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1. Introduction

One of the fundamental concepts in control theory is that of controllability.
The linear control system ẋ = Ax + Bu, x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, or
equivalently the pair (A,B) is said to be controllable if for any initial state
x(0) = x0 and any desired final state x1, there exist T > 0 and a measurable
control function u(t) ∈ Rn×m, 0 ≤ t ≤ T such that x(T ) = x1. It is well-known
[7] that the pair (A,B) is controllable if and only if

rank[A− λI,B] = n, ∀λ ∈ C. (1.1)

As pointed out by Lee and Markus [12] the set ΓK of all uncontrollable pairs
(A,B) ∈ L(Kn+m,Kn), K = R or K = C is closed. Therefore, for a controllable
pair (A,B), one can define its controllability radius by introducing a number

µK(A,B) = inf
(C,D)∈ΓK

‖(A,B) − (C,D)‖, (1.2)
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which can be considered as robustness measure of controllability of the given
pair. The problem of estimating and calculating (1.2) is of great interest in
research and application of control theory and has attracted a good deal of
attention over last decades (see, e.g [3 - 6]). One of the most remarkable results
was due Eising [3] which has shown that

µC(A,B) := min{‖[∆A ∆B]‖ : (A+∆A,B+∆B) ∈ ΓC} = σn[A−λI B] (1.3)

where ‖ · ‖ denotes the 2-norm or Frobenius norm and σn[A − λI B] denotes
the nth largest singular value of the n × (n + m) matrix [A − λI B]. This is a
global nonsmooth optimization problem in two real variables Reλ and Imλ, the
real and imaginary parts of λ. The formula for calculating real controllability
radius µR(A,B) have been established by De Carlo-Wicks [2] and Hu-Davison
[9]. Recently, the problem of calculation the distance from uncontrollability was
considered in [13] for convex processes.

In this paper we shall consider the robustness of controllability of linear
systems with constrained controls of the form

ẋ(t) = Ax(t) + Bu(t), x(t) ∈ Rn, u(t) ∈ Ω ⊂ Rm, (1.4)

under the assumption that the control set Ω is subject to perturbations.

In the next section we shall introduce some preliminary results and notation
we need in the paper. In Sec. 3 we derive some formulas for estimating and
calculating the controllability radius of the triple (A,B,Ω) when the control set
Ω is perturbed. In Sec. 4 we provide some examples to illustrate the obtained
results.

2. Preliminaries

We will use the following notations: throughout the paper, Rn (Cn) denotes
the real (resp., complex) Euclidean space with the usual inner product

〈
., .
〉

and with the norm ‖x‖ =
〈
., .
〉1/2

. If f ∈ Cn and x ∈ Rn we shall write〈
f, x
〉

=
〈
Ref, x

〉
+ ı

〈
Imf, x

〉
. We say that vector f ∈ Rn (resp., f ∈ Cn) is

supporting (resp., orthogonal) to a set V ⊂ Rn if
〈
f, u
〉
≤ 0, ∀u ∈ V (resp.,〈

f, u
〉

= 0, ∀u ∈ V ). The set of all supporting vectors (resp., orthogonal vectors)
of V is denoted by V o (resp. by V ⊥). They are cones with the vertices at the
origin and are convex if V is a convex set. The set V + = −V o is called the dual
cone of V . The subspace spanned by V is denoted by spanV : spanV = V − V .
If A ∈ Rn×n, A∗ denotes the transpose of A and σ(A) the set of all eigenvalues
of A. The nullspace of A is KerA = {x ∈ Rn : Ax = 0}. The norm of matrices
A ∈ Rn×n is an operator norm induced by Euclidean vector norms on Rn and
Rm : ‖A‖ = max{‖Ax‖ : ‖x‖ = 1}.

Let C1, C2 ⊂ Rn are closed convex cones with vertices at the origin. Then
we define the gap of C1 w.r.t C2 as

ρ(C1, C2) = sup
{
d(x,C2) : x ∈ C1, ‖x‖ = 1

}
,
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where d(x,C) denotes the distance from x to C : d(x,C) = infc∈C ‖x− c‖. We
put ρ(0, C2) = 0. The following properties are immediate from the definition:
(i) ρ(C1, C3) ≤ ρ(C1, C2) + ρ(C2, C3); (ii) ρ(C1, C2) = 0 ⇔ C1 ⊂ C2; and (iii)
ρ(C1, C2) ≤ 1.

