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Abstract. In this paper we show that if (R, m) is a commutative Gorenstein local ring

with maximal ideal m and M is an Artinian R-module, then depth(R) = Width(M )+
sup{i ∈ N0 : ExtiR(E(R/m), M ) 6= 0}. Also, we prove that the following statements

are equivalent:

(1) R is Gorenstein.

(2) R is Cohen-Macaulay and for any Artinian module M , fd(E(M )) ≤ fd(M ), where

E(M ) is an injective envelope of M .

(3) R is Cohen-Macaulay and for any finite length module M of finite injective dimen-

sion, id(F (M )) = id(M ), where F (M ) is a flat cover of M .
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1. Introduction

Let R be a commutative Noetherian ring with non-zero identity and let M be an
R-module. Auslander and Bridger [1] introduced a notion of Gorenstein dimen-
sion, denoted by G-dim, of finitely generated modules over the Cohen-Macaulay
rings. It seems appropriate to call G-dim 0 modules Gorenstein projective. As
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a dual of Gorenstein projective modules, Enochs and Jenda [6] defined and
studied Gorenstein injective modules. Recall that an R-module M is Gorenstein
injective if and only if there is an exact sequence

. . . −→ E1 −→ E0 −→ E0 −→ E1 −→ . . .

of injective R-modules with M = Ker(E0 −→ E1) such that for any injective
R-module E, HomR(E,−) leaves the above complex exact. We say that an R-
module M has Gorenstein injective dimension at most n, denoted by Gid(M ) ≤
n, if there is an exact sequence

0 −→ M −→ G0 −→ G1 −→ . . . −→ Gn −→ 0

of R-modules with each Gi Gorenstein injective. If there is no shorter sequence
like the one mentioned above, we set Gid(M ) = n. Also, if there is no such
an n, we set Gid(M ) = ∞. Enochs and Jenda [7] call M an h-divisible R-
module when M is a homomorphic image of an injective R-module and also
they call M an Ext-finite R-module if for any finitely generated R-module N ,
each Exti

R(N, M ) is finitely generated for all i ≥ 1. For a local ring (R, m),
they also defined k-depth of an Ext-finite R-module M as k-depth = inf{i :
Exti

R(R/m, M ) 6= 0}. Ooishi [10], defined width of an Artinian R-module as
Width(M ) = inf{i : TorRi (R/m, M ) 6= 0}, when R is a local ring with maximal
ideal m. Auslander and Bridger in [1] proved that if R is a Gorenstein local ring
with maximal ideal m and M is a finitely generated R-module, then

depth(R) = depth(M ) + sup{i ∈ N0 : Exti
R(M, R) 6= 0}.

Later, Enochs and Jenda in [7] proved the following result, which is a dual
of Auslander and Bridger formula. Let R be a complete Cohen-Macaulay local
ring and M be a non-injective Ext-finite R-module such that Exti

R(E, M ) = 0
for all i ≥ 1 and all indecomposable injective R-module E 6= E(R/m). If M is
an h-divisible R-module of finite Gorenstein injective dimension, then

depth(R) = Gid(M ) + inf{i ∈ N0 : TorRi (R/m, M ) 6= 0}.

Here, we show that if M is an Artinian R-module, then the above formula
is true and also, if R is a Gorenstein local ring with maximal ideal m and
M is an Artinian R-module, then depth(R) = Width(M ) + sup{i ∈ N0 :
Exti

R(E(R/m), M ) 6= 0}, (see Theorem 2.4). As a consequence, if M is a non-
zero finitely generated maximal Cohen-Macaulay R-module of finite injective
dimension, then the local cohomology module H

dim(R)
m (M ) is an injective R-

module (see Corollary 2.6).

Xu in [14] showed that R is Gorenstein if and only if for any finitely generated
module M , fd(E(M )) ≤ fd(M ). Also, he proved that R is Gorenstein if and only
if id(F (M )) ≤ id(M ) for any module M of finite injective dimension. Here, we
prove that if R is Cohen-Macaulay and M is an Artinian R-module then the
above results are true, too.
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Throughout this paper, R is a commutative Noetherian ring with non-zero
identity. For any R-module M , fd(M ) stands for the flat dimension of R-module
M , id(M ) stands for the injective dimension of M , E(M ) stands for its injective
envelope, F (M ) stands for its flat cover, and J(R) stands for its Jacobson radical
of R. For any unexplained notation or terminology, we refer the reader to [2, 8,
15].

