Uniqueness Polynomials and bi-URS for p-adic Meromorphic Functions in Several Variables

Vu Hoai An and Tran Dinh Duc
Institute of Mathematics, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
Received October 17, 2007
Revised May 11, 2008

Abstract

In this paper we give some cases of uniqueness polynomials for p-adic meromorphic functions in several variables and show the existence of a bi-URS for p-adic meromorphic functions in several variables of the form $\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\},\{u\}\right)$

2000 Mathematics Subject Classification: 11G, 30D35. Keywords: Uniqueness polynomials, bi-URS, p-adic meromorphic functions in several variables.

1. Introduction

Let f be a non-zero holomorphic function on $D_{r_{(m)}}, a=\left(a_{1}, \ldots, a_{m}\right) \in D_{r_{(m)}}$, and

$$
f=\sum_{|\gamma|=0}^{\infty} a_{\gamma}\left(z_{1}-a_{1}\right)^{\gamma_{1}} \ldots\left(z_{m}-a_{m}\right)^{\gamma_{m}}, \quad z_{(m)} \in D_{r_{(m)}}
$$

For each $i=1,2, \ldots, m$, write

$$
f\left(z_{(m)}\right)=\sum_{k=0}^{\infty} f_{i, k}\left(\widehat{z_{i}-a_{i}}\right)\left(z_{i}-a_{i}\right)^{k}
$$

Set

$$
\begin{aligned}
& g_{i, k}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{m}\right)=f_{i, k}\left(\widehat{z_{i}-a_{i}}\right) \\
& b_{i, k}=g_{i, k}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{m}\right)
\end{aligned}
$$

Then

$$
f_{i, a}(z)=\sum_{k=0}^{\infty} b_{i, k}\left(z_{i}-a_{i}\right)^{k}
$$

Set

$$
v_{i, f}(a)= \begin{cases}\min \left\{k: b_{i, k} \neq 0\right\} & \text { if } f_{i, a}(z) \not \equiv 0 \\ +\infty & \text { if } f_{i, a}(z) \equiv 0\end{cases}
$$

If $f(a)=0$, then a is a zero of $f\left(z_{(m)}\right)$. Then the number $v_{i, f}(a)$ is called the $i^{\text {th }}$ partial multiplicity of a.

For a point $d \in \mathbb{C}_{p}$ we define the function $v_{f}^{d}: \mathbb{C}_{p}^{m} \rightarrow(\mathbb{N} \cup\{+\infty\})^{m}$ by $v_{f}^{d}\left(a_{(m)}\right)=\left(v_{1, f-d}\left(a_{(m)}\right), \ldots, v_{m, f-d}\left(a_{(m)}\right)\right)$.

Now let $f=\frac{f_{1}}{f_{2}}$ be a non-constant meromorphic function on \mathbb{C}_{p}^{m}, where f_{1}, f_{2} are two holomorphic functions on \mathbb{C}_{p}^{m} having no common zeros. For a point $d \in$ \mathbb{C}_{p} we define the function $v_{f}^{d}: \mathbb{C}_{p}^{m} \rightarrow(\mathbb{N} \cup\{+\infty\})^{m}$ by $v_{f}^{d}\left(a_{(m)}\right)=v_{f_{1}-d f_{2}}^{0}\left(a_{(m)}\right)$ and write $v_{f}^{d}\left(a_{(m)}\right)=\left(v_{1, f}^{d}\left(a_{(m)}\right), \ldots, v_{m, f}^{d}\left(a_{(m)}\right)\right), v_{f}^{\infty}\left(a_{(m)}\right)=v_{f_{2}}^{0}\left(a_{(m)}\right)$ and write $v_{f}^{\infty}\left(a_{(m)}\right)=\left(v_{1, f}^{\infty}\left(a_{(m)}\right), \ldots, v_{m, f}^{\infty}\left(a_{(m)}\right)\right)$.

For a subset S of \mathbb{C}_{p} we set
$E_{i}(f, S)=\bigcup_{d \in S}\left\{\left(q_{i}, a_{(m)}\right) \in(\mathbb{N} \cup\{+\infty\}) \times \mathbb{C}_{p}^{m} \mid f\left(a_{(m)}\right)-d=0, v_{i, f}^{d}\left(a_{(m)}\right)=q_{i}\right\}$,
$E_{i}(f, S \cup\{\infty\})=E_{i}(f, S) \bigcup\left\{\left(q_{i}, a_{(m)}\right) \in(\mathbb{N} \cup\{+\infty\}) \times \mathbb{C}_{p}^{m} \mid v_{i, f}^{\infty}\left(a_{(m)}\right)=q_{i}\right\}$,
$i=1,2 \ldots, m$.
A subset S of $\mathbb{C}_{p} \cup\{\infty\}$ is called a unique range set (URS for short) for p-adic meromorphic functions of several variables if for any pair of non-constant meromorphic functions f and g on \mathbb{C}_{p}^{m} the condition $E_{i}(f, S)=E_{i}(g, S), i=$ $1, \ldots, m$, implies $f=g$. Similarly, let S, T be two subsets of $\mathbb{C}_{p} \cup\{\infty\}$ with $S \cap T=\emptyset .(S, T)$ is called a bi-URS for p-adic meromorphic functions of several variables if for any pair of non-constant meromorphic functions f and g on \mathbb{C}_{p}^{m} the conditions $E_{i}(f, S)=E_{i}(g, S)$ and $E_{i}(f, T)=E_{i}(g, T), i=1, \ldots, m$, imply $f=g$.

Several interesting results about URS and bi-URS for entire and meromorphic functions on \mathbb{C}_{p} have been studied in $[6,9,11]$. In[9], Khoai and An gave sufficient conditions of URS and bi-URS in terms of uniquenees polynomials and strong uniqueness polynomials for non-archimedean meromorphic functions of one variable. The main tool cited in the above papers is the Nevanlinna theory in one-dimensional non-archimedean case. In this paper by using some arguments in $[3,9]$ and the p-adic Nevanlinna theory in high dimension, developed in [1, $2,3,5,7,8]$, we give some cases of uniqueness polynomials for p-adic meromorphic functions in several variables and show the existence of a bi-URS for p-adic meromorphic functions in several variables of the form $\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\},\{u\}\right)$.

2. Height of p-adic Holomorphic Functions of Several Variables

Let p be a prime number, \mathbb{Q}_{p} the field of p-adic numbers and \mathbb{C}_{p} the p-adic completion of the algebraic closure of \mathbb{Q}_{p}. The absolute value in \mathbb{Q}_{p} is normalized so that $|p|=p^{-1}$. We further use the notion $v(z)$ for the additive valuation on \mathbb{C}_{p} which extends ord ${ }_{p}$. We use the notations

$$
\begin{aligned}
& b_{(m)}=\left(b_{1}, \ldots, b_{m}\right), \quad b_{i}(b)=\left(b_{1}, \ldots, b_{i-1}, b, b_{i+1}, \ldots, b_{m}\right), \\
& \frac{b_{\left(m, i_{s}\right)}=b_{i}\left(b_{i_{s}}\right),}{\left(b_{i}\right)}=\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{m}\right), \\
& D_{r}=\left\{z \in \mathbb{C}_{p}:|z| \leqslant r, r>0\right\}, \\
& D_{<r>}=\left\{z \in \mathbb{C}_{p}:|z|=r, r>0\right\}, \\
& D_{r_{(m)}}=D_{r_{1}} \times \cdots \times D_{r_{m}}, \text { where } r_{(m)}=\left(r_{1}, \ldots, r_{m}\right) \text { for } r_{i} \in \mathbb{R}_{+}^{*}, \\
& D_{<r_{(m)}>}=D_{<r_{1}>} \times \cdots \times D_{<r_{m}>}, \\
& |\gamma|=\gamma_{1}+\cdots+\gamma_{m}, \\
& z^{\gamma}=z_{1}^{\gamma_{1}} \ldots z_{m}^{\gamma_{m}} \\
& r^{\gamma}=r_{1}^{\gamma_{1}} \ldots r_{m}^{\gamma_{m}}, \\
& \gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right),
\end{aligned}
$$

where $\gamma_{i} \in \mathbb{N},\left|.\left|=|| p,. \log =\log _{p}\right.\right.$.
Notice that the set of $\left(r_{1}, \ldots, r_{m}\right) \in \mathbb{R}_{+}^{* m}$ such that there exist $x_{1}, \ldots, x_{m} \in \mathbb{C}_{p}$ with $\left|x_{i}\right|=r_{i}, i=1, \ldots, m$, is dense in $\mathbb{R}_{+}^{* m}$. Therefore, without loss of generality one may assume that $D_{\left\langle r_{(m)}\right\rangle} \neq \emptyset$.