We also need the following technical results. Their proofs are straightforward
and are therefore omitted.

Lemma 2.1. Let C1, C2 ⊂ Rn be closed convex cones. Then the following
statements are equivalent:
(i) ρ(C1, C2) = 1;
(ii) ∃x ∈ C1 : d(x,C2) = 1;
(iii) ∃x ∈ C1, x 6= 0 :

〈
x, u

〉
≤ 0, ∀u ∈ C2, or equivalently, C1 ∩Co

2 6= {0}.

Lemma 2.2. Let C1, C2 ⊂ Rn be closed convex cones with the vertices at the
origin. Then

ρ(C1, C2) = ρ(C+
2 , C

+
1 ). (2.1)

Lemma 2.3. Let x ∈ Rn and C ⊂ Rn be a closed convex cone with the vertex
at the origin. Then

min{d(x,C), d(−x,C)} = inf
u∈C:‖u‖=1

√
‖x‖2 −

〈
x, u

〉2

=

√√√√‖x‖2 −
(

sup
u∈C:‖u‖=1

|
〈
x, u

〉
|
)2

.

Denote

ξC(x) =

√√√√‖x‖2 −
(

sup
u∈C:‖u‖=1

|
〈
x, u

〉
|
)2

and for 0 ≤ l ≤ 1 define

ψC(x, l) = max
{

0, ξC(x)
√

1 − l2 − l
√

‖x‖2 − ξC(x)2
}
.

Lemma 2.4. Let C ⊂ Rn be a closed convex cone with the vertex at the origin.
Let a ∈ Rn, ‖a‖ = 1 and d(a,C) ≤ l, 0 ≤ l ≤ 1. Then, for all x ∈ Rn, we have

inf
t∈R

‖x− ta‖ ≥ ψC(x, l).
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3. Formulas for Controllability Radius

Consider the linear control system with constrained controls of the form

ẋ(t) = Ax(t) + Bu(t), x(t) ∈ Rn, u(t) ∈ Ω ⊂ Rm, (3.1)

where A ∈ Rn×n, B ∈ Rn×m and Ω ⊂ Rm is a closed convex cone with the vertex
at the origin, having non-empty interior: intΩ 6= ∅. In what follows we shall
denote the system (3.1) by (A,B,Ω). The controls function u(t), 0 ≤ t ≤ T is
said to be admissible on [0, T ] if u(·) is integrable and u(t) ∈ Ω a.e. on [0, T ]. The
system (3.1) is said to be controllable if for any x ∈ Rn there exist T > 0 and
an admissible control u(t) such that the corresponding solution x(t) := xu(t)
of (3.1) satisfy x(0) = 0, x(T ) = x. It is well-known (see, e.g. [1, 11]) that
the system with constrained controls (A,B,Ω) is controllable if and only if the
following two conditions are satisfied:

(i) span{BΩ, ABΩ, ..., An−1BΩ} = n and
(ii) Ker(A∗ − λI) ∩ (BΩ)+ = {0}, ∀λ ∈ R.

(3.2)

It is easy to show that (3.2) is equivalent to

(i) span{BΩ, ABΩ, ..., An−1BΩ} = n and
(ii)’ B∗Ker(A∗ − λI) ∩ Ω+ = {0}, ∀λ ∈ R.

(3.3)

Now, assume that system (A,B,Ω) is controllable and the control set Ω is sub-
jected to perturbations as follows

Ω −→ Ω̃, intΩ̃ 6= ∅. (3.4)

where Ω̃ is a closed convex cone with the vertex at the origin. We note that the
gap between Ω and Ω̃ is measured by ρ(Ω, Ω̃) and ρ(Ω̃,Ω). However, if ρ(Ω, Ω̃) =
0, which means equivalently Ω ⊂ Ω̃, then all triples (A,B, Ω̃) are controllable.
Thus, the gap ρ(Ω, Ω̃) is namely defining the robustness of controllability of the
system (A,B,Ω) when the control set Ω is perturbed.