2. The Results

We start this section with the following lemmas.

Lemma 2.1. (Nakayama’s Lemma) Let a be an ideal of R and M be an Artinian
R-module such that 0 :M a = 0. If a ⊆ J(R), then M = 0.

Proof. See [9, § 4]. �

Lemma 2.2. Let (R, m) be a local ring, and M be a non-zero, Artinian R-
module. Then
(a) id(M ) = sup{i ∈ N0 : Exti

R(R/m, M ) 6= 0}.
(b) fd(M ) = sup{i ∈ N0 : TorR

i (R/m, M ) 6= 0}.

Proof. (a) We can assume that the right-hand side of the above equality is finite.
Thus there is an integer n such that Extn

R(R/m, M ) 6= 0 and Exti
R(R/m, M ) = 0

for all i > n and so id(M ) ≥ n. Let id(M ) > n. Then X = {a, an ideal of R :
Exti

R(R/a, M ) 6= 0 for some i > n} is non-empty. Let a be a maximal element
of X and thus by assumption a 6= m. Therefore there exists x ∈ m \ a. From
the exact sequence 0 −→ R/(a : x) x−→ R/a −→ R/(a, x) −→ 0, we obtain the
exact sequence

Exti
R(R/(a, x), M ) −→ Exti

R(R/a, M ) x−→ Exti
R(R/(a : x), M )

−→ Exti+1
R (R/(a, x), M ).

This gives Exti
R(R/a, M ) 6= 0 for some i > n and since a $ (a, x) we have

Exti
R(R/(a, x), M ) = 0. Therefore (0 :Exti

R
(R/a,M) x) = 0 and the Nakayama

Lemma yields that Exti
R(R/a, M ) = 0, which is a contradiction. Therefore the

set X = ∅ and we must have id(M ) = n.

(b) By making straightforward modification to the arguments in the proof of
(a), one can obtain (b). �

Proposition 2.3. Let (R, m) be a local ring, and M be a non-zero, Artinian
R-module. Then the following are true:
(1) If M is of finite injective dimension, then id(M ) ≤ depth(R),
(2) If M is of infinite injective dimension, then Exti

R(R/m, M ) 6= 0 for all i ≥
dim(R).
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Proof. (1) Let x1, . . . , xn ∈ m be a maximal regular sequence for R. Then
m ∈ AssR(R/(x1, . . . , xn)) and hence R/m ⊆ R/(x1, . . . , xn). Thus we have
the exact sequence

Extt
R(R/(x1, . . . , xn), M ) −→ Extt

R(R/m, M ) −→ 0,

where t = id(M ). Therefore by Lemma 2.2, Extt
R(R/(x1, . . . , xn), M ) 6= 0.

Therefore n ≥ t, since pd(R/(x1, . . . , xn)) = n.

(2) It is clear. �

Theorem 2.4. Let (R, m) be a Gorenstein local ring of dimension n, and M be
a non-zero, Artinian R-module. Then

depth(R) = Width(M ) + sup{i ∈ N0 : Exti
R(E(R/m), M ) 6= 0}.

Proof. Let Width(M ) = t. Then we proceed by induction on t. Suppose t = 0.
Then there exists an exact sequence M −→ R/m −→ 0 (see [10, Proposition
3.5]) and since fd(E(R/m)) = n = pd(E(R/m)) by [5, Corollary 3.3], it therefore
follows that the induced map

Extn
R(E(R/m), M ) −→ Extn

R(E(R/m), R/m)

is an epimorphism. On the other hand,

Extn
R(E(R/m), R/m) ∼= Extn

R(E(R/m), HomR(R/m, E(R/m)))

∼= HomR(TorRn (R/m, E(R/m)), E(R/m)).

Therefore by Lemma 2.2, Extn
R(E(R/m), R/m) is non-zero, and hence Extn

R(E(R/
m), M ) 6= 0, which gives us our desired result when t = 0. Suppose the theo-
rem is true for 0 ≤ t < s and suppose Width(M ) = s. Let x ∈ m be a
coregular sequence for M . Then we know that the Width(0 :M x) = s − 1
(see [10, Proposition 3.15]). Therefore we know by induction hypothesis that
Extn−s+1

R (E(R/m), (0 :M x)) 6= 0 and Extj
R(E(R/m), (0 :M x)) = 0 for all

j > n − s + 1. From the long exact sequence

. . . −→Exti
R(E(R/m), M ) x−→ Exti

R(E(R/m), M )
−→ Exti+1

R (E(R/m), (0 :M x)) −→ . . .

