T1 Theorems for Inhomogeneous Besov and Triebel-Lizorkin Spaces over Space of Homogeneous Type

Yanchang Han

Department of Mathematics,
South China Normal University, Guangzhou, 510631, P.R. China

Received November 17, 2006

Abstract. The author establishes T1 theorems for inhomogeneous Besov and Triebel-Lizorkin spaces by discrete Calderón type reproducing formula and the Plancherel-Pôlya characterization for inhomogeneous Besov and Triebel-Lizorkin spaces. These results are new even for \(\mathbb{R}^d \).

2000 Mathematics Subject Classification: 42B25, 42B35, 46E35.

Keywords: T1 theorem, inhomogeneous Besov and Triebel-Lizorkin spaces, spaces of homogeneous type.

1. Introduction

In the past years, there has been significant progress on the problem of proving the boundedness of generalized Calderón-Zygmund operators on various function spaces. A remarkable result is the famous T1 theorem of David and Journé in [3]. T1 theorem has been extended for Besov and Triebel-Lizorkin spaces. For a broader view of this active area of research, see e.g. [5, 10, 12–14, 16, 17] and references therein.

The main purpose of this paper is to establish T1 theorems for the inhomogeneous spaces \(B_{\alpha,q}^p(X) \) when \(\frac{d}{d+\alpha+\epsilon} < p \leq \infty, 0 < q \leq \infty, 0 < \alpha < \epsilon \) and for \(F_{\alpha,q}^p(X) \) when \(\frac{d}{d+\alpha+\epsilon} < p < \infty, \frac{d}{d+\alpha+\epsilon} < q \leq \infty, 0 < \alpha < \epsilon \), and for \(B_{\alpha,q}^p(X) \) when \(\frac{d}{d+\alpha+\epsilon} < p \leq \infty, 0 < q \leq \infty, -\epsilon < \alpha < 0 \) and for \(F_{\alpha,q}^p(X) \) when \(\frac{d}{d+\alpha+\epsilon} < p < \infty, \frac{d}{d+\alpha+\epsilon} < q \leq \infty, -\epsilon < \alpha < 0 \) for some \(\epsilon > 0 \) by discrete

*Project supported by the NNSF (No. 10726071) of China.
Calderón type reproducing formula and Plancherel-Pólya characterization for the inhomogeneous Besov and Triebel-Lizorkin spaces. Roughly speaking, T is bounded on $B^{\alpha,q}_p(X)$ and $F^{\alpha,q}_p(X)$ for the range of $\alpha, p,$ and q indicated above, respectively, if its kernel satisfies only half smoothness and moment conditions. An application of these results is given in [4].

To state main results of this paper, we begin by recalling the definitions necessary for inhomogeneous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and some basic facts about the Calderón-Zygmund operator theory. A quasi-metric ρ on a set X is a function $\rho : X \times X \to [0, \infty)$ satisfying:

(i) $\rho(x, y) = 0$ if and only if $x = y$;
(ii) $\rho(x, y) = \rho(y, x)$ for all $x, y \in X$;
(iii) There exists a constant $A \in [1, \infty)$ such that for all $x, y, z \in X$,

$$\rho(x, y) \leq A[\rho(x, z) + \rho(z, y)].$$

Any quasi-metric defines a topology, for which the balls $B_\rho(x, r) = \{y \in X : \rho(x, y) < r\}$ for all $x \in X$ and all $r > 0$ form a basis.

The following spaces of homogeneous type are variants of those introduced by Coifman and Weiss in [2].

Definition 1.1. [13] Let $d > 0$ and $0 < \theta \leq 1$. A space of homogeneous type $(X, \rho, \mu)_{d, \theta}$ is a set X together with a quasi-metric ρ and a nonnegative Borel measure μ on X such that (X, ρ) is a space of homogeneous type in the sense of Coifman and Weiss by another quasi-metric ρ^* which yields the same topology on X as ρ such that (X, ρ, μ) is the space defined by Definition 1.1 with $d = 1$.

Suppose that T is a continuous linear mapping from $C_0^\infty(X)$ to $(C_0^\infty(X))'$, associated to a kernel $K(x, y)$ in the following sense that

$$\langle Tf, g \rangle = \int \int g(x)K(x, y)f(y)d\mu(x)d\mu(y)$$

for all test functions f and g in C_0^∞ with disjoint supports.

Assume that $K(x, y)$ satisfies the pointwise conditions:

$$|K(x, y)| \leq C\rho(x, y)^{-d} \text{ for } \rho(x, y) \neq 0, \quad (1.3)$$

$$|K(x, y)| \leq C\rho(x, y)^{-d-\sigma} \text{ for } \rho(x, y) \geq 1, \quad (1.4)$$

$$|K(x, y) - K(x', y)| \leq C\rho(x, x')^\sigma\rho(x, y)^{-d-\epsilon} \text{ for } \rho(x, x') \leq \frac{\rho(x, y)}{(2A)}, \quad (1.5)$$

$$|K(x, y) - K(x, y')| \leq C\rho(y, y')^\sigma\rho(x, y)^{-d-\epsilon} \text{ for } \rho(y, y') \leq \frac{\rho(x, y)}{(2A)}, \quad (1.6)$$
where \(\epsilon \in (0, \theta) \), \(\sigma > 0 \).