Definition 3.1. Controllability radius of the system (A,B,Ω) with respect to
the perturbation (3.4) is defined as

rA,B(Ω) = inf{ρ(Ω, Ω̃) : intΩ̃ 6= ∅, (A,B, Ω̃) uncontrollable}. (3.5)

For the sake of convenience, let us introduce the following notation: σR(A∗) =
σ(A∗)∩R -the set of all real eigenvalues of A∗, Mλ = {v ∈ (Rm)∗ : ‖v‖ = 1, v ∈
B∗Ker(A∗ − λI)} and MΩ+ = {v ∈ (Rm)∗ : ‖v‖ = 1, v ∈ Ω+}.
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Theorem 3.2. Assume σR(A∗) 6= ∅. Then the controllability radius of the
system (A,B,Ω) with respect to the perturbation (3.4) is given by

rA,B(Ω) = inf{d(v,Ω+) : v ∈ Mλ, λ ∈ σR(A∗)}

= min
λ∈σR(A∗)

inf
v∈Mλ,u∈MΩ+

√
‖v‖2 −

〈
v, u
〉2

= min
λ∈σR(A∗)

inf
v∈Mλ

√
‖v‖2 −

(
sup

u∈MΩ+

|
〈
v, u
〉
|
)2
.

If σR(A∗) = ∅, the perturbation (3.4) of the control set does not affect controlla-
bility of the system (3.1) and we put rA,B(Ω) = 1.

Proof. Assume σR(A∗) 6= ∅. Let (A,B, Ω̃) be uncontrollable. Since intΩ̃ 6= ∅,
the condition (i) of (3.3) holds and therefore the condition (ii) is violated, which
means

∃λ0 ∈ R s.t. B∗Ker(A∗ − λ0I) ∩ Ω̃+ 6= {0}

It follows λ0 ∈ σR(A∗) and there exists v0 ∈ B∗Ker(A∗ − λ0I) ∩ Ω̃+ such that
‖v0‖ = 1. Thus, taking into account (2.1), we can write, for all convex cones
Ω̃ ⊂ Rm (with intΩ̃ 6= ∅) such that the triple (A,B, Ω̃) is uncontrollable,

ρ(Ω, Ω̃) = ρ(Ω̃+,Ω+)

= sup
{
d(v,Ω+) : v ∈ Ω̃+, ‖v‖ = 1

}

≥ d(v0,Ω+)
≥ inf

{
d(v,Ω+) : v ∈ B∗Ker(A∗ − λI), ‖v‖ = 1, λ ∈ σR(A∗)

}
.

Consequently, by the definition of rA,B(Ω), we get

rA,B(Ω) ≥ inf
{
d(v,Ω+) : v ∈ B∗Ker(A∗ − λI), ‖v‖ = 1, λ ∈ σR(A∗)

}
. (3.6)

To prove the converse inequality of (3.6), noticing that that the set Mλ = {v ∈
B∗Ker(A∗ − λI) : ‖v‖ = 1} is compact, σR(A∗) is finite and d(v,Ω+) is a
continuous function of v, we obtain that ∃λ0 ∈ σR(A∗), ∃v0 ∈ Mλ0 such that

d(v0,Ω+) = min{d(v,Ω+) : v ∈Mλ, λ ∈ σR(A∗)}.

Consider the convex cone K := {tv0 : t ∈ R, t ≥ 0}. Then we have ρ(K,Ω+) =
d(v0,Ω+) and

(K+)+ ∩B+(Ker(A∗ − λ0I)) = K 6= {0}.

Moreover, clearly intK+ 6= ∅. Therefore, the triple (A,B,K+) is uncontrollable.
This implies, by definition,

rA,B(Ω) = inf
{
ρ(Ω̃+,Ω+) : ∃λ ∈ R s.t.B∗Ker(A∗ − λI) ∩ Ω̃+ 6= {0}

}

≤ρ((K+)+,Ω+) = ρ(K,Ω+) = d(v0,Ω+)
= inf

{
d(v,Ω+) : v ∈ B∗Ker(A∗ − λI)), ‖v‖ = 1, λ ∈ σR(A∗)