Let f be a non-zero holomorphic function in $D_{r_{(m)}}$ and

$$
f=\sum_{|\gamma| \geq 0} a_{\gamma} z^{\gamma}, \quad\left|z_{i}\right| \leqslant r_{i} \text { for } i=1, \ldots, m
$$

Then we have

$$
\lim _{|\gamma| \rightarrow \infty}\left|a_{\gamma}\right| r^{\gamma}=0
$$

Hence, there exists a $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{N}^{m}$ such that $\left|a_{\gamma}\right| r^{\gamma}$ is maximal.
Define

$$
|f|_{r_{(m)}}=\max _{0 \leqslant|\gamma|<\infty}\left|a_{\gamma}\right| r^{\gamma}
$$

Lemma 2.1.([8]) For each $i=1, \ldots$, m, let $r_{i_{1}}, \ldots, r_{i_{q}}$ be positive real numbers such that $r_{i_{1}} \geq \cdots \geq r_{i_{q}}$. Let $f_{s}\left(z_{(m)}\right), s=1,2, \ldots, q$, be q non-zero holomorphic functions on $D_{r_{\left(m, i_{s}\right)}}$. Then there exists $u_{\left(m, i_{s}\right)} \in D_{r_{\left(m, i_{s}\right)}}$ such that

$$
\left|f_{s}\left(u_{\left(m, i_{s}\right)}\right)\right|=\left|f_{s}\right|_{r_{\left(m, i_{s}\right)}}, \quad s=1,2, \ldots, q
$$

Definition 2.2. The height of the function $f\left(z_{(m)}\right)$ is defined by

$$
H_{f}\left(r_{(m)}\right)=\log |f|_{r_{(m)}} .
$$

If $f\left(z_{(m)}\right) \equiv 0$, then set $H_{f}\left(r_{(m)}\right)=-\infty$.

Let f be a non-zero holomorphic function in $D_{r_{(m)}}$ and

$$
f=\sum_{|\gamma| \geq 0} a_{\gamma} z^{\gamma}, \quad\left|z_{i}\right| \leqslant r_{i} \text { for } i=1, \ldots, m
$$

Write

$$
f\left(z_{(m)}\right)=\sum_{k=0}^{\infty} f_{i, k} \widehat{\left(z_{i}\right)} z_{i}^{k}, \quad i=1,2, \ldots, m
$$

Set

$$
\begin{aligned}
I_{f}\left(r_{(m)}\right) & =\left\{\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{N}^{m}:\left|a_{\gamma}\right| r^{\gamma}=|f|_{r_{(m)}}\right\}, \\
n_{1 i, f}\left(r_{(m)}\right) & =\max \left\{\gamma_{i}: \exists\left(\gamma_{1}, \ldots, \gamma_{i}, \ldots, \gamma_{m}\right) \in I_{f}\left(r_{(m)}\right)\right\}, \\
n_{2 i, f}\left(r_{(m)}\right) & =\min \left\{\gamma_{i}: \exists\left(\gamma_{1}, \ldots, \gamma_{i}, \ldots, \gamma_{m}\right) \in I_{f}\left(r_{(m)}\right)\right\}, \\
n_{i, f}(0,0) & =\min \left\{k: f_{i, k} \widehat{\left(z_{i}\right)} \not \equiv 0\right\}, \\
\nu_{f}\left(r_{(m)}\right) & =\sum_{i=1}^{m}\left(n_{1 i, f}\left(r_{(m)}\right)-n_{2 i, f}\left(r_{(m)}\right)\right) .
\end{aligned}
$$

$r_{(m)}$ is called a critical point if $\nu_{f}\left(r_{(m)}\right) \neq 0$.
For a fixed $i \quad(i=1, \ldots, m)$ we set for simplicity

$$
n_{i, f}(0,0)=\ell, k_{1}=n_{1 i, f}\left(r_{(m)}\right), k_{2}=n_{2 i, f}\left(r_{(m)}\right)
$$

Then there exist multi-indices $\gamma=\left(\gamma_{1}, \ldots, \gamma_{i}, \ldots, \gamma_{m}\right) \in I_{f}\left(r_{(m)}\right)$ and $\mu=$ $\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{m}\right) \in I_{f}\left(r_{(m)}\right)$ such that $\gamma_{i}=k_{1}, \mu_{i}=k_{2}$.

We consider the following holomorphic functions on $D_{r_{(m)}}$

$$
f_{\ell}\left(z_{(m)}\right)=f_{i, \ell} \widehat{\left(z_{i}\right)} z_{i}^{\ell}, f_{k_{1}}\left(z_{(m)}\right)=f_{i, k_{1}} \widehat{\left(z_{i}\right)} z_{i}^{k_{1}}, f_{k_{2}}\left(z_{(m)}\right)=f_{i, k_{2}} \widehat{\left(z_{i}\right)} z_{i}^{k_{2}}
$$

The functions are not identically zero.
Set

$$
\begin{aligned}
U_{i f, r_{(m)}}=\left\{u=u_{(m)} \in D_{r_{(m)}}\right. & :\left|f_{\ell}(u)\right|=\left|f_{\ell}\right|_{r_{(m)}},|f(u)|=|f|_{r_{(m)}} \\
& \left.\left|f_{k_{1}}(u)\right|=\left|f_{k_{1}}\right|_{r_{(m)}},\left|f_{k_{2}}(u)\right|=\left|f_{k_{2}}\right|_{r_{(m)}}\right\}
\end{aligned}
$$

where $i=1, \ldots, m$. By Lemma 2.1, $U_{i f, r_{(m)}}$ is a non-empty set. For each $u \in U_{i f, r_{(m)}}$, set

$$
f_{i, u}(z)=f\left(u_{1}, \ldots, u_{i-1}, z, u_{i+1}, \ldots, u_{m}\right), z \in D_{r_{i}}
$$

Theorem 2.3. Let $f\left(z_{(m)}\right)$ be a holomorphic function on $D_{r_{(m)}}$. Assume that $f\left(z_{(m)}\right)$ is not identically zero. Then for each $i=1, \ldots, m$, and for all $u \in$ $U_{i f, r_{(m)}}$, we have

1) $H_{f}\left(r_{(m)}\right)=H_{f_{i, u}}\left(r_{i}\right)$,
2) $n_{1 i, f}\left(r_{(m)}\right)$ is equal to the number of zeros of $f_{i, u}$ in $D_{r_{i}}$,
3) $n_{1 i, f}\left(r_{(m)}\right)-n_{2 i, f}\left(r_{(m)}\right)$ is equal to the number of zeros of $f_{i, u}$ on $D_{<r_{i}>}$. For the proof, see [8, Theorem 3.1].

From Theorem 2.3 we see that $f\left(z_{(m)}\right)$ has zeros on $D_{\left\langle r_{(m)}>\right.}$ if and only if $r_{(m)}$ is a critical point.

