Vietnam Journal of MATHEMATICS © VAST 2008

On Maps and Generalized Λ_b -Sets

N. Rajesh

Department of Mathematics, Kongu Engineering College Perundurai, Erode-638 052, TamilNadu, India

> Received September 20, 2007 Revised April 18, 2008

Abstract. In this paper we define the concepts of $g.\Lambda_b$ -continuous maps, $g.\Lambda_b$ -irresolute maps and $g.V_b$ -closed maps by using generalized Λ_b -sets and generalized V_b -sets. Also we introduce a new class of topological spaces called T^{V_b} -spaces.

2000 Mathematics Subject Classification: 54C10, 54D10.

Key words: Topological spaces, b-open sets, b-closed maps, b-irresolute maps.

1. Introduction

The concept of b-open sets in a topological space was introduced by Andrijevic in [1]. One year later, this notion was called γ -open sets by El-Atik [5]. A subset A of a topological space (X, τ) is said to be b-open $(=\gamma$ -open [5]) if $A \subset Int(Cl(A)) \cup$ Cl(Int(A)), where Cl(A) denotes the closure of A and Int(A) denotes the interior of A in (X, τ) . The complement A^c of a b-open set A is called b-closed [1] $(=\gamma$ closed [5]). The family of all b-open (resp. b-closed) sets in (X, τ) is denoted by $BO(X,\tau)$ (resp. $BC(X,\tau)$). The intersection of all b-closed sets containing A is called the b-closure of A [1] and is denoted by bCl(A). Recently, Ekici introduced and studied the concept of b- R_0 [4] in topological spaces. A topological space (X,τ) is called a b-R₀-space if every b-open set contains the b-closure of each of its singletons. Quite recently Caldas et al. [3] used b-open sets to define and investigate the Λ_b -sets (resp. V_b -sets) which are intersections of b-open (resp. union of b-closed) sets. The purpose of the present paper is to introduce and study the concepts of $g.\Lambda_b$ -continuous map (which includes the class of b-continuous maps); $g.\Lambda_b$ -irresolute maps (defined as an analogy of b-irresolute maps) and $g.V_b$ -closed maps by using $g.\Lambda_b$ -sets and $g.V_b$ -sets. This definition enables us to

obtain conditions under which maps and inverse maps preserve $g.\Lambda_b$ -sets and $g.V_b$ -sets. Moreover, we introduce a new class of topological spaces called T^{V_b} -spaces and as an application, we show that the image of a T^{V_b} -space under a homeomorphism is a T^{V_b} -space.

2. Preliminaries

Throughout this paper, (X, τ) , (Y, σ) and (Z, ν) (or simply X, Y and Z) will always denote topological spaces on which no separation axioms are assumed, unless explicitly stated.

Definition 2.1. A map $f:(X,\tau)\to (Y,\sigma)$ is said to be *b-continuous* [5] (= γ -continuous [5]) (resp. *b-irresolute* [5](= γ -irresolute [5])) if for every $A\in\sigma$ (resp. $A\in BO(Y,\sigma)$) $f^{-1}(A)\in BO(X,\tau)$, or equivalently, f is *b*-continuous (resp. *b*-irresolute) if and only if for every closed set A (resp. *b*-closed set A) of (Y,σ) , $f^{-1}(A)\in BC(X,\tau)$.

Definition 2.2. A space topological (X, τ) is called a b- T_1 [3] if to each pair of distinct points x, y of (X, τ) there corresponds a b-open set A containing x but not y and a b-open set B containing y but not x, or equivalently, (X, τ) is a b- T_1 -space if and only if every singleton is b-closed.