The conditions (1.3)-(1.6) are natural when one considers the boundedness of Calderón-Zygmund operators on inhomogeneous function spaces, which were pointed out by Meyer in [16].

Assume also that \(T \) satisfies the Weak Boundedness Property, denote this by \(T \in \text{WBP} \):

\[
|\langle Tf, g \rangle| \leq C r^{d+2\eta} \|f\|_{C^\eta_0(X)} \|g\|_{C^\eta_0(X)}
\]

for all \(f \) and \(g \) in \(C^\eta_0(X) \) with diameters of supports not greater than \(r \).

To state the definition of the inhomogeneous Besov and Triebel-Lizorkin spaces, we need the following definitions. Let \(Z_+ = \mathbb{N} \cup \{0\} \).

Definition 1.2. [9] A sequence \(\{S_k\}_{k \in Z_+} \) of operators is said to be an approximation to the identity if \(S_k(x, y) \), the kernel of \(S_k \), are functions from \(X \times X \) into \(\mathbb{C} \) such that for all \(k \in Z_+ \) and all \(x, x', y \) and \(y' \) in \(X \), and some \(0 < \epsilon \leq \theta \) and \(C > 0 \),

\[
|S_k(x, y)| \leq C \frac{2^{-k\epsilon}}{(2^{-k} + \rho(x, y))^{d+\epsilon}};
\]

\[
|S_k(x, y) - S_k(x', y)| \leq C \left(\frac{\rho(x, x')}{2^{-k} + \rho(x, y)} \right)^\epsilon \frac{2^{-k\epsilon}}{(2^{-k} + \rho(x, y))^{d+\epsilon}}
\]

for \(\rho(x, x') \leq \frac{1}{2\lambda} (2^{-k} + \rho(x, y)) \);

\[
|S_k(x, y) - S_k(x, y')| \leq C \left(\frac{\rho(y, y')}{2^{-k} + \rho(x, y)} \right)^\epsilon \frac{2^{-k\epsilon}}{(2^{-k} + \rho(x, y))^{d+\epsilon}}
\]

for \(\rho(y, y') \leq \frac{1}{2\lambda} (2^{-k} + \rho(x, y)) \);

\[
|[S_k(x, y) - S_k(x, y')] - [S_k(x', y) - S_k(x', y')]| \leq C \left(\frac{\rho(x, x')}{2^{-k} + \rho(x, y)} \right)^{\epsilon'} \left(\frac{\rho(y, y')}{2^{-k} + \rho(x, y)} \right)^{\epsilon'} \frac{2^{-k\sigma}}{(2^{-k} + \rho(x, y))^{d+\sigma}}
\]

for \(0 < \epsilon' < \epsilon, \sigma = \epsilon - \epsilon' > 0, \rho(x, x') \leq \frac{1}{2\lambda} (2^{-k} + \rho(x, y)) \) and \(\rho(y, y') \leq \frac{1}{2\lambda} (2^{-k} + \rho(x, y)) \);

\[
\int S_k(x, y) d\mu(x) = 1
\]

(1.10)

for all \(k \in Z_+ \);

\[
\int S_k(x, y) d\mu(y) = 1
\]

(1.11)

for all \(k \in Z_+ \).

Definition 1.3. [12] Fix two exponents \(0 < \beta \leq \theta \) and \(\gamma > 0 \). A function \(f \) defined on \(X \) is said to be a test function of type \((\beta, \gamma)\) centered at \(x_0 \in X \) with width \(d > 0 \) if \(f \) satisfies the following conditions:

\[
|f(x)| \leq C \frac{r^\beta}{(d + \rho(x, x_0))^{d+\gamma}};
\]

(1.12)
\[|f(x) - f(x')| \leq C \left(\frac{\rho(x, x')}{(d + \rho(x, x_0))^\beta} \right)^{d^\gamma} \] (1.13)

for \(\rho(x, x') \leq \frac{1}{2A}(d + \rho(x, x_0)) \).

If \(f \) is a test function of type \((\beta, \gamma)\) centered at \(x_0 \) with width \(d > 0 \), we write \(f \in \mathcal{M}(x_0, d, \beta, \gamma) \), and the norm of \(f \) in \(\mathcal{M}(x_0, d, \beta, \gamma) \) is defined by

\[\|f\|_{\mathcal{M}(x_0, d, \beta, \gamma)} = \inf\{C \geq 0 : (1.12) \text{ and } (1.13) \text{ hold}\} . \]