}
.
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Therefore, by definition and using Lemma 2.3, we have

rA,B(Ω) = inf
{
d(v,Ω+) : v ∈ B∗(Ker(A∗ − λI), ‖v‖ = 1, λ ∈ σ(A∗) ∩ R

}

= inf
{
d(v,Ω+) : v ∈ Mλ, λ ∈ σR(A∗)

}

= min
λ∈σR(A∗)

inf
v∈Mλ

min
{
d(v,Ω+), d(−v,Ω+)

}

= min
λ∈σR(A∗)

inf
v∈Mλ,u∈MΩ+

√
‖v‖2 −

〈
v, u
〉2

= min
λ∈σR(A∗)

inf
v∈Mλ

√
‖v‖2 −

(
sup

u∈MΩ+

|
〈
v, u
〉
|
)2
.

The proof is complete. �

For a given number l, 0 ≤ l ≤ 1, we define the set of convex cones in Rn×m

with vertices at the origin which are obtained from the original control set Ω by
perturbations with tolerance level less than l, by setting

Gl = Gl(Ω) = {Ω̃ : Ω̃ is convex cone in Rm, intΩ̃ 6= ∅, ρ(Ω, Ω̃) ≤ l}.

We consider now the problem of calculating the controllability radius of linear
system (A,B,Ω) under the assumption that the system matrices A,B and the
control set Ω are perturbed as follows

A −→ A + ∆1, ∆1 ∈ Rn×n,

B −→ B + ∆2, ∆2 ∈ Rn×m, (3.7)

Ω −→ Ω̃, Ω̃ ∈ Gl(Ω).

Definition 3.3. Choose a tolerance level l ∈ [0, 1]. The controllability radius of
the system (A,B,Ω) described by (3.1) with respect to perturbations of the form
(3.7) is defined by

rl(A,B,Ω) = inf
{
‖[∆1,∆2]‖ : ∃Ω̃ ∈ Gl s.t. (A+∆1, B+∆2, Ω̃) uncontrollable

}
.

Define

H∗
λ =

[
A∗ − λI
B∗

]
(Rn)∗ → (Rn+m)∗, Ω̂+ =

{[
0
v

]
: v ∈ Ω+

}
⊂ (Rn+m)∗.

The following result can be easily verified by using the controllability criteria
(1.1) and (3.2).

Proposition 3.4. The system (A,B,Ω) is controllable if and only if
(i) span{BΩ, ABΩ, . . . , An−1BΩ} = Rn;
(ii) H∗

λ(N ) ∩ Ω̂+ = ∅, ∀λ ∈ R,
where N = {f ∈ (Rn)∗ : ‖f‖ = 1} -the unit sphere in (Rn)∗.
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Let Ω ⊂ Rm be a closed convex cone with the vertex at the origin and
intΩ 6= ∅. Then, it is clear that the condition (i) in Proposition 3.4 is equivalent
to controllability of the pair (A,B) or, equivalently, the Kalman rank condition
holds: rank[B,AB, . . . , An−1B] = n. Let us denote by r”(A,B, l) the radius of
property (ii) in Proposition 3.4 under the perturbations of the form (3.7):

r”(A,B, l) = inf{‖[∆1,∆2]‖ : ∃Ω ∈ Gl, ∃λ ∈ R s.t. H∗
λ,∆(N ) ∩ Ω̂+ 6= ∅}

where Hλ,∆ =
[
A∗ + ∆∗

1 − λI
B∗ + ∆∗

2

]
. Then, it is obvious that for a given tolerance

level l, the controllability radius of the system (A,B,Ω) under the perturbations
of the form (3.7) can be calculated by the following formula:

rl(A,B,Ω) = min{µR(A,B); r”(A,B, l)}. (3.8)

Since the formula for computing µR(A,B) have been established in the previous
works (see, e.g. [2, 9]), the problem is reduced to deriving the calculation of
r”(A,B, l). To this end, let us define, as in Sec. 2,

ξΩ+ (v) =
√

‖v‖2 −
(

sup
u∈MΩ+

|
〈
v, u
〉
|
)2

(where MΩ+ = {v ∈ Ω+ : ‖v‖ = 1}) and for 0 ≤ l ≤ 1 define

ψΩ+(v, l) = max
{

0; ξΩ+(v)
√

1 − l2 − l
√

‖v‖2 − ξΩ+(v)2
}
.