For a an element of \mathbb{C}_{p} and f a holomorphic function on $D_{r_{(m)}}$, which is not identically equal to a, define

$$
n_{i, f}\left(a, r_{(m)}\right)=n_{1 i, f-a}\left(r_{(m)}\right), \quad i=1, \ldots, m
$$

Fix real numbers $\rho_{1}, \ldots, \rho_{m}$ with $0<\rho_{i} \leqslant r_{i}, i=1, \ldots, m$.
For each $x \in \mathbb{R}$, set

$$
\begin{aligned}
A_{i}(x) & =\left(\rho_{1}, \ldots, \rho_{i-1}, x, r_{i+1}, \ldots, r_{m}\right), i=1, \ldots, m \\
B_{i}(x) & =\left(\rho_{1}, \ldots, \rho_{i-1}, x, \rho_{i+1}, \ldots, \rho_{m}\right), i=1, \ldots, m .
\end{aligned}
$$

Define the counting function $N_{f}\left(a, r_{(m)}\right)$ by

$$
N_{f}\left(a, r_{(m)}\right)=\frac{1}{\ln p} \sum_{i=1}^{m} \int_{\rho_{i}}^{r_{i}} \frac{n_{i, f}\left(a, A_{i}(x)\right)}{x} d x
$$

If $a=0$, then set $N_{f}\left(r_{(m)}\right)=N_{f}\left(0, r_{(m)}\right)$.
Then

$$
N_{f}\left(a, B_{i}\left(r_{i}\right)\right)=\frac{1}{\ln p} \int_{\rho_{i}}^{r_{i}} \frac{n_{i, f}\left(a, B_{i}(x)\right)}{x} d x
$$

For each $i=1,2, \ldots, m$, set

$$
\begin{gathered}
k_{1, i}=n_{1 i, f}\left(A_{i}\left(r_{i}\right)\right), k_{2, i}=n_{2 i, f}\left(A_{i}\left(r_{i}\right)\right), \\
U_{i f, A_{i}\left(r_{i}\right)}^{i}=\left\{u^{i}=u_{(m)}^{i} \in D_{A_{i}\left(r_{i}\right)}:\left|f_{\ell}\left(u^{i}\right)\right|=\left|f_{\ell}\right|_{A_{i}\left(r_{i}\right)},\left|f\left(u^{i}\right)\right|=|f|_{A_{i}\left(r_{i}\right)},\right. \\
\left.\left|f_{k_{1, i}}\left(u^{i}\right)\right|=\left|f_{k_{1, i}}\right|_{A_{i}\left(r_{i}\right)},\left|f_{k_{2, i}}\left(u^{i}\right)\right|=\left|f_{k_{2, i}}\right|_{A_{i}\left(r_{i}\right)}\right\}, \\
\Gamma_{i}=\left\{A_{i}(x): A_{i}(x) \text { is a critical point, } 0<x \leqslant r_{i}\right\} .
\end{gathered}
$$

By Lemma 2.1 and Theorem 2.3, Γ_{i} is a finite set. Suppose that $\Gamma_{i}, i=1, \ldots, m$, contains n elements $A_{i}\left(x^{j}\right), j=1, \ldots, n$. From this and Lemma 2.1 it follows that

$$
\mathcal{U}_{i f, A_{i}\left(r_{i}\right)}^{i}=\left\{u^{i}=u_{(m)}^{i} \in U_{i f, A_{i}\left(r_{i}\right)}^{i}: \exists u_{i}^{i}\left(u^{j}\right) \in U_{i f, A_{i}\left(x^{j}\right)}^{i}, j=1, \ldots, n\right\} \neq \emptyset
$$

$i=1, \ldots, m$.

Lemma 2.4. 1) Let f be a non-zero holomorphic function on $D_{r_{(m)}}$. Then for each $i=1,2, \ldots, m$, and for all $u^{i} \in \mathcal{U}_{i f, A_{i}\left(r_{i}\right)}^{i}$, we have

$$
n_{f_{i, u^{i}}}(x)=n_{i, f} \circ A_{i}(x), \rho_{i} \leqslant x \leqslant r_{i}
$$

2) Let $f_{s}\left(z_{(m)}\right), s=1,2, \ldots, q$, be q non-zero holomorphic functions on $D_{r_{(m)}}$. Then for each $i=1,2, \ldots, m$, there exists $u^{i} \in \mathcal{U}_{i f s, A_{i}\left(r_{i}\right)}^{i}$ for all $s=1, \ldots, q$.

The result can be proved easily by using Lemma 2.1 and Theorem 2.3.
Theorem 2.5. Let f be a non-zero holomorphic function on $D_{r_{(m)}}$. Then

$$
H_{f}\left(r_{(m)}\right)-H_{f}\left(\rho_{(m)}\right)=N_{f}\left(r_{(m)}\right)
$$

The proof of Theorem 2.5 follows immediately from [8, Theorem 3.2].
Set

$$
\begin{aligned}
v & =\left(u^{1}, \ldots, u^{m}\right), u^{i} \in \mathcal{U}_{i f, A_{i}\left(r_{i}\right)}^{i} \\
N_{f_{v}}\left(r_{(m)}\right) & =N_{f_{1, u^{1}}}\left(r_{1}\right)+\cdots+N_{f_{m, u^{m}}}\left(r_{m}\right), \\
V & =\left\{v: N_{f_{v}}\left(r_{(m)}\right)=N_{f}\left(r_{(m)}\right)\right\} .
\end{aligned}
$$

By Lemma 2.4 and [6], V is a non-empty set,

$$
\begin{align*}
N_{f_{v}}\left(r_{(m)}\right)= & \sum_{\rho_{1}<|a| \leqslant r_{1}}^{1}\left(v(a)+\log r_{1}\right)+n_{f_{1}, u^{1}}\left(0, \rho_{1}\right)\left(\log r_{1}-\log \rho_{1}\right)+\ldots \\
& +\sum_{\rho_{m}<|a| \leqslant r_{m}}\left(v(a)+\log r_{m}\right)+n_{f_{m}, u^{m}}\left(0, \rho_{m}\right)\left(\log r_{m}-\log \rho_{m}\right), \tag{2.1}
\end{align*}
$$

where

$$
\sum_{\rho_{i}<|a| \leqslant r_{i}}\left(v(a)+\log r_{i}\right)
$$

is taken on all of zeros a of $f_{i, u^{i}}$ (counting multiplicity) with $\rho_{i}<|a| \leqslant r_{i}, i=$ $1,2, \ldots, m$. Notice that, the sums in (2.1) are finite sums.
Denote by $\bar{N}_{f_{v}}\left(r_{(m)}\right)$ the sum (2.1), where every zero a of the functions $f_{i, u^{i}}$, $i=1, \ldots, m$, is counted ignoring multiplicity. Set

$$
\bar{N}_{f}\left(r_{(m)}\right)=\max _{v \in V} \bar{N}_{f_{v}}\left(r_{(m)}\right)
$$

From Lemma 2.4 it follows that one can find $u^{i} \in \mathcal{U}_{i f, A_{i}\left(r_{i}\right)}^{i}$ and $v=\left(u^{1}, \ldots, u^{m}\right)$ such that $N_{f}\left(r_{(m)}\right)=N_{f_{v}}\left(r_{(m)}\right)$.

Now let C be some condition. Let $U_{i, A_{i}\left(r_{i}\right)}^{i *} \subset \mathcal{U}_{i f, A_{i}\left(r_{i}\right)}^{i}, U_{i, A_{i}\left(r_{i}\right)}^{i *} \neq \emptyset$. For each $r_{(m)}$ and $u^{i} \in U_{i, A_{i}\left(r_{i}\right)}^{i *}$, set

$$
\begin{aligned}
v_{i, f}\left(u_{i}^{i}(z) ; C\right) & = \begin{cases}v_{i, f}\left(u_{i}^{i}(z)\right) & \text { if } u_{i}^{i}(z) \text { satisfies the condition } C \\
0 & \text { otherwise }\end{cases} \\
n_{f_{i, u^{i}}}\left(r_{i} ; C\right) & =\sum_{|z| \leqslant r_{i}} v_{i, f}\left(u_{i}^{i}(z) ; C\right) \\
N_{f}\left(r_{(m)} ; C\right) & =\min _{v \in V} \frac{1}{\ln p} \sum_{i=1}^{m} \int_{\rho_{i}}^{r_{i}} \frac{n_{f_{i, u^{i}}}(x ; C)}{x} d x \\
N_{f_{v}}\left(r_{(m)} ; C\right) & =N_{f_{1, u^{1}}}\left(r_{1} ; C\right)+\cdots+N_{f_{m, u^{m}}}\left(r_{m} ; C\right)
\end{aligned}
$$

From Lemma 2.4 it follows that one can find $u^{i} \in U_{i, A_{i}\left(r_{i}\right)}^{i *}$ and $v=\left(u^{1}, \ldots, u^{m}\right)$ such that $N_{f}\left(r_{(m)} ; C\right)=N_{f_{v}}\left(r_{(m)} ; C\right)$.