We denote by \(\mathcal{M}(\beta, \gamma) \) the class of all \(f \in \mathcal{M}(x_0, 1, \beta, \gamma) \). It is easy to see that \(\mathcal{M}(x_1, d, \beta, \gamma) = \mathcal{M}(\beta, \gamma) \) with equivalent norms for all \(x_1 \in X \) and \(d > 0 \). Furthermore, it is also easy to check that \(\mathcal{M}(\beta, \gamma) \) is a Banach space with respect to the norm in \(\mathcal{M}(\beta, \gamma) \). We denote by \((\mathcal{M}(\beta, \gamma))' \) the dual space of \(\mathcal{M}(\beta, \gamma) \) consisting of all linear functionals \(L \) from \(\mathcal{M}(\beta, \gamma) \) to \(\mathbb{C} \) with the property that there exists a constant \(C \) such that for all \(f \in \mathcal{M}(\beta, \gamma) \),

\[|L(f)| \leq C\|f\|_{\mathcal{M}(\beta, \gamma)} . \]

We denote by \(\langle h, f \rangle \) the natural pairing of elements \(h \in (\mathcal{M}(\beta, \gamma))' \) and \(f \in \mathcal{M}(\beta, \gamma) \). Since \(\mathcal{M}(x_1, d, \beta, \gamma) = \mathcal{M}(\beta, \gamma) \) with the equivalent norms for all \(x_1 \in X \) and \(d > 0 \), thus, for all \(h \in (\mathcal{M}(\beta, \gamma))' \), \(\langle h, f \rangle \) is well defined for all \(f \in \mathcal{M}(x_0, d, \beta, \gamma) \) with \(x_0 \in X \) and \(d > 0 \). In what follows, we let \(\tilde{\mathcal{M}}(\beta, \gamma) \) be the completion of \(\mathcal{M}(\theta, \theta) \) in \(\mathcal{M}(\beta, \gamma) \) when \(0 < \beta, \gamma < \theta \).

We also need the following construction of Christ in [1], which provides an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type.

Lemma 1.4. Let \(X \) be a space of homogeneous type. Then there exist a collection \(\{Q^k_\alpha \subset X : k \in \mathbb{Z}_+, \alpha \in I_k \} \) of open subsets, where \(I_k \) is some (possible finite) index set, and constants \(\delta \in (0, 1) \) and \(C_1, C_2 > 0 \) such that

(i) \(\mu(X \setminus \cup_\alpha Q^k_\alpha) = 0 \) for each fixed \(k \) and \(Q^k_\alpha \cap Q^k_\beta = \emptyset \) if \(\alpha \neq \beta \);

(ii) for any \(\alpha, \beta, k, l \) with \(l \geq k \), either \(Q^k_\beta \subset Q^l_\alpha \) or \(Q^l_\beta \cap Q^k_\alpha = \emptyset \);

(iii) for each \((k, \alpha) \) and each \(l < k \) there is a unique \(\beta \) such that \(Q^k_\alpha \subset Q^l_\beta \);

(iv) \(\text{diam}(Q^k_\alpha) \leq C_1 \delta^k \);

(v) each \(Q^k_\alpha \) contains some ball \(B(z^k_\alpha, C_2 \delta^k) \), where \(z^k_\alpha \in X \).

In fact, we can think of \(Q^k_\alpha \) as being a dyadic cube with diameter roughly \(\delta^k \) and centered at \(z^k_\alpha \). In what follows, we always suppose \(\delta = 1/2 \). See [12] for how to remove this restriction. Also, in the following, for \(k \in \mathbb{Z}_+, \tau \in I_k \), we will denote by \(Q^{k,\tau}_\nu \), \(\nu = 1, \ldots, N(k, \tau, M) \), the set of all cubes \(Q^{k,\tau}_\nu \subset Q^{k,\tau}_1 \), where \(M \) is a fixed large positive integer.

Now, we can introduce the inhomogeneous Besov spaces \(B^{\nu,\eta}_p(X) \) and Triebel-Lizorkin spaces \(F^{\nu,\eta}_p(X) \) via approximations to the identity.

Definition 1.5. Suppose that \(-\theta < \alpha < \theta \), and \(\beta \) and \(\gamma \) satisfying

\[\max(0, -\alpha + \max(0, d(1/p - 1))) < \beta < \theta, 0 < \gamma < \theta. \] (1.14)
Suppose $\{S_k\}_{k \in \mathbb{Z}_+}$ is an approximation to identity and let $D_0 = S_0$, and $D_k = S_k - S_{k-1}$ for $k \in \mathbb{N}$. Let M be a fixed large positive integer, Q^0_{ν} be as above.