Definition 2.3. Let B be a subset of a topological space (X, τ) . B is a Λ_b -set (resp. V_b -set) [3], if $B = B^{\Lambda_b}$ (resp. $B = B^{V_b}$), where

$$B^{\varLambda_b} = \bigcap \{O: O \supseteq B, O \in BO(X, \tau)\}$$

and

$$B^{V_b} = \bigcup \{F : F \subseteq B, F^c \in BO(X, \tau)\}.$$

Definition 2.4. In a topological space (X, τ) , a subset B is called

- (i) generalized Λ_b -set (or $g.\Lambda_b$ -set) of (X,τ) [3] if $B^{\Lambda_b} \subseteq F$ and $F \in BC(X,\tau)$.
- (ii) generalized V_b -set (or $g.V_b$ -set) of (X, τ) [3] if B^c is a $g.\Lambda_b$ -set of (X, τ) .

By S^{Λ_b} (resp. S^{V_b}) we will denote the family of all $g.\Lambda_b$ -sets (resp. $g.V_b$ -sets) of (X, τ) .

Proposition 2.5. [3] For some $\{B_{\Lambda} : \Lambda \in \Omega\}$, let A, B be subsets of a topological space (X, τ) . Then the following properties are valid:

- (a) $B \subseteq B^{\Lambda_b}$;
- (b) If $A \subseteq B$ then $A^{\Lambda_b} \subseteq B^{\Lambda_b}$;
- (c) $B^{\Lambda_b \Lambda_b} = B^{\Lambda_b}$;
- (d) $[\bigcup_{\Lambda \in \Omega} B_{\Lambda}]^{\Lambda_b} = \bigcup_{\Lambda \in \Omega} B_{\Lambda}^{\Lambda_b};$

- (e) If $A \in BO(X, \tau)$ then $A = A^{\Lambda_b}$ (i.e A is a Λ_b -set);
- $(f) (B^c)^{\Lambda_b} = (B^{V_b})^c;$
- $(g) B^{V_b} \subseteq B;$
- (h) If $B \in BC(X, \tau)$ then $B = B^{V_b}$ (i.e A is a V_b -set);
- $(i) \left[\bigcap_{\Lambda \in \Omega} B_{\Lambda}\right]^{\Lambda_b} \subseteq \bigcap_{\Lambda \in \Omega} B_{\Lambda}^{\Lambda_b};$
- $(j) \left[\bigcup_{\Lambda \in \Omega} B_{\Lambda} \right]^{V_b} \supseteq \bigcup_{\Lambda \in \Omega} B_{\Lambda}^{V_b};$

Proposition 2.6. [3] Let (X, τ) be a topological space. Then

- (a) Every Λ_b -set is a $q.\Lambda_b$ -set;
- (b) Every V_b -set is a $g.V_b$ -set;
- (c) If $B_{\Lambda} \in S^{\Lambda_b}$ for all $\Lambda \in \Omega$ then $\bigcup_{\Lambda \in \Omega} B_{\Lambda} \in S^{\Lambda_b}$;
- (d) If $B_{\Lambda} \in S^{V_b}$ for all $\Lambda \in \Omega$ then $\bigcup_{\Lambda \in \Omega} B_{\Lambda} \in S^{V_b}$.

Proposition 2.7. [3] A topological space (X, τ) is a b-T₁-space if and only if every subset is a Λ_b -set (or equivalently a V_b -set).

Corollary 2.8. Every b- T_1 -space is a b- R_0 -space.

3. $G.\Lambda_b$ -continuous Maps and $G.\Lambda_b$ -irresolute Maps

We introduce the following definition.

Definition 3.1. Let $f:(X,\tau)\to (Y,\sigma)$ be a map from a topological space (X,τ) into a topological space (Y,σ) . Then,

- (i) f is called generalized Λ_b -continuous map (abbrev. $g.\Lambda_b$ -continuous map) if $f^{-1}(A)$ is a $g.\Lambda_b$ -set in (X,τ) for every open set A of (Y,σ) ;
- (ii) f is called generalized Λ_b -irresolute map (abbrev. $g.\Lambda_b$ -irresolute map) if $f^{-1}(A)$ is a $g.\Lambda_b$ -set in (X,τ) for every $g.\Lambda_b$ -set of (Y,σ) .

Proposition 3.2. Let $f:(X,\tau)\to (Y,\sigma)$ be b-continuous. Then f is $g.\Lambda_b$ -continuous.