derived from the exact sequence

0 −→ (0 :M x) −→ M
x−→ M −→ 0,

it follows that

Exti
R(E(R/m), M ) x−→ Exti

R(E(R/m), M )
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is an epimorphism for all i ≥ n− s + 1. Since x ∈ m and the Exti
R(E(R/m), M )

are finitely generated R̂-modules by [3, Proposition 9], it follows from Nakayama’s
Lemma that Exti

R(E(R/m), M ) = 0 for all i ≥ n − s + 1. On the other hand, it
follows now that the map

Extn−s
R (E(R/m), M ) −→ Extn−s+1

R (E(R/m), (0 :M x))

is an epimorphism. Since Extn−s+1
R (E(R/m), (0 :M x)) 6= 0, we know that

Extn−s
R (E(R/m), M ) 6= 0, which establishes the theorem for t = s and thus

completes the proof of the theorem. �

Corollary 2.5. Let (R, m) be a Gorenstein local ring of dimension n, and M
be a non-zero, Artinian R-module of finite injective dimension. Then

depth(R) = Width(M ) + id(M ).

Proof. Let id(M ) = s. From the long exact sequence

. . . −→ Exti
R(E(R/m), M ) −→ Exti

R(R/m, M ) −→ Exti+1
R (N, M ) −→ . . .

derived from the exact sequence

0 −→ R/m −→ E(R/m) −→ N −→ 0,

it follows that Exts
R(E(R/m), M ) 6= 0 by Lemma 2.2. Hence we conclude that

id(M ) = sup{i ∈ N0 : Exti
R(E(R/m), M ) 6= 0} and so by Theorem 2.4 the result

follows. �

Corollary 2.6. Let (R, m) be a Gorenstein local ring of dimension n, and M
be a non-zero finitely generated maximal Cohen-Macaulay R-module of finite
injective dimension. Then the local cohomology module Hn

m(M ) is an injective
R-module.

Proof. Consider the Grothendieck spectral sequence [11, Theorem 11.38]

Ei,j
2 := Exti

R(R/m, Hj
m(M )) =⇒

i
Exti+j

R (R/m, M ). (1)

Since depth(M ) = dim(R) and id(M ) = depth(R), it follows by (1) that

Exti
R(R/m, Hn

m(M )) = Exti+n
R (R/m, M ).

By Lemma 2.2, it therefore follows that id(Hn
m(M )) < ∞. Now, by using [13,

Proposition 2.6] and Corollary 2.5, the result follows. �

Theorem 2.7. The following statements are equivalent:
(1) R is Gorenstein.
(2) For any finitely generated module M , fd(E(M )) ≤ fd(M ).
(3) For any module M , fd(E(M )) ≤ fd(M ).
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(4) R is Cohen-Macaulay and for any Artinian module M , fd(E(M )) ≤ fd(M ).

Proof. The implications (1) ⇐⇒ (2) ⇐⇒ (3) follow from [14, Theorem 2.3].
(1) =⇒ (4) is clear.

(4) =⇒ (1). We can assume that R is local with maximal ideal m. Now,
consider a maximal regular sequence x1, . . . , xt ∈ m. Then M = R/(x1, . . . , xt)
is Artinian of finite flat dimension. On the other hand, m ∈ AssR(M ) and
so R/m ⊆ M . This implies that E(R/m) ⊆ E(M ) and that by assumption
fd(E(R/m)) < ∞, because it is a direct summand of E(M ). Hence R is Goren-
stein by [14, Proposition 2.1]. �

Corollary 2.8. Let (R, m) be a local ring. Then the following results are equiv-
alent:
(1) R is Gorenstein.
(2) R is Cohen-Macaulay and for any Artinian module M of finite flat dimen-

sion, fd(E(M )) = fd(M ).

Proof. (1) =⇒ (2). Since M is Artinian, E(M ) = ⊕t
i=1E(R/m). By [5, Corollary

3.3], fd(E(M )) = dim(R). Then by the assumption, [8, Theorem 9.1.10], and
Theorem 2.7 the result follows.

(2) =⇒ (1). By similar argument as in the proof of Theorem 2.7 ((4) =⇒ (1)),
we get the desired result. �

From Corollary 2.8, we have immediately the following corollary.