If γ is a multi-index and f is a meromorphic function of m variables, then we denote by $\partial^{\gamma} f$ the partial derivative

$$
\frac{\partial^{|\gamma|} f}{\partial z_{1}^{\gamma_{1}} \ldots \partial z_{m}^{\gamma_{m}}}
$$

Theorem 2.6. Let f be a non-zero entire function on \mathbb{C}_{p}^{m} and γ a multi-index with $|\gamma|>0$. Then

$$
H_{\partial \gamma f}\left(B_{e}\left(r_{e}\right)\right)-H_{f}\left(B_{e}\left(r_{e}\right)\right) \leqslant-|\gamma| \log r_{e}+O(1)
$$

The proof of Theorem 2.6 follows immediately from [5, Lemma 4.1].

3. Height of p-adic Meromorphic Functions of Several Variables

Let $f=\frac{f_{1}}{f_{2}}$ be a meromorphic function on $D_{r_{(m)}}$ (resp., \mathbb{C}_{p}^{m}), where f_{1}, f_{2} are two holomorphic functions on $D_{r_{(m)}}$ (resp., \mathbb{C}_{p}^{m}), have no common zeros, and $a \in \mathbb{C}_{p}$.

We set

$$
\begin{gathered}
H_{f}\left(r_{(m)}\right)=\max _{1 \leqslant i \leqslant 2} H_{f_{i}}\left(r_{(m)}\right), \\
N_{f}\left(a, r_{(m)}\right)=N_{f_{1}-a f_{2}}\left(r_{(m)}\right), \\
N_{f}\left(\infty, r_{(m)} ; C\right)=N_{f_{2}}\left(r_{(m)} ; C\right),
\end{gathered}
$$

and

$$
N_{f}\left(a, r_{(m)} ; C\right)=N_{f_{1}-a f_{2}}\left(r_{(m)} ; C\right)
$$

Lemma 3.1. Let $f=\frac{f_{1}}{f_{2}}$ be a non-constant meromorphic function on \mathbb{C}_{p}^{m}. Then there exists a multi-index $\gamma_{1}=\left(0, \ldots, 0, \gamma_{1 e}, 0, \ldots, 0\right)$ such that $\gamma_{1 e}=1$ and $\partial^{\gamma_{1}} f=\frac{\partial^{\gamma_{1}} f_{1} \cdot f_{2}-\partial^{\gamma_{1}} f_{2} \cdot f_{1}}{f_{2}^{2}}$ and the Wronskian

$$
W=W\left(f_{1}, f_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
f_{1} & f_{2} \\
\partial^{\gamma_{1}} f_{1} & \partial^{\gamma_{1}} f_{2}
\end{array}\right)
$$

is not identically zero.
For the proof, see [5, Lemma 4.2].
Let $a_{1}, \ldots a_{q} \in \mathbb{C}_{p}$. Set $G_{j}=f_{1}-a_{j} f_{2}, j=1, \ldots q$, and $G_{q+1}=f_{2}$. In Theorem 3.2 we take C to be the following condition: $G_{j}\left(z_{(m)}\right) \neq 0$ with some $z_{(m)} \in \mathbb{C}_{p}^{m}$ and for all $j=1, \ldots, q+1$.

Set

$$
\begin{aligned}
N_{0, W}\left(r_{(m)}\right) & =N_{W}\left(0, r_{(m)} ; C\right), \\
N_{0, \partial \gamma_{1} f}\left(r_{(m)}\right) & =N_{0, W}\left(r_{(m)}\right) .
\end{aligned}
$$

Theorem 3.2. Let f be a non-constant meromorphic function on \mathbb{C}_{p}^{m} and $a_{j} \in \mathbb{C}_{p}, j=1, \ldots, q$. Then

$$
\begin{aligned}
& (q-1) H_{f}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \sum_{j=1}^{q} \bar{N}_{f}\left(a_{j}, B_{e}\left(r_{e}\right)\right)+\bar{N}_{f}\left(\infty, B_{e}\left(r_{e}\right)\right)-N_{0, \partial^{\gamma_{1}} f}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1) .
\end{aligned}
$$

Proof. Set $G=\left\{G_{\beta_{1}} \ldots G_{\beta_{q-1}}\right\}$, where $\left(\beta_{1}, \ldots, \beta_{q-1}\right)$ is taken on all different choices of $q-1$ numbers in the set $\{1, \ldots, q+1\}$, and $G_{j}=f_{1}-a_{j} f_{2}, j=1, \ldots, q$, and $G_{q+1}=f_{2}$. Set $H_{G}\left(r_{(m)}\right)=\max _{\left(\beta_{1} \ldots \beta_{q-1}\right)} H_{G_{\beta_{1} \ldots G_{\beta_{q-1}}}}\left(r_{(m)}\right)$.

We need the following lemma.
Lemma 3.3. We have $H_{G}\left(r_{(m)}\right) \geq(q-1) H_{f}\left(r_{(m)}\right)+O(1)$, where the $O(1)$ does not depend on $r_{(m)}$.
Proof. We have

$$
\begin{aligned}
H_{G}\left(r_{(m)}\right) & =\max _{\left(\beta_{1}, \ldots, \beta_{q-1}\right)} H_{G_{\beta_{1}} \ldots G_{\beta_{q-1}}}\left(r_{(m)}\right) \\
& =\max _{\left(\beta_{1}, \ldots, \beta_{q-1}\right)} \sum_{1 \leqslant j \leqslant q-1} H_{G_{\beta_{i}}}\left(r_{(m)}\right) .
\end{aligned}
$$

Assume that for a fixed $r_{(m)}$, the following inequalities hold

$$
H_{G_{\beta_{1}}}\left(r_{(m)}\right) \geq H_{G_{\beta_{2}}}\left(r_{(m)}\right) \geq \ldots \geq H_{G_{\beta_{q+1}}}\left(r_{(m)}\right)
$$

Then

$$
\begin{equation*}
H_{G}\left(r_{(m)}\right)=H_{G_{\beta_{1}}}\left(r_{(m)}\right)+H_{G_{\beta_{2}}}\left(r_{(m)}\right)+\cdots+H_{G_{\beta_{q-1}}}\left(r_{(m)}\right) \tag{3.1}
\end{equation*}
$$

Since a_{1}, \ldots, a_{q} are distinct numbers in \mathbb{C}_{p}, then

$$
f_{i}=b_{i_{0}} G_{\beta_{q}}+b_{i_{1}} G_{\beta_{q+1}}, i=1,2,
$$

where $b_{i_{0}}, b_{i_{1}}$ are constants, which do not depend on $r_{(m)}$. It follows that

$$
H_{f_{i}}\left(r_{(m)}\right) \leqslant \max _{0 \leqslant j \leqslant 1} H_{G_{\beta_{q+j}}}\left(r_{(m)}\right)+O(1)
$$

Therefore, we obtain

$$
H_{f_{i}}\left(r_{(m)}\right) \leqslant H_{G_{\beta_{j}}}\left(r_{(m)}\right)+O(1)
$$

for $j=1, \ldots, q-1$ and $i=1,2$. Hence,

$$
\begin{equation*}
H_{f}\left(r_{(m)}\right)=\max _{1 \leqslant i \leqslant 2} H_{f_{i}}\left(r_{(m)}\right) \leqslant H_{G_{\beta_{j}}}\left(r_{(m)}\right)+O(1) \tag{3.2}
\end{equation*}
$$

for $j=1, \ldots, q-1$. Summarizing $(q-1)$ inequalities (3.2) and by (3.1), we have

$$
H_{G}\left(r_{(m)}\right) \geq(q-1) H_{f}\left(r_{(m)}\right)+0(1)
$$

Now we prove Theorem 3.2. Denote by $W\left(g_{1}, g_{2}\right)$ the Wronskian of the two entire functions g_{1}, g_{2} with respect to the γ_{1} as in Lemma 3.1.