Theorem 3.5. Choose a tolerance level l ∈ [0, 1]. The controllability radius of
the system (A,B,Ω) with respect to the perturbations of the form (3.7) is given
by (3.8) where

r”(A,B, l) = inf
f∈N

√
ψΩ+(B∗f, l)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
,

(N denoting the unit sphere in (Rn)∗).

Proof. Let the perturbation (∆1,∆2, Ω̃) with d(Ω, Ω̃) ≤ l violates the property
(ii) in Proposition 3.4, that is, for some λ ∈ R, f ∈ N, v ∈ Ω̃+ we have

Hλ,∆f =
[
A∗ + ∆∗

1 − λI
B∗ + ∆∗

2

]
f =

[
0
v

]
.

It implies

‖[∆1,∆2]‖ =
∥∥∥∥
[

∆∗
1

∆∗
2

]∥∥∥∥ ≥
∥∥∥∥
[

∆∗
1

∆∗
2

]
f

∥∥∥∥

=
∥∥∥∥
[

(A∗ − λI)f
B∗f − v

]∥∥∥∥

=
√

‖(A∗ − λI)f‖2 + ‖B∗f − v‖2.
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We have

‖(A∗ − λI)f‖ =
√

‖A∗f‖2 − 2λ
〈
A∗f, f

〉
+ λ2

=
√

‖A∗f‖2 −
〈
A∗f, f

〉2 + (λ −
〈
A∗f, f

〉
)2

≥
√

‖A∗f‖2 −
〈
A∗f, f

〉2
.

If v = 0 then ‖B∗f − v‖ = ‖B∗f‖ ≥ ξΩ+ (B∗f) ≥ ψΩ+(B∗f, l). Assume v 6= 0.
Since v ∈ Ω̃+ and by Lemma 2.2, d(Ω̃+,Ω+) = d(Ω, Ω̃) ≤ l, we have d( v

‖v‖ ,Ω
+) ≤

l. It implies, by Lemma 2.4, ‖B∗f − v‖ ≥ ψΩ+(B∗f, l) and thus

‖[∆1,∆2]‖ =
∥∥∥∥
[

∆∗
1

∆∗
2

]∥∥∥∥ ≥ inf
f∈N

√
ψΩ+ (B∗f, l)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
.

Noticing that the above inequality has been established for all perturbations
(∆1,∆2) for which there exists Ω̃, d(Ω, Ω̃) ≤ l and the property (ii) in Proposi-
tion 3.4 is violated, we get, by definition,

r′′(A,B, l) ≥ inf
f∈N

√
ψΩ+(B∗f, l)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
.

To prove the converse inequality, we define a function on (Rn)∗ be setting for
each f ∈ (Rn)∗,

g(f) = inf
f∈N

√
ψΩ+ (B∗f, l)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
.

Since g(·) is continuous, there exists f0 ∈ N such that g(f0) = inff∈N g(f).
Suggest first ψΩ+(B∗f0, l) = 0. If B∗f0 = 0 the we set

Ω̃ = Ω, λ0 =
〈
A∗f0, f0

〉
,∆∗

2 ≡ 0,

∆∗
1f =

〈
f, f0

〉 (〈
A∗f0, f0

〉
− A∗f0

)
, ∀f ∈ (Rn)∗.

Then, for the perturbations ∆1 = (∆∗
1)

∗,∆2 = (∆∗
2)

∗ we have obviouslyH∗
λ0,∆f0 =[

0
0

]
∈ Ω̂+ and

‖[∆1,∆2]‖ =
∥∥∥∥
[

∆∗
1

∆∗
2

]∥∥∥∥ = ‖∆∗
1‖ = g(f0).

If B∗f0 6= 0 then
ξΩ+(B∗f0)
‖B∗f0‖

≤ l. By Lemma 2.3, we have

min
{
d(B∗f0,Ω+), d(−B∗f0,Ω+)

}
= ξΩ+ (B∗f0) ≤ l‖B∗f0‖.