Proof. The proof follows from the fact that every b-open set is $g.\Lambda_b$ -set (Proposition 2.5(e) and Proposition 2.6(a)).

The converse needs not be true as seen from the following example.

Example 3.3. Let $X = Y = \{a, b, c\}, \ \tau = \{\varnothing, \{a, b\}, X\}$ and $\sigma = \{\varnothing, \{c\}, Y\}$. Then the identity map $f: (X, \tau) \to (Y, \sigma)$ is $g.\Lambda_b$ -continuous but not b-continuous.

Proposition 3.4. Let $f:(X,\tau)\to (Y,\sigma)$ be $g.\Lambda_b$ -irresolute. Then f is $g.\Lambda_b$ -continuous.

Proof. Since every open set is b-open and every b-open set is $g.\Lambda_b$ -set it proves that f is $g.\Lambda_b$ -continuous.

The converse needs not be true as seen from the following example.

Example 3.5. Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, \{a\}, X\}$ and $\sigma = \{\varnothing, \{a, b\}, Y\}$. The identity map $f : (X, \tau) \to (Y, \sigma)$ is $g.\Lambda_b$ -continuous but is not $g.\Lambda_b$ -irresolute since for the $g.\Lambda_b$ -set $\{b\}$ of (Y, σ) , the inverse image $f^{-1}(\{b\}) = \{b\}$ is not a $g.\Lambda_b$ -set of (X, τ) .

Theorem 3.6. A map $f:(X,\tau)\to (Y,\sigma)$ is $g.\Lambda_b$ -irresolute (resp. $g.\Lambda_b$ -continuous) if and only if, for every $g.\Lambda_b$ -set A (resp. closed set A) of (Y,σ) the inverse image $f^{-1}(A)$ is a $g.V_b$ -set of (X,τ) .

Proof. Necessity. If $f:(X,\tau)\to (Y,\sigma)$ is $g.\Lambda_b$ -irresolute, then every $g.\Lambda_b$ -set B of (Y,σ) , $f^{-1}(B)$ is a $g.\Lambda_b$ -set in (X,τ) . If A is any $g.V_b$ -set of (Y,σ) , then A^c is a $g.\Lambda_b$ -set. Thus $f^{-1}(A^c)$ is a $g.\Lambda_b$ -set, but $f^{-1}(A^c)=(f^{-1}(A))^c$ so $f^{-1}(A)$ is a $g.V_b$ -set.

Sufficiency. If, for all $g.V_b$ -sets of (Y, σ) , $f^{-1}(A)$ is a $g.V_b$ -set in (X, τ) , and if B is any $g.\Lambda_b$ -set of (Y, σ) , then B^c is a $g.V_b$ -set. Also $f^{-1}(B^c) = (f^{-1}(B))^c$ is a $g.V_b$ -set. Thus, $f^{-1}(B)$ is a $g.\Lambda_b$ -set.

In a similar way we prove the case f is $g.\Lambda_b$ -continuous.

Definition 3.7. A map $f:(X,\tau)\to (Y,\sigma)$ is called *pre-b-closed* (resp. *pre-b-open*), if $f(A)\in BC(Y,\sigma)$ (resp. $f(A)\in BO(Y,\sigma)$) for every $A\in BC(X,\tau)$ (resp. $A\in BO(X,\tau)$).

A bijection $f:(X,\tau)\to (Y,\sigma)$ is pre-b-open, if and only if, f is pre-b-closed.