Since f is non-constant, we have $W\left(f_{1}, f_{2}\right) \not \equiv 0$. Let $\left(\alpha_{1}, \alpha_{2}\right)$ be two distinct numbers in $\{1, \ldots, q+1\}$, and $\left(\beta_{1}, \ldots, \beta_{q-1}\right)$ be the rest. Note that the functions f_{i} can be represented as linear combinations of $G_{\alpha_{1}}, G_{\alpha_{2}}$. Then we have

$$
W\left(G_{\alpha_{1}}, G_{\alpha_{2}}\right)=c_{\left(\alpha_{1}, \alpha_{2}\right)} W\left(f_{1}, f_{2}\right)
$$

where $c_{\left(\alpha_{1}, \alpha_{2}\right)}=c$ is a constant, depending only on $\left(\alpha_{1}, \alpha_{2}\right)$. We denote

$$
A=A\left(\alpha_{1}, \alpha_{2}\right)=\frac{W\left(G_{\alpha_{1}}, G_{\alpha_{2}}\right)}{G_{\alpha_{1}} G_{\alpha_{2}}}=\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
\frac{\partial^{\gamma_{1}} G_{\alpha_{1}}}{G_{\alpha_{1}}} & \frac{\partial^{\gamma_{1}} G_{\alpha_{2}}}{G_{\alpha_{2}}}
\end{array}\right)
$$

Hence

$$
\begin{equation*}
\frac{G_{1} \ldots G_{q+1}}{W\left(f_{1}, f_{2}\right)}=\frac{c G_{\beta_{1}} \ldots G_{\beta_{q-1}}}{A} \tag{3.3}
\end{equation*}
$$

Set $L_{i}=\frac{\partial^{\gamma_{1}} G_{\alpha_{i}}}{G_{\alpha_{i}}}, i=1,2$. Then

$$
\log |A|_{B_{e}\left(r_{e}\right)} \leqslant \max _{1 \leqslant i \leqslant 2} \log \left|L_{i}\right|_{B_{e}\left(r_{e}\right)}
$$

By Theorem 2.6

$$
\log \left|L_{i}\right|_{B_{e}\left(r_{e}\right)} \leqslant-\left|\gamma_{1}\right| \log r_{e}+0(1) .
$$

Because $\left|\gamma_{1}\right|=1$

$$
\begin{equation*}
\log \left|L_{i}\right|_{B_{e}\left(r_{e}\right)} \leqslant-\log r_{e}+0(1) \tag{3.4}
\end{equation*}
$$

By (3.3), we obtain

$$
\sum_{i=j}^{q+1} H_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-H_{W}\left(B_{e}\left(r_{e}\right)\right)=H_{G_{\beta_{1}} \ldots G_{\beta_{q-1}}}\left(B_{e}\left(r_{e}\right)\right)-\log |A|_{B_{e}\left(r_{e}\right)}+O(1) .
$$

From this and (3.4), we have

$$
\begin{aligned}
H_{G}\left(B_{e}\left(r_{e}\right)\right) & =\max _{\left(\beta_{1}, \ldots, \beta_{q-1}\right)} H_{G_{\beta_{1} \ldots G_{\beta_{q-1}}}}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \sum_{j=1}^{q+1} H_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-H_{W}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1)
\end{aligned}
$$

By Lemma 3.3

$$
(q-1) H_{f}\left(B_{e}\left(r_{e}\right)\right) \leqslant \sum_{j=1}^{q+1} H_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-H_{W}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1)
$$

Thus

$$
\begin{equation*}
(q-1) H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{W}\left(B_{e}\left(r_{e}\right)\right) \leqslant \sum_{j=1}^{q+1} H_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1) \tag{3.5}
\end{equation*}
$$

By Theorem 2.5

$$
\begin{aligned}
& H_{W}\left(B_{e}\left(r_{e}\right)\right)=N_{W}\left(B_{e}\left(r_{e}\right)\right)+0(1) \\
& H_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)=N_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)+0(1)
\end{aligned}
$$

From this and (3.5) we obtain

$$
\begin{equation*}
(q-1) H_{f}\left(B_{e}\left(r_{e}\right)\right)+N_{W}\left(B_{e}\left(r_{e}\right)\right) \leqslant \sum_{j=1}^{q+1} N_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1) \tag{3.6}
\end{equation*}
$$

For a fixed $B_{e}\left(r_{e}\right)$, we consider non-zero entire functions W, G_{1}, \ldots, G_{q} on $D_{B_{e}\left(r_{e}\right)}$. From Lemma 2.4 it follows that one can find $u^{e} \in \mathcal{U}_{G_{j}, B_{e}\left(r_{e}\right)}^{e}$ and $u^{e} \in \mathcal{U}_{W, B_{e}\left(r_{e}\right)}^{e}, j=1, \ldots, q$, such that

$$
\begin{equation*}
N_{W}\left(B_{e}\left(r_{e}\right)\right)=N_{W_{e, u^{e}}}\left(r_{e}\right), N_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)=N_{\left(G_{j}\right)_{e, u^{e}}}\left(r_{e}\right) . \tag{*}
\end{equation*}
$$

Assume that $U_{e, B_{e}\left(r_{e}\right)}^{e *}$ is the set which contains elements u^{e} with u^{e} as in the statement by $\left({ }^{*}\right)$. Now let $u_{e}^{e}(x)$ be a zero of G_{j} having the $e^{\text {th }}$ partial multiplicity equal to $k,(k \neq+\infty), k \geq 2$. Since $\gamma_{1}=\left(0, \ldots, 0, \gamma_{1 e}, 0, \ldots, 0\right)$ with $\gamma_{1 e}=1$, $v_{i, \partial^{\gamma_{1}} G_{j}}\left(u_{e}^{e}(x)\right)=k-1$ if $i=e$.

On the other hand,

$$
W\left(G_{\alpha_{1}}, G_{\alpha_{2}}\right)=c_{\left(\alpha_{1}, \alpha_{2}\right)} W
$$

where $\left(\alpha_{1}, \alpha_{2}\right)$ are two distinct numbers in $\{1, \ldots, q+1\}$. Therefore $u_{e}^{e}(x)$ is a zero of W having the $e^{\text {th }}$ partial multiplicity at least $k-1$.

Now we consider the function $F=\prod_{j=1}^{q} G_{j}$.
Because F is not a constant, F has zeros. Let $u_{e}^{e}(x)$ be a zero of F. By the hypothesis, a_{1}, \ldots, a_{q} are distinct numbers, from this it follows that there exists one function G_{j} such that $G_{j}\left(u_{e}^{e}(x)\right)=0$. Therefore

$$
\sum_{j=1}^{q} N_{\left(G_{j}\right)_{e, u^{e}}}\left(r_{e}\right)-N_{W_{e, u^{e}}}\left(r_{e}\right)=\sum_{j=1}^{q} \bar{N}_{\left(G_{j}\right)_{e, u^{e}}}\left(r_{e}\right)-N_{0, W_{e, u^{e}}}\left(r_{e}\right)
$$

Thus

$$
\begin{aligned}
& \sum_{j=1}^{q} N_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-N_{W}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \sum_{j=1}^{q} \bar{N}_{\left(G_{j}\right)_{e, u} e}\left(r_{e}\right)-N_{0, W}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \sum_{j=1}^{q} \bar{N}_{G_{j}}\left(B_{e}\left(r_{e}\right)\right)-N_{0, W}\left(B_{e}\left(r_{e}\right)\right)
\end{aligned}
$$

From this and (3.6) the proof of Theorem 3.2 is complete.

4. Uniqueness Polynomials and bi-URS for p-adic Meromorphic Functions in Several Variables

Theorem 4.1. Let f, g be two non-zero entire funtions on \mathbb{C}_{p}^{m} such that $v_{f}^{0}=v_{g}^{0}$ on \mathbb{C}_{p}^{m}. Then $f=c g$ where c is a non-zero constant in \mathbb{C}_{p}.