Since g(f0) = g(−f0) it implies d
(

B∗f0
‖B∗f0‖

,Ω+

)
≤ l. We set

Ω̃+ =
{
t
B∗x0

‖B∗x0‖
: t ≥ 0

}
, λ0 =

〈
A∗x0, x0

〉
, ∆∗

2 ≡ 0,
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∆∗
1f =

〈
f, f0

〉 (〈
A∗f0, f0

〉
− A∗f0

)
, ∀f ∈ (Rn)∗.

Then, it is easily to verify that for the triple (∆1,∆2, Ω̃) the property (ii) is
violated and

d(Ω, Ω̃) ≤ l ‖[∆1,∆2]‖ = g(f0).

Finally, consider the case ψΩ+(B∗f0, l) > 0. Then
ξΩ+ (B∗f0)
‖B∗f0‖

> l and we have,

by Lemma 2.3,

ξΩ+(B∗f0) =

√√√√‖B∗f0‖2 −
(

sup
u∈MΩ+

|
〈
B∗f0, v

〉
|
)2

= min
{
d(B∗f0,Ω+), d(−B∗f0,Ω+)

}
.

Let e ∈ MΩ+ such that

∣∣〈B∗x0, e
〉∣∣ = sup

v∈MΩ+

∣∣〈B∗f0, v
〉∣∣

We assume
〈
B∗f0, e

〉
=
∣∣〈B∗f0, e

〉∣∣ ≥ 0 (otherwise one can take B∗f0 = −B∗f0)
and we define a vector w ∈ (Rm)∗ by setting

w =
l

ξΩ+(B∗f0)
B∗f0 +

ψΩ+(B∗f0, l)
ξΩ+ (B∗f0)

e.

Then, by a direct calculation, it can be verified that

‖w‖ = 1, ‖B∗f0 −
〈
B∗f0, w

〉
w‖ = ψΩ+(B∗f0, l).

We define
Ω̃+ = {tw : t ≥ 0}, λ0 =

〈
A∗x0, x0

〉
,

∆∗
1f =

〈
f, f0

〉
(
〈
A∗f0, f0

〉
−A∗f0), ∆∗

2f =
〈
f, f0

〉〈
B∗f0, w

〉
w, ∀f ∈ (Rn)∗

and we put
Ω̃ := Ω̃+, ∆1 := (∆∗

1)
∗, ∆2 := (∆∗

2)
∗.

Then, it is obvious that the triple (∆1,∆2, Ω̃) is violating the property (ii) and

d(Ω, Ω̃) = l, ‖[∆1,∆2]‖ = g(f0).

Consequently, we have

r′′(A,B, l) = g(x0) = inf
f∈N

√
ψΩ+(B∗f, l)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
.

The proof is complete. �
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Corollary 3.6. Assume that the control set is not perturbed, that is l = 0. Then
the real controllability radius of the system (A,B,Ω) where A,B are subject to
perturbations

A −→ A + ∆1, ∆1 ∈ Rn×n,

B −→ B + ∆2, ∆2 ∈ Rn×m,
(3.9)

is given by

r(A,B) = min
{
µR(A,B); inf

f∈N

√
ξΩ+(B∗f)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
}
,

with ξΩ+(B∗f) =

√√√√‖B∗f‖2 −

(
sup

v∈MΩ+

|
〈
B∗f, u

〉
|

)2

, whereMΩ+ = {v ∈ (Rm)∗ :

v ∈ Ω+, ‖v‖ = 1}.

4. Examples

In this section, for illustration, we shall apply the obtained results in Sec. 3 to
a particular case when the system matrix A is symmetric and the control set Ω
is a polyhedral cone in Rm.

It is well-known that if A ∈ Rn×n is a symmetric matrix (A = A∗), then for
the system without constraints on controls ẋ = Ax+Bu, the real controllability
radius is equal to the complex one and therefore, by Eising’s result [3],

µ(A,B) = µR(A,B) = µC(A,B) = inf
λ∈C

σmin[A− λI,B].

Let the control set Ω be a polyheral cone defined by

Ω =
{
x ∈ Rm :

〈
x, ei

〉
≥ 0, ∀i = 1, . . . , r

}
, (4.1)

where e1, e2, . . . , er ∈ Rm, ‖ei‖ = 1, ∀i = 1, . . . , r. Then, it is clear that

Ω+ =

{
r∑

i=1

tiei : ti ≥ 0, ∀i = 1, . . . , r

}
,

and therefore

ξΩ+(z) =





√
‖z‖2 − max

1≤i≤r

〈
z, ei

〉2 if z 6∈ −Ω+ ∪Ω+,

0 ifz ∈ −Ω+ ∪ Ω+.