Inhomogeneous Besov space $B^{\alpha,q}_p(X)$ for $\max\left(\frac{d}{d+\alpha-q}, \frac{d}{d+\alpha+q}\right) < p \leq \infty$, $0 < q \leq \infty$ is the collection of all $f \in (\mathcal{M}(\beta,\gamma))'$ such that

$$\|f\|_{B^{\alpha,q}_p(X)} = \left\{ \sum_{\tau \in J_0} \sum_{\nu = 1}^{N(0,\tau,M)} \mu(Q^0_{\tau}) [m_{Q^0_{\tau}}(|D_0(f)|)]^p \right\}^{\frac{1}{p}}$$

$$+ \left\{ \sum_{k=1}^{\infty} \left(2^k \|D_k(f)\|_{L^p(X)} \right)^q \right\}^{\frac{1}{q}} < \infty.$$

Inhomogeneous Triebel-Lizorkin space $F^{\alpha,q}_p(X)$ for $\max\left(\frac{d}{d+\alpha-q}, \frac{d}{d+\alpha+q}\right) < q \leq \infty$ is the collection of $f \in (\mathcal{M}(\beta,\gamma))'$ such that

$$\|f\|_{F^{\alpha,q}_p(X)} = \left\{ \sum_{\tau \in J_0} \sum_{\nu = 1}^{N(0,\tau,M)} \mu(Q^0_{\tau}) [m_{Q^0_{\tau}}(|D_0(f)|)]^p \right\}^{\frac{1}{p}}$$

$$+ \left\{ \left[\sum_{k=1}^{\infty} \left(2^k \|D_k(f)\|_{L^p(X)} \right)^q \right]^{\frac{1}{q}} \right\} < \infty,$$

where $m_{Q^0_{\tau}}(D_0(f))$ are averages of $D_0(f)$ over Q^0_{ν}.

T1 Theorems for Inhomogeneous Besov and Triebel-Lizorkin Spaces

T1 theorems for inhomogeneous Besov and Triebel-Lizorkin spaces were proved in [10]. Roughly speaking, if T is bounded on $B^{\alpha,q}_p$, $1 \leq p, q \leq \infty$ and $0 < \alpha < \epsilon$, and on $F^{\alpha,q}_p, 1 < p, q \leq \infty$ and $0 < \alpha < \epsilon$, if T has the weak boundedness property, $T1 = 0$ and the conditions (1.3)–(1.5) hold in [10]. In this paper, we will prove the following results.

Theorem A. Let $0 < \epsilon \leq \theta, 0 < \alpha < \epsilon$. Suppose that $T(1) = 0, T \in \text{WBP}$, and $K(x,y)$, the kernel of T, satisfies (1.3)–(1.5) with $\sigma \geq \max(0, d(\frac{1}{p} - 1))$. Then T is bounded on $B^{\alpha,q}_p(X)$, for $\frac{d}{d+\alpha-q} < p \leq \infty, 0 < q \leq \infty$, and on $F^{\alpha,q}_p(X)$, for $\frac{d}{d+\alpha-q} < p < \infty, \frac{d}{d+\alpha+q} < q \leq \infty$.

Theorem B. Let $0 < \epsilon \leq \theta, -\epsilon < \alpha < 0$. Suppose that $T^*(1) = 0, T \in \text{WBP}$, and $K(x,y)$, the kernel of T, satisfies (1.3), (1.4) and (1.6) with $\sigma \geq \max(0, d(\frac{1}{p} - 1))$. Then T is bounded on $B^{\alpha,q}_p(X)$, for $\frac{d}{d+\alpha+q} < p \leq \infty, 0 < q \leq \infty$, and on $F^{\alpha,q}_p(X)$, for $\frac{d}{d+\alpha+q} < p < \infty, \frac{d}{d+\alpha+q} < q \leq \infty$.

Theorems A and B are to give a uniform treatment in [10]. To be precise, to deal with the case where $0 < \alpha < \epsilon, p, q > 1$, the main tools used were the continuous Calderón reproducing formula. The proof of the case where
$-\epsilon < \alpha < 0$, and $p, q > 1$ then follows from the duality argument. However, the
continuous Calderón reproducing formula and duality argument do not work for the
cases where either p or q, or both p and q are less than or equal to 1. The
key point of the present paper is to use discrete Calderón reproducing formula
and Plancherel-Pólya characterization of the Besov and Triebel-Lizorkin spaces
developed in [6, 11]. T1 theorems for inhomogeneous Triebel-Lizorkin space
$F_{p, q}^\alpha(X)$ with $-\epsilon < \alpha < \epsilon$, $\max\left\{ \frac{d}{p+\epsilon}, \frac{d}{q+\epsilon} \right\} < p < \infty$ and $\max\left\{ \frac{d}{p+\epsilon}, \frac{d}{q+\epsilon} \right\} < q \leq \infty$ in [17] are also stated, if T has the weak boundedness property, $T(1) = 0$, $T^* (1) = 0$ and the conditions (1.3)–(1.6) hold. Furthermore, by use of the real
interpolation theorems the author obtained the
Besov space $X_{p, q}$ can be stated as follows.

