)| ≤ c1mρ
D

(x1, x2)α. (15)

By triangle inequality, we have

dist(yl, ∂D) ≤ dist(x1, ∂D) + |yl − x1|
≤ dist(x1, ∂D) + rdist(yl, ∂D),

hence

dist(yl, ∂D) ≤ 1
1 − r

dist(x1, ∂D).

Next, because g is open,

|g(x1) − g(yl)| ≤ sup{|g(x) − g(yl)| : |x− yl| = rdist(yl, ∂D)}
≤ m(rdist(yl, ∂D))α

≤ c2mdist(x1, ∂D)α

where c2 = rα(1 − r)−α, and with (15) we have

|g(x1) − g(x0)| ≤ c3m(ρD (x1, x2) + dist(x1, ∂D))α,

where c3 = max{c1, c2}. By the same argument with x2 in place of x1,

|g(x2) − g(x0)| ≤ c3m(ρD (x1, x2) + dist(x2, ∂D))α,

and since

dist(x2, ∂D) ≤ ρD (x1, x2) + dist(x1, ∂D),

we obtain (13) with c = 3c3 for x1, x2 ∈ D. �
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3. Proofs of Theorem 1.3 and Theorem 1.4

Proof of Theorem 1.3. Choose x1, x2 ∈ D with

ρD (x1, x2) =
1
2
dist(x1, ∂D).

Then by the n−dimensional version of Lemma 5.15 in [2] applied to the open
ball B(x1, dist(x1, ∂D)), we have

|f(x1) − f(x2)| ≤ c1af (x1)dist(x1, ∂D)a|x1 − x2|1−a

= 2ac1af (x1)|x1 − x2|.

where a = (e/2)|| logJf ||∗ ≤ c2 and cj = cj(K, n) for j = 1, 2. Next by hypoth-
esis,

af (x1) ≤ m dist(x1, ∂D)α−1

= 2α−1m|x1 − x2|α−1

≤ m|x1 − x2|α−1,

and hence

|f(x1) − f(x2)| ≤ 2c2c1mρD (x1, x2)α.

The desired conclusion now follows from Lemma 2.2 with r = 1/2. �

Proof of Theorem 1.4. By Theorem 1.8 in [1] and hypothesis,

dist(f(x), ∂f(D)) ≤ c1af (x)dist(x, ∂D)
≤ c1m dist(x, ∂D)α,

for x ∈ D with c1 = c1(K, n). Then since α ≤ K1/(1−n), Theorem 3.4 in [5]
implies that

|f(x1) − f(x2)| ≤ c2|x1 − x2|α = c2ρD
(x1, x2)α

whenever x1, x2 ∈ B ⊂ D; here c2 depends only on c1 and α. That is f ∈
locLipα

ρ (D). Hence by Lemma 2.1, we have

|f(x1) − f(x2)| ≤ c3c2ρD (x1, x2)α

for x1, x2 ∈ D, where c3 is a constant depending only on α, and the constants
for D. This completes the proof. �
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