Theorem 3.8. If a map $f:(X,\tau)\to (Y,\sigma)$ is bijective b-irresolute and pre-b-closed, then

- (i) for every $g.\Lambda_b$ -set B of (Y, σ) , $f^{-1}(B)$ is a $g.\Lambda_b$ -set of (X, τ) (i.e., f is $g.\Lambda_b$ irresolute);
- (ii) for every $g.\Lambda_b$ -set A of (X, τ) , f(A) is a $g.\Lambda_b$ -set of (Y, σ) (i.e., f is $g.\Lambda_b$ -open).
- *Proof.* (i) Let B be a $g.\Lambda_b$ -set of (Y, σ) . Suppose that $f^{-1}(B) \subseteq F$ where F is b-closed in (X, τ) . Therefore $B \subseteq f(F)$ and f(F) is b-closed, because f is pre-b-closed. Since B is a $g.\Lambda_b$ -set, $B^{\Lambda_b} \subseteq f(F)$, hence $f^{-1}(B^{\Lambda_b}) \subseteq F$. Therefore, we have $(f^{-1}(B))^{\Lambda_b} \subseteq f^{-1}(B^{\Lambda_b}) \subseteq F$. Hence $f^{-1}(B)$ is a $g.\Lambda_b$ -set in (X, τ) .
- (ii) Let A be a $g.\Lambda_b$ -set of (X,τ) . Let $f(A) \subseteq F$ where F is some b-closed set of (Y,σ) . Then $A \subseteq f^{-1}(F)$ and $f^{-1}(F)$ is b-closed because f is $g.\Lambda_b$ -irresolute. Since f is pre-b-open (f is bijective), $(f(A))^{\Lambda_b} \subseteq f(A^{\Lambda_b}) \subseteq F$. Hence f(A) is a $g.\Lambda_b$ -set in (Y,σ) .

Corollary 3.9. If a map $f:(X,\tau)\to (Y,\sigma)$ is bijective, b-irresolute and pre-b-closed, then

- (i) for every $g.V_b$ -set B of (Y, σ) , $f^{-1}(B)$ is a $g.V_b$ -set of (X, τ) ,
- (ii) for every $g.V_b$ -set A of (X, τ) , f(A) is a $g.V_b$ -set of (Y, σ) .

Definition 3.10. A topological space (X, τ) is a b- $T_{1/2}$ space if and only if every $g.V_b$ -set is a V_b -set.

Proposition 3.11. Under the same assumption of Theorem 3.8, if (X, τ) is b- $T_{1/2}$ then (Y, σ) is b- $T_{1/2}$.

Proof. By the above remark, it suffices to prove that every $g.V_b$ -set of (Y, σ) is a V_b -set. In fact, let B be a $g.V_b$ -set of (Y, σ) . Then by Corollary 3.9, $f^{-1}(B)$, say H, is a $g.V_b$ -set in (X, τ) . But (X, τ) is b- $T_{1/2}$ and so H is a V_b -set. By assumptions and Definition 2.3, $f(H) = f(H^{V_b}) \subseteq (f(H))^{V_b}$ which shows that $B = B^{V_b}$, i.e., B is a V_b -set.

Definition 3.12. (i) A map $f:(X,\tau)\to (Y,\sigma)$ is said to be *b-homeomorphism* [5] if f is bijective, *b*-irresolute and pre-*b*-closed;

(ii) A map $f:(X,\tau)\to (Y,\sigma)$ is said to be $g.\Lambda_b$ -homeomorphism if f is bijective, $g.\Lambda_b$ -irresolute and $g.\Lambda_b$ -open.

Corollary 3.13. The b-homeomorphic image of a b- $T_{1/2}$ space is b- $T_{1/2}$.

Corollary 3.14. Every b-homeomorphism is a $g.\Lambda_b$ -homeomorphism.

Remark 3.15. If $f:(X,\tau)\to (Y,\sigma)$ is a homeomorphism, then f is a b-homeomorphism, hence, we have that every homeomorphism is a $g.\Lambda_b$ -homeomorphism, the converse is not true in general. Let $X=Y=\{a,b,c\}$, and let $\tau=\{\varnothing,\{a\},\{a,b\},\{a,c\},X\}$ and $\sigma=\{\varnothing,\{a\},\{a,b\},Y\}$. Then the identity map $f:(X,\tau)\to (Y,\sigma)$ is a $g.\Lambda_b$ -homeomorphism, but it is not a homeomorphism.