\begin{equation}
\text{Lemma 2.1. Suppose that } \{ S_k \} \text{ is an approximation to the identity as in}
\text{Definition 1.2. Set } D_k = S_k - S_{k-1} \text{ for } k \in \mathbb{N} \text{ and } D_0 = S_0.
\text{Then there exist functions } \tilde{Q}_k^\alpha, \tau \in I_0 \text{ and } \nu \in \{ 1, \ldots, N(0, \tau, M) \}
\text{and } \{ \tilde{D}_k(x, y) \} \text{ such that for any fixed } y_{\nu}^k \in Q^\nu_k, k \in \mathbb{N}, \tau \in I_k \text{ and } \nu \in \{ 1, \ldots, N(k, \tau, M) \}
\text{and all } f \in (M(\beta, \gamma))^\prime \text{ with } 0 < \beta, \gamma < \theta,
\end{equation}

\begin{align}
f(x) &= \sum_{\tau \in I_0} \sum_{\nu=1}^{N(0, \tau, M)} \mu(Q^\nu_\tau \cap D_0(f)) \tilde{Q}^\nu_\tau (x) \\
&+ \sum_{k \in \mathbb{Z}, \tau \in I_k} \sum_{\nu=1}^{N(k, \tau, M)} \mu(Q^\nu_\tau) \tilde{D}_k(x, y_{\nu}^k) D_k(f)(y_{\nu}^k),
\end{align}

where $\text{diam}(Q^k_\tau) \sim 2^{k+M}$ for $k \in \mathbb{Z}$, $\tau \in I_k, \nu \in \{ 1, \ldots, N(k, \tau, M) \}$ and a
fixed large $M \in \mathbb{N}$, the series converges in the norm of $L^p(X), 1 < p < \infty,$
and $M(\beta', \gamma')$ for $f \in M(\beta, \gamma)$ with $\beta' < \beta$ and $\gamma' < \gamma$, and $M(\beta', \gamma')^\prime$ for
$f \in (M(\beta, \gamma))^\prime$ with $\theta > \beta' > \beta$ and $\theta > \gamma' > \gamma$. Moreover, $\tilde{D}_k(x, y), k \in \mathbb{N},$
satisfies for any given $\epsilon \in (0, \theta)$, all $x, y \in X$ the following conditions:

\begin{equation}
|\tilde{D}_k(x, y)| \leq C \frac{2^{-k\epsilon'}}{(2^{-k} + \rho(x, y))^{d+\epsilon'}};
\end{equation}

\begin{equation}
|\tilde{D}_k(x, y) - \tilde{D}_k(x', y)| \leq C \left(\frac{\rho(x, x')}{2^{-k} + \rho(x, y)} \right)^{\epsilon'} \frac{2^{-k\epsilon'}}{(2^{-k} + \rho(x, y))^{d+\epsilon'}}
\end{equation}

2. Proofs of Theorems A and B

The basic tool to show main results is the discrete Calderón reproducing formulae
in [6]. It can be stated as follows.
for \(\rho(x, x') \leq \frac{1}{2}(2^{-k} + \rho(x, y)) \);

\[
\int_X \tilde{D}_k(x, y) d\mu(y) = \int_X \tilde{D}_k(x, y) d\mu(x) = 0
\]

for all \(k \in \mathbb{Z}_+ \).

\(\tilde{D}_{Q_0^{\alpha, \nu}}(x) \) for \(\tau \in I_0 \) and \(\nu \in \{1, \ldots, N(0, \tau, M)\} \) satisfies

\[
\int_X \tilde{D}_{Q_0^{\alpha, \nu}}(x) d\mu(x) = 1,
\]

\[
|\tilde{D}_{Q_0^{\alpha, \nu}}(x)| \leq \frac{C}{(1 + \rho(x, y))^{d+\epsilon}}
\]

(2.4)

for all \(x \in X \) and \(y \in Q_0^{\alpha, \nu} \) and

\[
|\tilde{D}_{Q_0^{\alpha, \nu}}(x) - \tilde{D}_{Q_0^{\alpha, \nu}}(z)| \leq C \left(\frac{\rho(x, z)}{1 + \rho(x, y)} \right)^\epsilon \frac{1}{(1 + \rho(x, y))^{d+\epsilon}}
\]

(2.5)

for all \(x, z \in X \) and \(y \in Q_0^{\alpha, \nu} \) satisfying \(\rho(x, z) \leq \frac{1}{2}(1 + \rho(x, y)) \); the constant \(C \) in (2.2) – (2.5) is independent of \(M \).

To prove Theorem A and Theorem B, we need the following lemmas. Their proofs are similar to that of Lemma 4.1 in [10].

Lemma 2.2. With notation as in Lemma 2.1 and Theorem A, then

(i) for \(k \in \mathbb{Z}_+ \), \(\tau' \in I_0 \) and \(\nu' \in \{1, \ldots, N(0, \tau', M)\} \), \(y_{\tau', \nu'} \) is any fixed point of \(Q_0^{\alpha', \nu'} \), \(x \in X \),

\[
|D_k \tilde{D}_{Q_0^{\alpha, \nu}}(x)| \leq C(1 + k)2^{-k} \frac{1}{(1 + \rho(x, y_{\tau', \nu}'))^{d+\sigma'}}
\]

(2.6)

where \(\sigma' = \sigma \) when \(k = 0 \) and \(\sigma' = \epsilon \) when \(k \in \mathbb{N} \),