Corollary 2.9. Let (R, m) be a regular local ring and M be an Artinian R-
module. Then fd(E(M )) = fd(M ).

Theorem 2.10. Let (R, m) be a local ring. Then the following are equivalent:
(1) R is Gorenstein.
(2) For any module M of finite injective dimension, id(F (M )) ≤ id(M ), here

F(M) is the flat cover of M .
(3) R is Cohen-Macaulay and for any finite length module M of finite injective

dimension, id(F (M )) = id(M ).

Proof. (1) ⇐⇒ (2) follows from [14, Theorem 3.4].
(2) =⇒ (3). It is clear that id(F (M )) ≤ id(M ). On the other hand, id(M ) ≤

dim(R), since R is Gorenstein. Next, id(F (M )) = fd(HomR(F (M ), E(R/m))) =
fd(E(R/m)) = dim(R), since E(R/m) ⊆ HomR(F (M ), E(R/m)). It therefore
follows that id(M ) = id(F (M )).

(3) =⇒ (1). Let x1, . . . , xn ∈ m be a maximal regular sequence on R.
Then, M = R/(x1, . . . , xn) is a finite length module of finite flat dimension and
so HomR(M, E(R/m)) is a finite length module of finite injective dimension.
By the assumption, its flat cover F has finite injective dimension. It follows
that E(R/m) has finite flat dimension, since E(R/m) ⊆ HomR(F, E(R/m)) and
HomR(F, E(R/m)) has finite flat dimension. Hence, by [14, Proposition 2.1], R
is Gorenstein. �
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Lemma 2.11. Let (R, m) be a Cohen-Macaulay local ring and M be a non-zero,
Artinian Gorenstein injective R-module. Then Width(M ) = depth(R).

Proof. We proceed by induction on n = depth(R). If n = 0, then the maximal
ideal m is nilpotent. Hence M/mM 6= 0 and so Width(M ) = 0. Let n ≥ 1.
Then there exists a regular element x of m and so by [7, Lemma 3.1], (0 :M x)
is Gorenstein injective R̄-module (where R̄ = R/xR). On the other hand, R̄
is a Cohen-Macaulay ring of dimension n − 1 and WidthR̄(0 :M x) = n − 1
by induction hypothesis. Since M is a Gorenstein injective module, we have
M = xM and so WidthR̄(0 :M x) = Width(M ) − 1 by [7, Proposition 2.3].
Hence Width(M ) = depth(R). �

Proposition 2.12. Let (R, m) be a complete Cohen-Macaulay local ring and M
be a non-injective Artinian module such that ExtiR(E, M ) = 0 for all i ≥ 1 and
all indecomposable injective R-module E 6= E(R/m). If M has finite Gorenstein
injective dimension, then the following are equivalent:
(1) M is Gorenstein injective.
(2) Exti

R(E(R/m), M ) = 0 for all i ≥ 1.
(3) M is h-divisible and Width(M ) = depth(R).

Proof. (1) ⇐⇒ (2) follows from [5, Proposition 4.3].
(1) =⇒ (3) follows from [8, Remark 10.1.5] and Lemma 2.11.
(3) =⇒ (2). Let n = depth(R) and t = Gid(M ). We proceed by induction

on n. Let n = 0. We consider an exact sequence

0 −→ M −→ E(R/m)n0 −→ . . . −→ E(R/m)nt−1 −→ C −→ 0,

where C is a Gorenstein injective Artinian module. But then

0 −→ HomR(C, E(R/m) −→ Rnt−1 −→ . . .

−→ Rn0 −→ HomR(M, E(R/m)) −→ 0

is exact, and HomR(C, E(R/m) is Gorenstein projective by [4, Theorem 4.8].
Hence G-dim(HomR(M, E(R/m))) < ∞ and so HomR(M, E(R/m)) is Goren-
stein projective by [1, Proposition 4.11], since n = 0. Therefore, by [4, Theorem
4.8], the result follows. Now, suppose n ≥ 1. Then there exists a regular se-
quence x ∈ m on R and so k-depth(M ) = 0. Then, by [12, Corollary 6.1.10],
Width(M ) = n. Since (0 :M x) 6= 0, then WidthR̄(0 :M x) = n− 1 by [7, Propo-
sition 2.3]. Therefore (0 :M x) is a Gorenstein injective R̄-module by induction
hypothesis (where R̄ = R/xR). Now, consider an exact sequence

0 −→ (0 :M x) −→ M
x−→ M −→ 0.