Proposition 3.16.(i) If $f:(X,\tau) \to (Y,\sigma)$ is a $g.\Lambda_b$ -irresolute map and $h:(Y,\sigma) \to (Z,\nu)$ is a $g.\Lambda_b$ -continuous map, then the composition $h \circ f:(X,\tau) \to (Z,\nu)$ is $g.\Lambda_b$ -continuous;

(ii) If $f:(X,\tau)\to (Y,\sigma)$ and $h:(Y,\sigma)\to (Z,\nu)$ are both $g.\Lambda_b$ -irresolute, then the composition $h\circ f:(X,\tau)\to (Z,\nu)$ is a $g.V_b$ -irresolute map.

Proof. The proof follows directly from definitions.

4. $G.V_b$ -closed Maps and T^{V_b} -spaces

Now, we introduce a new class of map called $g.V_b$ -closed map. Let $f:(X,\tau) \to (Y,\sigma)$ be a map from a topological space (X,τ) into a topological space (Y,σ) .

Definition 4.1. A map $f:(X,\tau)\to (Y,\sigma)$ is called a generalized V_b -closed map (written as $g.V_b$ -closed map), if for each closed set F of X, f(F) is a $g.V_b$ -set.

Obviously, every b-closed map (i.e., $f(F) \in BC(Y, \sigma)$ for every closed F in (X, τ)) is a $g.V_b$ -closed map and the converse is not always true as the following example shows.

Example 4.2. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a and f(c) = b. Then f is $g.V_b$ -closed but not b-closed since for a closed set $\{b, c\}$ of (X, τ) , the image $f(\{b, c\}) = \{a, b\}$ is not b-closed.

Theorem 4.3. A map $f:(X,\tau)\to (Y,\sigma)$ is a $g.V_b$ -closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$, there is a $g.\Lambda_b$ -set V of Y such that $S\subset V$ and $f^{-1}(V)\subset U$.

Proof. Necessity. Let S be a subset of Y and let U be an open set of X such that $f^{-1}(S) \subset U$. Then $(f(U^c))^c$, say V, is a $g.\Lambda_b$ -set containing S such that $f^{-1}(V) \subset U$.

Sufficiency. Let F be an arbitrary closed set of X. Then, $f^{-1}((f(F))^c) \subset F^c$ and F^c is open. By hypothesis, there is a $g.\Lambda_b$ -set V of Y such that $(f(F))^c \subset V$ and hence $V^c \subset f(F) \subset f((f^{-1}(V))^c) \subset V^c$, which implies $f(F) = V^c$. Since V^c is a $g.V_b$ -set, f(F) is a $g.V_b$ -set and thus f is a $g.V_b$ -closed map.

Theorem 4.4. Let $f:(X,\tau) \to (Y,\sigma)$, $h:(Y,\sigma) \to (Z,\nu)$ be two mapping such that $h \circ f:(X,\tau) \to (Z,\nu)$ is a $g.V_b$ -closed map. Then,

- (i) if f is continuous and surjective, then h is $g.V_b$ -closed;
- (ii) if h is b-irresolute, pre-b-closed and bijective, then f is $g.V_b$ -closed.

Proof. (i) Let B be a closed set of Y. Since $f^{-1}(B)$ is closed in X, $(h \circ f)(f^{-1}(B))$ is a $g.V_b$ -set in Z and hence h(B) is a $g.V_b$ -set in Z. This implies that h is a $g.V_b$ -closed map.

(ii) Let F be a closed set of X. Then $(h \circ f)(F)$ is a $g.V_b$ -set in Z and $h^{-1}((h \circ f)(F))$ is a $g.V_b$ -set in Y using assumptions and Corollary 3.9. Since h is injective, $f(F) = h^{-1}((h \circ f)(F))$ is a $g.V_b$ -set in Y. Therefore f is $g.V_b$ -closed.