(ii) for \(k \in \mathbb{Z}_+ \), \(k' \in \mathbb{N} \), \(x, y \in X \),

\[
|D_k T \tilde{D}_k(x, y)| \leq C[1 + |k - k'|] \left(2^{|k-k'|} - 1 \right) \frac{2^{-|k-k'|}}{(1 + \rho(x, y_{\tau', \nu}'))^{d+\epsilon'}}
\]

(2.7)

Lemma 2.3. With notation as in Lemma 2.1 and Theorem B, then

(i) for \(k \in \mathbb{Z}_+ \), \(\tau' \in I_0 \) and \(\nu' \in \{1, \ldots, N(0, \tau', M)\} \), \(y_{\tau', \nu'} \) is any fixed point of \(Q_0^{\alpha', \nu'} \), \(x \in X \),

\[
|D_k \tilde{D}_{Q_0^{\alpha, \nu}}(x)| \leq C \frac{1}{(1 + \rho(x, y_{\tau', \nu}'))^{d+\sigma'}}
\]

(2.8)

where \(\sigma' = \sigma \) when \(k = 0 \) and \(\sigma' = \epsilon \) when \(k \in \mathbb{N} \),
(ii) for \(k \in \mathbb{Z}_+, k' \in \mathbb{N}, x, y \in X \),

\[
|D_kT\tilde{D}_{k'}(x,y)| \leq C[1 + |k - k'|]\left(2^{(k-k')'} \wedge 1\right) \frac{2^{-(k \wedge k')'}}{(2^{-(k \wedge k')}) + \rho(x,y)^{d + \frac{d'}{r'}}}.
\]

(2.9)

Proof of Theorem A. By Lemma 2.1 and Theorem 1.5 in [6], for \(f \in \tilde{M}(\beta, \gamma) \), we write

\[
\|T(f)\|_{L^p_{\alpha,q}(X)} \leq \left\{ \sum_{\tau \in I_0} \left[\sum_{\nu=1}^{N(0,\tau,M)} \left[m_{Q_\tau}^0 \left(\sum_{\tau' \in I_0} \sum_{\nu'=1}^{N(0,\tau',M)} \mu(Q_{\tau'}^{0,\nu'}) \right) \right] \right] \right\}^{\frac{1}{p}}
\]

\[
|D_0T\tilde{D}_{Q_\tau^0}^\nu(\cdot)|m_{Q_\tau^0}^0(\|D_0(f)\|)\right]^{\frac{1}{p}}
\]

\[
+ \left\{ \sum_{\tau \in I_0} \left[\sum_{\nu=1}^{N(0,\tau,M)} \left[m_{Q_\tau^0}^0 \left(\sum_{k'=1}^{N(k',\tau,M)} \sum_{\nu'=1}^{N(0,\tau',M)} \mu(Q_{\tau'}^{k',\nu'}) \right) \right] \right] \right\}^{\frac{1}{p}}
\]

\[
|D_0T\tilde{D}_{k'}^\nu(\cdot, y_{k'}^{\nu'})||D_k(f)(y_{k'}^{\nu'})|\right]^{\frac{1}{p}}
\]

\[
+ \left\{ \sum_{l=1}^{\infty} \left[\sum_{\tau \in I_l} \left[\sum_{\nu=1}^{N(0,\tau,M)} \left[m_{Q_\tau^l}^\nu \left(\sum_{k'=1}^{N(k',\tau,M)} \sum_{\nu'=1}^{N(0,\tau',M)} \mu(Q_{\tau'}^{k',\nu'}) \right) \right] \right] \right] \right\}^{\frac{1}{p}}
\]

\[
\times \mu(Q_{\tau}^{L_\nu})^{-\frac{\alpha}{p} + \frac{1}{p}} |D_0T\tilde{D}_{Q_\tau^0}^\nu(z)|m_{Q_\tau}^0(\|D_0(f)\|)\right]^{\frac{1}{p}}\right\}^{\frac{1}{p}}
\]

\[
+ \left\{ \sum_{l=1}^{\infty} \left[\sum_{\tau \in I_l} \left[\sum_{\nu=1}^{N(0,\tau,M)} \left[m_{Q_\tau^l}^\nu \left(\sum_{k'=1}^{N(k',\tau,M)} \sum_{\nu'=1}^{N(0,\tau',M)} \mu(Q_{\tau'}^{k',\nu'}) \right) \right] \right] \right] \right\}^{\frac{1}{p}}
\]

\[
\times \mu(Q_{\tau}^{L_\nu})^{-\frac{\alpha}{p} + \frac{1}{p}} |D_0T\tilde{D}_{k'}^\nu(z, y_{k'}^{\nu'})||D_k(f)(y_{k'}^{\nu'})|\right]^{\frac{1}{p}}\right\}^{\frac{1}{p}}
\]

\[
\leq A_1 + A_2 + A_3 + A_4.
\]

The estimate of \(A_4 \) is similar to Theorem 1 in [5]. It remains to deduce the estimates of \(A_1, A_2 \) and \(A_3 \).