But then we have the following long exact sequence

. . . −→ Exti
R(E(R/m), M ) x−→ Exti

R(E(R/m), M )
−→ Exti+1

R (E(R/m), (0 :M x)) −→ . . . .
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Since Exti+1
R (E(R/m), (0 :M x)) ∼= Exti

R̄
((0 :E(R/m) x), (0 :M x)) by [7, Lemma

2.1] and (0 :M x) is a Gorenstein injective R̄-module by the above argument, we
get Exti+1

R (E(R/m), (0 :M x)) = 0. Now, by [3, Proposition 9] and Nakayama’s
Lemma, it follows that Exti

R(E(R/m), M ) = 0. �

Enochs and Jenda in [7, Theorem 4.8] proved that the following theorem is
true when M is an Ext-finite R-module.

Theorem 2.13. Let (R, m) be a complete Cohen-Macaulay local ring of dimen-
sion n, and M be a non-injective, Artinian R-module such that ExtiR(E, M ) = 0
for all i ≥ 1 and all indecomposable injective R-module E 6= E(R/m). If M is
an h-divisible module of finite Gorenstein injective dimension, then

depth(R) = Gid(M ) + Width(M ).

Proof. We proceed by induction on the Gorenstein injective dimension. If M
is Gorenstein injective, then we are done by Lemma 2.11. Now suppose that
Gid(M ) ≥ 1. Then depth(R) ≥ 1. For, if depth(R) = 0, then Width(M ) = 0
and Exti

R(E, M ) = 0 for all i ≥ 1 by hypothesis and Proposition 2.12, and
so M is Gorenstein injective. If Gid(M ) = 1, then E(M )/M is Gorenstein
injective. Therefore Width(E(M )/M ) = depth(R) by Lemma 2.11. On the
other hand, Width(M ) ≤ depth(R). Hence Width(M ) ≤ depth(R) − 1. For if
Width(M ) = depth(R), then Exti

R(E, M ) = 0 for all i ≥ 1 by hypothesis and
Proposition 2.12, and hence M is Gorenstein injective. Therefore Width(M ) +
1 = Width(E(M )/M ) by [7, Lemma 4.6] and so we are done. If Gid(M ) =
r > 1, then Gid(E(M )/M ) = r − 1 ≥ 1. Therefore r − 1 = Gid(E(M )/M ) =
depth(R)−Width(E(M )/M ) by induction hypothesis. Hence r−1 = depth(R)−
(Width(M ) + 1) and thus Gid(M ) + Width(M ) = depth(R). �

Acknowledgements. The author is deeply grateful to the referee for carefully
reading of the manuscript and the helpful suggestions.

References

1. M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc.

94, Providence, R. I., 1969.

2. S. Balcerzyk and T. Jozefiak, Commutative rings, Horwood-PWN, Warszawa,

1989.

3. R. Belshoff, Matlis reflexive modules, Comm. Alg. 19 (1991), 1099-1118.

4. E. Enochs and O. Jenda, On Gorenstein injective modules, Comm. Alg. 21

(1993), 3489-3501.

5. E. Enochs and O. Jenda, On Cohen-Macaulay rings, Comment. Math. Univ.

Carolinae. 35 (1994), 223-230.

6. E. Enochs and O. Jenda, Gorenstein injective and projective modules, Math. Z.

220 (1995), 611-633.



Some Homological Properties of Artinian Modules 181

7. E. Enochs and O. Jenda, Gorenstein injective dimension and Tor-depth of mod-

ules, Arch. Math. 72 (1999), 107-117.

8. E. Enochs and O. Jenda, Relative homological algebra, de Gruyter Expositions in

Math. 30, Walter de Gruyter, Berlin, 2000.

9. D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. 24 (1973),

47-57.

10. A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6

(1976), 573-587.

11. J. Rotman, Introduction to Homological Algebra, Academic Press, 1979.

12. J. Strooker, Homological questions in local algebra, Lecture Notes Series, 145,

Cambridge, 1990.

13. Z. Tang, Local homology and local cohomology, Algebra Colloquium, 11 (2004),

467-476.

14. J. Xu, Minimal injective and flat resolutions of modules over Gorenstein rings,

J. Alg. 175 (1995), 451-477.

15. J. Xu, Flat covers of modules, Lecture Notes in Math. 1634, Springer- Verlag,

Berlin, 1996.