Proof. Take $r_{1}, \ldots, r_{m}>0$ such that f, g have no zeros in $D_{\left\langle r_{(m)}\right\rangle}$. If f is a nonzero constant then so is g. Therefore $f=c g$. Assume that f is non-constant. Since $v_{f}^{0}=v_{g}^{0}, g$ is also non-constant. Let $a=\left(a_{1}, \ldots, a_{m}\right), b=\left(b_{1}, \ldots, b_{m}\right)$ be two any elements of $D_{\left\langle r_{(m)}\right\rangle}$. Set $C_{i}\left(b_{i}\right)=\left(b_{1}, \ldots, b_{i}, a_{i+1}, \ldots, a_{m}\right), i=$ $1, \ldots, m$, By $v_{f}^{0}=v_{g}^{0}, v_{i, f}\left(z_{(m)}\right)=v_{i, g}\left(z_{(m)}\right), i=1, \ldots, m$. Then

$$
f_{i, C_{i}\left(b_{i}\right)}=c_{i} g_{i, C_{i}\left(b_{i}\right)}
$$

with $c_{i}=\frac{f(a)}{g(a)}=\frac{f\left(C_{i}\left(b_{i}\right)\right)}{g\left(C_{i}\left(b_{i}\right)\right)}$ and $c_{i}=c_{i+1}, i=1,2, \ldots, m-1$. From this we have

$$
\frac{f(a)}{g(a)}=\frac{f(b)}{g(b)} \text { for all } a, b \in D_{r_{<m>}}
$$

Set

$$
c=\frac{f(a)}{g(a)}, a \in D_{<r_{(m)}>}, h=f-c g
$$

Asume that h is not identically zero. Consider h, f, g in $D_{\left\langle r_{(m)}\right\rangle}$. By Lemma 2.2, there exists $u \in D_{\left\langle r_{(m)}\right\rangle}$ such that $h_{i, u}, f_{i, u}, g_{i, u}$ are not identically zero, $i=$ $1,2, \ldots, m$. We have $f_{i, u}=c^{\prime} g_{i, u}, c^{\prime}=\frac{f(u)}{g(u)}$. Theorefore $c=c^{\prime}$ and $h_{i, u}=$ $f_{i, u}-c g_{i, u}$ identically zero. From this we get a contradiction. So, $f=c g$.

Definition 4.2. We say that a non-constant polynomial $P(x)$ is a strong uniqueness polynomial for p-adic meromorphic functions on \mathbb{C}_{p}^{m} if the identity $P(f)=c P(g)$ implies $f=g$ for any pair of p-adic non-constant meromorphic functions f, g on \mathbb{C}_{p}^{m} and for any non-zero constant $c \in \mathbb{C}_{p}$. Similarly, we say
that a non-constant polynomial $P(x)$ is a uniqueness polynomial for p-adic meromorphic functions in \mathbb{C}_{p}^{m} if the identity $P(f)=P(g)$ implies $f=g$. Let $P(x)$ be a polynomial of degree q without multiple zeros and its derivative is given by

$$
P^{\prime}(x)=a\left(x-d_{1}\right)^{q_{1}} \ldots\left(x-d_{k}\right)^{q_{k}}
$$

where $q_{1}+\cdots+q_{k}=q-1$ and d_{1}, \ldots, d_{k} are distinct zeros of P^{\prime}. The number k is called the derivative index of P.

Definition 4.3. A non-zero polynomial $P(x)$ is said to satisfy the condition (H) if $P\left(d_{l}\right) \neq P\left(d_{m}\right)$ for $1 \leqslant \ell<m \leqslant k$. (See [9]).

We may assume that $d_{1}, \ldots, d_{k} \in \mathbb{C}_{p} \backslash\{0\}$.
Let $f=\frac{f_{1}}{f_{2}}$ be a non-constant meromorphic function on \mathbb{C}_{p}^{m}, where f_{1}, f_{2} are two holomorphic functions on \mathbb{C}_{p}^{m} having no common zeros. For a point $a \in \mathbb{C}_{p}$ we define the function

$$
\chi_{f}^{a}: \mathbb{C}_{p}^{m} \rightarrow \mathbb{N}
$$

by

$$
\chi_{f}^{a}\left(z_{(m)}\right)= \begin{cases}0 & \text { if } f\left(z_{(m)}\right) \neq a \\ 1 & \text { if } f\left(z_{(m)}\right)=a\end{cases}
$$

If $a=0$, then set $\chi_{f}^{a}=\chi_{f}$.
If $a=\infty$, define $\chi_{f}^{\infty}\left(z_{(m)}\right)=-1$ if $z_{(m)}$ is a pole of f. For a condition C, we define

$$
\chi_{\partial \gamma_{1} f}^{*}\left(z_{(m)} ; C\right)= \begin{cases}\chi_{\partial^{\gamma_{1}} f}\left(z_{(m)}\right) & \text { if } z_{(m)} \text { satisfies the condition } C \text { and } \\ & \left.f\left(z_{(m)}\right)\right) \neq d_{j} \text { for any } j \\ 0 & \text { otherwise. }\end{cases}
$$

In Theorem 4.4 and Theorem 4.6 the condition C is the condition $f\left(z_{(m)}\right)=d_{j}$ and the condition C^{\prime} is the condition $g\left(z_{(m)}\right)=d_{j}$ with $j=1,2, \ldots, k$.

Theorem 4.4. Let $P(x) \in \mathbb{C}_{p}[x]$ have no multiple zeros, have derivative index $k \geq 3$, and satisfy the condition (H). Then $P(x)$ is a uniqueness polynomial for p-adic meromorphic functions on \mathbb{C}_{p}^{m}.
Proof. Suppose that there are two distinct non-constant meromorphic functions f and g on \mathbb{C}_{p}^{m} such that $P(f)=P(g)$. From this and by Lemma 3.1 there exists a multi-index $\gamma_{1}=\left(0, \ldots, \gamma_{1 e}, 0, \ldots, 0\right)$ with $\gamma_{1 e}=1$ such that $\partial^{\gamma_{1}} f \not \equiv 0$ and $\partial^{\gamma_{1}} g \not \equiv 0$.

Set

$$
\varphi=\frac{1}{f}-\frac{1}{g}
$$

Then, $\varphi \not \equiv 0$ and $H_{\varphi}\left(B_{e}\left(r_{e}\right)\right) \leqslant H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)$. From $P(f)=P(g)$ we conclude that if $f\left(z_{(m)}\right)=\infty$ then $g\left(z_{(m)}\right)=\infty$ and if $g\left(z_{(m)}\right)=\infty$ then $f\left(z_{(m)}\right)=\infty$. Therefore $\chi_{f}^{\infty}\left(z_{(m)}\right)=\chi_{g}^{\infty}\left(z_{(m)}\right)$. On the other hand, we have

$$
\partial^{\gamma_{1}} f\left(z_{(m)}\right) P^{\prime}\left(f\left(z_{(m)}\right)=\partial^{\gamma_{1}} g\left(z_{(m)}\right) P^{\prime}\left(g\left(z_{(m)}\right)\right)\right.
$$

Since P satisfies the condition (H), we obtain

$$
\chi_{f}^{d j}\left(z_{(m)}\right) \leqslant \chi_{g}^{d j}\left(z_{(m)}\right)+\chi_{\partial \gamma_{1} g}^{*}\left(z_{(m)} ; C\right)
$$

From this we have

$$
\begin{aligned}
& \sum_{j=1}^{k} \chi_{f}^{d j}\left(z_{(m)}\right)-\chi_{f}^{\infty}\left(z_{(m)}\right) \\
& \leqslant \sum_{j=1}^{k}\left(\chi_{g}^{d j}\left(z_{(m)}\right)+\chi_{\partial \gamma_{1} g}^{*}\left(z_{(m)} ; C\right)\right)-\chi_{g}^{\infty}\left(z_{(m)}\right) \\
& \leqslant \chi_{\varphi}^{0}\left(z_{(m)}\right)+\sum_{j=1}^{k} \chi_{\partial \gamma^{\prime} g}^{*}\left(z_{(m)} ; C\right)
\end{aligned}
$$