From (2.6), the Hölder inequality for \(p > 1 \) and \((a + b)^p \leq a^p + b^p \) for \(p \leq 1 \), we deduce

\[
A_1 \leq C \left\{ \sum_{\tau \in I_0} \left[\sum_{\nu=1}^{N(0,\tau,M)} \left[m_{Q_\tau^0}^0(\|D_0(f)\|)^p \right] \right] \right\}^{\frac{1}{p}}
\]

\[
\leq C \left\{ \sum_{\tau \in I_0} \left[\sum_{\nu'=1}^{N(0,\tau,M)} \left[m_{Q_\tau}^0(\|D_0(f)\|)^p \right] \right] \right\}^{\frac{1}{p}}
\]

\[
\leq C \|f\|_{L^p_{\alpha,q}(X)}
\]
where \(y_0^{0,0} \) is any point of \(Q_0^{0,0} \), \(y_0^{0,0'} \) is any point of \(Q_0^{0,0'} \).

By (2.7), it follows that

\[
A_2 \leq C \left\{ \sum_{k'=1}^{\infty} \sum_{\tau' \in I_{k'}} \sum_{l=1}^{N(0,\tau',M)} \sum_{\tau \in I_0} \sum_{\nu' = 1}^{N(0,\tau,M)} 2^{-k'd_2^{k'}2^{-k}'[1+k']^{p\Lambda_1}} \right. \\
\times \frac{1}{1 + \rho(y_0^{l,\nu'},y_0^{k',\nu'})^{d+\tau}} \left[\mu(Q_0^{k',\nu'})^{-\frac{d}{p\Lambda_1}} |D_0(f)(y_0^{k',\nu'})| \right]^{\frac{1}{p}} \\
\leq C \left\{ \sum_{k'=1}^{\infty} \left[2^{-k'd_2^{k'}2^{-k}'[1+k']} \right]^{p\Lambda_1} 2^{k'd_2} + \sum_{k'} \left[2^{-k'd_2^{k'}2^{-k}'[1+k']} \right]^{p\Lambda_1} \right\}^{\frac{1}{p\Lambda_1}} \\
\leq C \|f\|_{B_p^{\alpha}(\mathcal{X})},
\]

where these inequalities follow from the fact that

\[
\sum_{k'=1}^{\infty} \sum_{\tau' \in I_{k'}} \sum_{l=1}^{N(0,\tau',M)} \sum_{\tau \in I_0} \sum_{\nu' = 1}^{N(0,\tau,M)} 2^{-k'd_2^{k'}2^{-k}'[1+k']} \frac{1}{1 + \rho(y_0^{l,\nu'},y_0^{k',\nu'})^{d+\tau}} \leq C,
\]

\[
\sum_{k'=1}^{\infty} \left[2^{-k'd_2^{k'}2^{-k}'[1+k']} \right]^{p\Lambda_1} 2^{k'd_2} + \sum_{k'} \left[2^{-k'd_2^{k'}2^{-k}'[1+k']} \right]^{p\Lambda_1} \leq C
\]

and the last inequality follows from the Plancherel-Pólya characterization of the Besov spaces \([6]\).

By (2.6), it follows that

\[
A_3 \leq C \left\{ \sum_{l=1}^{\infty} \sum_{\tau \in I_0} \sum_{\nu = 1}^{N(0,\tau,M)} \sum_{\nu' = 1}^{N(0,\tau',M)} \mu(Q_0^{0,\nu'}) \left[m_{Q_0^{0,\nu'}} (|D_0(f)|) \right]^p \\
\times \left[2^{2l\alpha} (1 + l)^{2^{-l}} \frac{1}{1 + \rho(y_0^{l,\nu'},y_0^{l,\nu''})^{d+\tau}} \right]^{p\Lambda_1} \right\}^{\frac{1}{p}} \\
\leq C \sum_{l=1}^{\infty} \left[2^{2l\alpha} (1 + l)^{2^{-l}} \right]^{p\Lambda_1} \left(\sum_{\tau \in I_0} \sum_{\nu' = 1}^{N(0,\tau',M)} \mu(Q_0^{0,\nu'}) \left[m_{Q_0^{0,\nu'}} (|D_0(f)|) \right]^p \right)^{\frac{1}{p}} \\
\leq C \|f\|_{\widetilde{M}(\beta, \gamma)}.
\]

Similarly, for \(f \in \widetilde{M}(\beta, \gamma) \), we have
that Lemma A.2 in [8], the Fefferman-Stein vector-valued inequality in [7], it follows
\[\|D_b T \tilde{D}_{q''} (\cdot) m_{Q''} (|D_b (f)|)\|_p^\frac{1}{p} \]
\[\leq \left\{ \sum_{\tau \in I_0} \sum_{\nu = 1}^{N(0,\tau, M)} \mu(Q''_{\tau, \nu}) \left(\sum_{\tau' \in I'_0} \sum_{\nu' = 1}^{N(0,\tau', M)} \mu(Q''_{\tau', \nu'}) \right) \right\}^\frac{1}{p} \]
\[+ \left\{ \sum_{\tau \in I_0} \sum_{\nu = 1}^{N(0,\tau, M)} m_{Q''_{\tau, \nu}} \left(\sum_{k' = 1}^{\infty} \sum_{\tau' \in I'_0} \sum_{\nu' = 1}^{N(k',\tau', M)} \mu(Q''_{\tau', \nu'}) \right) \right\}^\frac{1}{p} \]
\[\leq B_1 + B_2 + B_3 + B_4, \]
where \(y_{\tau, \nu}^{k', \nu'}\) are any point in \(Q''_{\tau, \nu, k'}\).