By Theorem 3.2 we get

Corollary 4.1. Let the control set Ω be a polyhedral cone defined by (4.1). If
σR(A∗) 6= ∅ then the controllability radius of the system (A,B,Ω) with respect
to the perturbation (3.4) is given by

rA,B(Ω) = min
λ∈σR(A∗)

inf
v∈Mλ

√
‖v‖2 − max

1≤i≤r

〈
v, ei

〉2
.
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If σR(A∗) = ∅ then the perturbation (3.4) does not affect the controllability of
(A,B,Ω) and we write rA,B(Ω) = 1.

By Theorem 3.5 we get

Corollary 4.2. Let A ∈ Rn×n be a symmetric matrix and Ω ⊂ Rm a polyhedral
cone defined by (4.1). Then, for a chosen tolerance level l ∈ [0, 1], the controlla-
bility radius of the system (A,B,Ω) with respect to the perturbations of the form
(3.7) is given by

rl(A,B,Ω) = min{µR(A,B); r′′(A,B, l)},

with
µR(A,B) = inf

λ∈C
σmin[A− λI,B],

and
r′′(A,B, l) = inf

x∈N

√
ψΩ+(B∗f, l)2 + ‖A∗f‖2 −

〈
A∗f, f

〉2
,

where ψΩ+ (B∗f, l) = 0 if B∗f ∈ −Ω+∪Ω+ or max1≤i≤r |
〈
B∗f, ei

〉
| ≥

√
1 − l2‖B∗f‖,

and

ψΩ+(B∗f, l) =

√
(1 − l2)

(
‖B∗f‖2 − max

1≤i≤r

〈
B∗f, ei

〉2
)
− l max

1≤i≤r
|
〈
B∗f, ei

〉
|

if otherwise.

Consider the system (A,B,Ω) with

A =
[

0 1
1 0

]
, B =

[
2 −3
0 2

]
,

and Ω is a positive cone in R2 :

Ω = R2
+ = {x ∈ R2 :

〈
x, e1

〉
≥ 0,

〈
x, e2

〉
≥ 0}

with

e1 =
(

1
0

)
, e2 =

(
0
1

)
.

Then the system satisfies the rank condition of Kalman:

rank[B,AB] = rank
[

2 −3 0 2
0 2 2 −3

]
= 2. (4.2)

Moreover, σ(A∗) = σ(A) = {1;−1} and Ker(A∗ ± I) = {α[±1 1]> : α ∈ R}. It
follows that B∗Ker(A∗ ± I) ∩ Ω+ = {0} so that the system (A,B,Ω) is control-
lable, due to [11], [1]. Using Corollary 4.1, we can calculate the controllability
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radius of the system (A,B,Ω) with respect to perturbation (3.4) of the control
set Ω and we get

rA,B(Ω) = 2/
√

29 ≈ 0.37.

Furthermore, since A is symmetric, we have

µR(A,B) = µC(A,B)
= inf

λ∈C
σmin[A− λI,B]

= inf
λ∈C

√
σmin

[
|λ|2 + 14 −2Reλ − 6

−2Reλ − 6 |λ|2 + 5

]
(4.3)

= inf
λ∈C

√
(λ)2 + (Reλ)2 + 19/2 −

√
4(Reλ+ 3)2 + 81/4

= inf
t∈R

√
t2 + 19/2−

√
4t2 + 24t+ 225/4

≈ 1.14

Taking the tolerance level l = 0.25 < rA,B(Ω) = 0.37 and using Corollary 4.2, we
get, by a simple calculation, r′′(A,B, 0.25) ≈ 0.18. Therefore, the controllability
radius of the system (A,B,Ω) with respect to perturbations of the form (3.7),
with the tolerance level l = 0.25, is given by

r0.25(A,B,Ω) = min{µR(A,B); r′′(A,B, 0.25)} ≈ min{1.14; 0.18}= 0.18.
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