Therefore, applying Theorem 3.2 to the function f and values $d_{1}, \ldots d_{k}$ we have

$$
\begin{aligned}
& (k-1) H_{f}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \sum_{j=1}^{k} \bar{N}_{f}\left(d_{j}, B_{e}\left(r_{e}\right)\right)+\bar{N}_{f}\left(\infty, B_{e}\left(r_{e}\right)\right)-N_{0, \partial \gamma_{1} f}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+0(1) \\
& \leqslant \bar{N}_{\varphi}\left(B_{e}\left(r_{e}\right)\right)+N_{0, \partial \gamma^{\prime} g}\left(B_{e}\left(r_{e}\right) ; C\right)-N_{0, \partial \gamma_{1 f}}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& (k-1) H_{g}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \bar{N}_{\varphi}\left(B_{e}\left(r_{e}\right)\right)+N_{0, \partial^{\gamma_{1}} f}\left(B_{e}\left(r_{e}\right) ; C^{\prime}\right)-N_{0, \partial^{\gamma_{1} g}}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1)
\end{aligned}
$$

Summing up these inequalities and using Theorem 2.5, we obtain

$$
\begin{aligned}
& (k-1)\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H g\left(B_{e}\left(r_{e}\right)\right)\right) \\
& \leqslant 2\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)\right)-N_{0, \partial \gamma_{1 f}}\left(B_{e}\left(r_{e}\right)\right)-N_{0, \partial \gamma^{\gamma_{1} g}}\left(B_{e}\left(r_{e}\right)\right) \\
& \quad+N_{0, \partial \gamma^{\gamma_{1}} g}\left(B_{e}\left(r_{e}\right) ; C\right)+N_{0, \partial^{\gamma_{1} f}}\left(B_{e}\left(r_{e}\right) ; C^{\prime}\right)-2 \log r_{e}+O(1)
\end{aligned}
$$

Since

$$
N_{0, \partial \gamma_{1} g}\left(B_{e}\left(r_{e}\right) ; C\right) \leqslant N_{0, \partial^{\gamma_{1}} g}\left(B_{e}\left(r_{e}\right)\right),
$$

and

$$
N_{0, \partial \gamma_{1} f}\left(B_{e}\left(r_{e}\right) ; C^{\prime}\right) \leqslant N_{0, \partial \gamma_{1 f}}\left(B_{e}\left(r_{e}\right)\right)
$$

we have

$$
(k-3)\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)\right)+2 \log r_{e} \leqslant O(1) .
$$

It follows that $k-3<0$ and we get a contradiction. Theorem 4.4 is proved.
Definition 4.5.([9]) A non-zero polynomial $P(x)$ is said to satisfy the condition (G) if $\sum_{i=1}^{k} P\left(d_{i}\right) \neq 0$.

Theorem 4.6. Let $P(x) \in \mathbb{C}_{p}[x]$ be a polynomial having no multiple zeros. Let $P(x)$ satisfy the conditions (H) and (G) and $k \geq 3$ be the derivative index of $P(x)$. Then $P(x)$ is a strong uniqueness polynomial for p-adic meromorphic functions on \mathbb{C}_{p}^{m}.

Proof. By Theorem 4.4, $P(x)$ is a uniqueness polynomial. Asume that $P(x)$ is not a strong uniqueness polynomial for p-adic meromorphic functions on \mathbb{C}_{p}^{m}. Then there exist two distinct non-constant meromorphic functions f and g on \mathbb{C}_{p}^{m} such that $P(f)=c P(g)$ for some non-zero constant c. We consider the set

$$
A=\left\{(\ell, h): \quad P\left(d_{\ell}\right)=c P\left(d_{h}\right)\right\}
$$

and denote the number of elements of A by k_{0}. We set $k_{0}=0$ if $A=\emptyset$. For the rest of the proof we need three lemmas below.

Lemma 4.7. In the above situation, if f is not a Mobius transformation of g, then $k_{0}=k$.

Proof. Since $P(x)$ satisfies the condition (H), if $\left(\ell_{1}, h_{1}\right),\left(\ell_{2}, h_{2}\right)$ are elements of A such that $h_{1}=h_{2}$ or $\ell_{1}=\ell_{2}$, then $\left(\ell_{1}, h_{1}\right)=\left(\ell_{2}, h_{2}\right)$. From this $k_{0} \leqslant k$.

Consider the possible cases:
Case 1. $k_{0} \geq 2$. After a suitable change of indices, we may assume that

$$
P\left(d_{1}\right)=c P\left(d_{t(1)}\right), \ldots, P\left(d_{k_{0}}\right)=c P\left(d_{t\left(k_{0}\right)}\right)
$$

Define

$$
\varphi=\frac{1}{f}-\frac{d_{t(1)}-d_{t(2)}}{\left(d_{2}-d_{1}\right)\left(g-d_{t(1)}\right)+d_{1}\left(d_{t(2)}-d_{t(1)}\right)}
$$

Then $\varphi \not \equiv 0$. If $f\left(z_{(m)}\right)=\infty$ then $g\left(z_{(m)}\right)=\infty$. If $f\left(z_{(m)}\right)=d_{j}, 1 \leqslant j \leqslant$ $k_{0}, z_{(m)} \in \mathbb{C}_{p}^{m}$, then, $g\left(z_{(m)}\right)=d_{t_{(j)}}$ or $\partial^{\gamma_{1}} g\left(z_{(m)}\right)=0$, because $P(x)$ satisfies the condition (H). If $f\left(z_{(m)}\right)=d_{j}, k_{0}+1 \leqslant j \leqslant k$, then $P\left(d_{j}\right) \neq c P\left(d_{j}\right)$. Hence $g\left(z_{(m)}\right) \neq d_{j}$ for every $k_{0}+1 \leqslant j \leqslant k$. This implies $\partial^{\gamma_{1}} g\left(z_{(m)}\right)=0$. Thus

$$
\begin{aligned}
& \sum_{j=1}^{k} \chi_{f}^{d_{j}}\left(z_{(m)}\right)-\chi_{f}^{\infty}\left(z_{(m)}\right) \\
& \leqslant \sum_{j=1}^{k_{0}}\left(\chi_{g}^{d_{t(j)}}\left(z_{(m)}\right)+\chi_{\partial \gamma_{1} g}\left(z_{(m)} ; C\right)\right)+\sum_{j=k_{0}+1}^{k} \chi_{\partial \gamma_{1} g}^{*}\left(z_{(m)} ; C\right)-\chi_{g}^{\infty}\left(z_{(m)}\right) \\
& \leqslant \chi_{\varphi}^{0}\left(z_{(m)}\right)+\sum_{j=3}^{k_{0}} \chi_{g}^{d_{t(j)}}\left(z_{(m)}\right)+\sum_{j=1}^{k} \chi_{\partial \gamma^{\prime} g}^{*}\left(z_{(m)} ; C\right) .
\end{aligned}
$$

Applying Theorem 3.2 to the function f and values $d_{1}, \ldots d_{k}$, we have

$$
\begin{aligned}
& (k-1) H_{f}\left(B_{e}\left(r_{e}\right)\right) \\
& \leqslant \bar{N}_{f}\left(\infty, B_{e}\left(r_{e}\right)\right)+\sum_{j=1}^{k} \bar{N}_{f}\left(d_{j}, B_{e}\left(r_{e}\right)\right)-N_{0, \partial \gamma^{\gamma_{1}}}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1) \\
& \leqslant \bar{N}_{\varphi}\left(B_{e}\left(r_{e}\right)\right)+\sum_{j=3}^{k_{0}} \bar{N}_{g}\left(d_{t(j)}, B_{e}\left(r_{e}\right)\right) \\
& \quad+N_{0, \partial \gamma_{1} g}\left(B_{e}\left(r_{e}\right) ; C\right)-N_{0, \partial \gamma_{1} f}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+O(1)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& (k-1) H_{g}\left(B_{e}\left(r_{e}\right)\right) \\
\leqslant & \bar{N}_{\varphi}\left(B_{e}\left(r_{e}\right)\right)+\sum_{j=3}^{k_{0}} \bar{N}_{f}\left(d_{t(j)}, B_{e}\left(r_{e}\right)\right) \\
& +N_{0, \partial^{\gamma_{1}} f}\left(B_{e}\left(r_{e}\right) ; C^{\prime}\right)-N_{0, \partial^{\gamma_{1}} g}\left(B_{e}\left(r_{e}\right)\right)-\log r_{e}+0(1)
\end{aligned}
$$