The estimates of \(B_1\) and \(B_4\) are similar to \(A_1\) above and Theorem 2 in [5], respectively. It remains to deduce the estimates of \(B_2\) and \(B_3\).

From (2.7), the Hölder inequality for \(q > 1\) and \((a+b)^q \leq a^q + b^q\) for \(q \leq 1\), Lemma A.2 in [8], the Fefferman-Stein vector-valued inequality in [7], it follows that
\[B_2 \leq C \left\{ \left[\sum_{k' = 1}^{\infty} 2^{-k' d_2 - k' \alpha} [1 + k']^{\frac{1}{2} + \frac{d_2}{q}} \right] \right\}^q \]
\[\times \left[\mathcal{M} \left(\sum_{\tau' \in I_{k'}} \sum_{\nu' = 1}^{N(k',\tau', M)} \mu(Q''_{\tau', \nu'})^{-\frac{q}{q-1}} |D_{k'} (f)(y_{\tau', \nu'}^{k', \nu'})| \right)^\frac{q}{q-1} \right\}^\frac{1}{q} \]
\[\leq C \left\{ \sum_{k' = 1}^{\infty} \left[2^{-k' d_2 - k' \alpha} [1 + k']^{\frac{1}{2} + \frac{d_2}{q}} \right] \right\}^q \]
\[\times \left[\mathcal{M} \left(\sum_{\tau' \in I_{k'}} \sum_{\nu' = 1}^{N(k',\tau', M)} \mu(Q''_{\tau', \nu'})^{-\frac{q}{q-1}} |D_{k'} (f)(y_{\tau', \nu'}^{k', \nu'})| \right)^\frac{q}{q-1} \right\}^\frac{1}{q} \]
\[T1 \text{ Theorems for Inhomogeneous Besov and Triebel-Lizorkin Spaces...} \]

\[\leq C \left\| \sum_{k=1}^{\infty} \sum_{\tau \in I_k} \sum_{\nu = 1}^{N(k',\tau',M)} \left[\mu(Q_{k',\nu'})(D_{k'}(f)g_{k',\nu'}(x)\chi_{Q_{k',\nu'}})^\alpha d\nu \right] \right\|_{L_p(X)} \]

\[\leq C \|f\|_{F_{\alpha,q}^p(X)}, \]

where \(\frac{d}{d+a} < r < \min(p, q, 1) \).

From (2.6), the Hölder inequality for \(p > 1 \) and \((a + b)^p \leq a^p + b^p \) for \(p \leq 1 \), the Lemma A.2 in [7], it follows that

\[B_3 \leq C \left\{ \int \left(\sum_{l=1}^{\infty} \sum_{\tau \in I_l} \sum_{\nu = 1}^{N(l,\tau,M)} x_{Q_{l,\nu}}(x) \left[2^{la} (1 + l)^{2-r\epsilon} \right] \right) \times \sum_{\tau \in I_0} \sum_{\nu = 1}^{N(0,\tau,M)} \frac{1}{(1 + \rho(x, y_{\nu}))^{d+\epsilon}} m_{Q_{\tau,\nu}}(\chi_{Q_{\tau,\nu}})^\alpha d\mu(x) \right\}^{\frac{1}{p}} \]

\[\leq C \left\{ \int \left(\sum_{l=1}^{\infty} 2^{la} (1 + l)^{2-r\epsilon} \left[M(\sum_{\tau \in I_0} \sum_{\nu = 1}^{N(0,\tau,M)} m_{Q_{\tau,\nu}}(\chi_{Q_{\tau,\nu}})^\alpha \right] \right) \right\}^{\frac{1}{p}} d\mu(x) \}

\[\leq C \left\{ \int M(\sum_{\tau \in I_0} \sum_{\nu = 1}^{N(0,\tau,M)} m_{Q_{\tau,\nu}}(\chi_{Q_{\tau,\nu}})^\alpha \right) \right\}^{\frac{1}{p}} d\mu(x) \}

\[\leq C \|f\|_{F_{\alpha,q}^p(X)}, \]

where we used the \(L^2(X) \) boundedness of Hardy-Littlewood maximal functions. This proves Theorem A. ■

Proof of Theorem B. The main difference of proof between Theorem B and Theorem A is that we should replace Lemma 2.2 by Lemma 2.3. We leave the details to the reader. ■

References

4. Y. C. Han, New characterizations of inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type, Submitted.
13. Y. S. Han and D. C. Yang, New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin space on spaces of homogeneous type and fractals, *Dissertationes Math. (Rozprawy Mat.)* 403 (2002), 1-102.