Summing up these inequalities and using Theorem 2.5 we get

$$
\begin{aligned}
& (k-1)\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)\right) \\
& \leqslant 2\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)\right) \\
& \quad+\left(k_{0}-2\right)\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)\right)-2 \log r_{e}+O(1) .
\end{aligned}
$$

So

$$
\left(k-k_{0}-1\right)\left(H_{f}\left(B_{e}\left(r_{e}\right)\right)+H_{g}\left(B_{e}\left(r_{e}\right)\right)\right)+2 \log r_{e} \leqslant O(1)
$$

From this we have $k_{0}>k-1$. Hence $k_{0}=k$.
Case 2. $k_{0}=0$. Set $\varphi=\frac{1}{f}-\frac{1}{g}$. As in the proof of Theorem 4.4, we obtain $k<3$, a contradiction. So $k_{0} \neq 0$.

Case 3. $k_{0}=1$. Then there exists a unique element (ℓ, h) such that $P\left(d_{\ell}\right)=$ $c P\left(d_{h}\right)$. Set

$$
\varphi=\frac{1}{f}-\frac{d_{h}}{d_{\ell} g}
$$

Using Theorem 3.2 and by using the same assymptions as in the proof of Theorem 4.4, we obtain $k<3$, a contradiction. So $k_{0} \neq 1$.

Hence, the proof of Lemma 4.7 is complete.
Lemma 4.8. Under the assymptions of Theorem 4.6, we have $k_{0}=k$.
Proof. We consider the following cases:

Case 1. $f=\frac{c_{0} g+c_{1}}{c_{2} g+c_{3}}$.
By $P(f)=c P(g)$, and f and g are not constants, $c_{2}=0$ and $c_{3} \neq 0$. Then $f=$ $a g+b$ with $a=\frac{c_{0}}{c_{3}}, b=\frac{c_{1}}{c_{3}}$ and $a \neq 0$. Since $P(f)=c P(g), P(a g+b)=c P(g)$.
From this we have

$$
a P^{\prime}(a g+b)=c P^{\prime}(g)
$$

Thus

$$
a^{q}\left(g-\frac{d_{1}-b}{a}\right)^{q_{1}} \ldots\left(g-\frac{d_{k}-b}{a}\right)^{q_{k}}=c\left(g-d_{1}\right)^{q_{1}} \ldots\left(g-d_{k}\right)^{q_{k}} .
$$

This implies that there exists a permutation $(t(1), \ldots, t(k))$ of $(1, \ldots, k)$ such that

$$
d_{t(1)}=\frac{d_{1}-b}{a}, \ldots, d_{t(k)}=\frac{d_{k}-b}{a} .
$$

Then

$$
c P\left(d_{t(\ell)}\right)=c P\left(\frac{d_{\ell}-b}{a}\right)=P\left(a \frac{d_{\ell}-b}{a}+b\right)=P\left(d_{\ell}\right)
$$

for all $\ell=1, \ldots, k$. So $k=k_{0}$.
Case 2. $f \neq \frac{c_{0} g+c_{1}}{c_{2}+c_{3}}$.
By Lemma 4.7, $k=k_{0}$.
Thus Lemma 4.8 is proved.
Lemma 4.9. Let $k \geq 3$ and $P(x)$ satisfy the condition (H). If there are two distinct non-constant meromorphic functions f and g on \mathbb{C}_{p}^{m} such that $P(f)=$ $c P(g)$ for some non-zero constant, then there exists a permutation $\left(t_{(1)}, \ldots, t_{(k)}\right)$ of $(1, \ldots, k)$ such that

$$
c=\frac{P\left(d_{1}\right)}{P\left(d_{t(1)}\right)}=\cdots=\frac{P\left(d_{k}\right)}{P\left(d_{t(k)}\right)} .
$$

Proof. Lemma 4.9 follows from Lemma 4.8.
We now continue to prove Theorem 4.6. Assume $P(f)=c P(g)$. If $c=1$, then by Theorem 4.4, $f=g$. If $c \neq 1$, by Lemma 4.9 there exists a permutation $(t(1), \ldots, t(k))$ of $(1, \ldots, \mathrm{k})$ such that

$$
c=\frac{P\left(d_{1}\right)}{P\left(d_{t(1)}\right)}=\cdots=\frac{P\left(d_{k}\right)}{P\left(d_{t(k)}\right)} \neq 1 .
$$

Since P satisfies the condition (G), we obtain

$$
c=\frac{P\left(d_{1}\right)+P\left(d_{2}\right) \cdots+P\left(d_{k}\right)}{P\left(d_{t(1)}\right)+P\left(d_{t(2)}\right)+\cdots+P\left(P_{t(k)}\right)}=1
$$

and we get a contradiction. The proof of Theorem 4.6 is complete.
Theorem 4.10. Let $P(x) \in \mathbb{C}_{p}[x]$ be a polynomial having no multiple zero. Let $P(x)$ satisfy the conditions (H) and (G) and $k \geq 3$ be derivative index of $P(x)$. Let S be the set of roots of $P(x)=0$ and $u \in\left(\mathbb{C}_{p} \backslash S\right), u \neq 0$. Then $(S,\{u\})$ is a bi-URS for p-adic meromorphic functions on \mathbb{C}_{p}^{m}.

Proof. Without loss of generality, we may assume that $u=\infty$. Suppose that f and g are two non-constant meromorphic functions on \mathbb{C}_{p}^{m} satisfying $E_{i}(f, S)=E_{i}(g, S), E_{i}(f, \infty)=E_{i}(g, \infty)$, for all $i=1, \ldots, m$. By Theorem 4.1, $P(f) / P(g)=c$ for some non-zero constant. By Theorem 4.6, $P(x)$ is a strong uniqueness polynomial for p-adic meromorphic function on \mathbb{C}_{p}^{m}. Thus $f=g$. So $(S,\{u\})$ is a bi-URS for p-adic meromorphic functions on \mathbb{C}_{p}^{m}.

Acknowledgments. The authors would like to thank Professor Ha Huy Khoai and the referee for many helpful comments and suggestions.

References

1. Vu Hoai An, p-adic Poisson-Jensen formula in several variables, Vietnam J. Math. 30 (2002), 43-54.
2. Vu Hoai An, Height of p-adic holomorphic maps in several variables and applications, Acta Math. Vietnam. 27 (2002), 257-269.
3. Vu Hoai An and Doan Quang Manh, p-adic Nevanlinna-Cartan theorem in several variables for Fermat type hypersurfaces, East-West J. Math. 4 (2002), 87-99.
4. Vu Hoai An and Doan Quang Manh, The "ABC" Conjecture for p-adic entire function of several variables, Southeast Asian Bulletin of Mathematics 27 (2004), 959-972.
5. W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), 5043-5071.
6. P. C. Hu and C. C. Yang, Meromorphic Functions over non-Archimedean Fields, Kluwer Academic publishers, 2000.
7. Ha Huy Khoai, La hauteur des fonctions holomorphes p-adiques de plusieurs variables, C.R.A.Sc. Paris 312 (1991), 751-754.
8. Ha Huy Khoai and Vu Hoai An, Value distribution on p-adic hypersurfaces, Taiwanese J. Math. 7 (2003), 51-67.
9. Ha Huy Khoai and Ta Thi Hoai An, On uniqueness polynomials and bi-URS for p-adic meromorphic functions, J. Number Theory 87 (2001), 211-221.
10. Ha Huy Khoai and Mai Van Tu, p-adic Nevanlinna-Cartan Theorem, Internat. J. Math. 6 (1995), 719-731.
11. J.T-Y. Wang, Uniqueness polynomials and bi-unique range sets for rational functions and non-archimedean meromorphic functions, Acta Arith. 104 (2002), 183200.