Theorem 4.5. (i) If $f:(X,\tau) \to (Y,\sigma)$ is a $g.V_b$ -closed map and $h:(Y,\sigma) \to (Z,\nu)$ is bijective, b-irresolute and pre-b-closed, then $h \circ f:(X,\tau) \to (Z,\nu)$ is $g.V_b$ -closed;

(ii) If $f:(X,\tau)\to (Y,\sigma)$ is a closed map and $h:(Y,\sigma)\to (Z,\nu)$ is a $g.V_b$ -closed map, then $h\circ f:(X,\tau)\to (Z,\nu)$ is $g.V_b$ -closed.

Proof. (i) Let F be an arbitrary closed set in (X, τ) . Then f(F) is a $g.V_b$ -set in (Y, σ) . Since h is bijective, b-irresolute and pre-b-closed, $(h \circ f)(F) = h(f(F))$ is a $g.V_b$ -set (Corollary 3.9(ii)).

(ii) The proof follows immediately from definitions.

Theorem 4.6. For a topological space (X, τ) , every singleton of X is a $g.\Lambda_b$ -set if and only if $A = A^{V_b}$ holds for every $A \in BO(X, \tau)$.

Proof. Necessity. Let A be a b-open set. Let $y \in A^c$, then $\{y\}^{A_b} \subset A^c$ by assumption. By using Proposition 2.5(d) we have $A^c \supseteq \bigcup \{\{y\}^{A_b} : y \in A^c\} = (A^c)^{A_b}$ and hence $A^c = (A^c)^{A_b}$. Then it follows from Proposition 2.5(f) that $A = A^{V_b}$.

Sufficiency. Let $x \in X$ and F be a b-closed set such that $\{x\} \subset F$. Since $F^c = (F^c)^{V_b} = (F^{\Lambda_b})^c$, we have $F = F^{\Lambda_b}$. Therefore we have $\{x\}^{\Lambda_b} \subset F^{\Lambda_b} = F$. Hence $\{x\}$ is a $g.\Lambda_b$ -set.

Recall that τ^{Λ_b} is the topology on X, generated by C^{Λ_b} in the usual manner [4], i.e., $\tau^{\Lambda_b} = \{B : B \subseteq X, C^{\Lambda_b}(B^c) = B^c\}$ where C^{Λ_b} is the Kuratowski closure operator on X, defined by $C^{\Lambda_b}(A) = \bigcap \{U : A \subseteq U, U \in C^{\Lambda_b}\}$ for any subset A of (X, τ) .

Lemma 4.7. $\tau^{A_b} = \{B : B \subseteq X, \operatorname{Int}^{V_b}(B) = B\}, \text{ where } \operatorname{Int}^{V_b}(B) = \bigcup \{F : B \supseteq F, F \in S^{V_b}\}.$

In the following proposition we have a further result concerning the transfer of properties from (X, τ) to (X, τ^{Λ_b}) .

Theorem 4.8. For a topological space (X, τ) , the following properties are equivalent:

- (i) (X, τ) is a b-R₀-space;
- (ii) For any nonempty set A and $G \in BO(X)$ such that $A \cap G \neq \emptyset$, there exists $F \in BC(X)$ such that $A \cap F \neq \emptyset$ and $F \subset G$;
- (iii) Any $G \in BO(X)$, $G = \bigcup \{F \in BC(X) | F \subset G\}$;
- (iv) Any $F \in BC(X)$, $F = \bigcap \{G \in BO(X) | F \subset G\}$;
- (v) For any $x \in X$, $b\text{-Cl}(\{x\}) \subset b\text{-Ker}(\{x\})$.

Proof. (i) \Rightarrow (ii): Let A be a nonempty subset of X and $G \in BO(X)$ such that $A \cap G \neq \emptyset$. Then there exists $x \in A \cap G$. Since $x \in G \in BO(X)$, $b\text{-Cl}(\{x\}) \subset G$. Set $F = b\text{-Cl}(\{x\})$, then $F \in BC(X)$, $F \subset G$ and $A \cap F \neq \emptyset$.

- (ii) \Rightarrow (iii): Let $G \in BO(X)$, then $G \supset \bigcup \{F \in BC(X) | F \subset G\}$. Let x be any point of G. There exists $F \in BC(X)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \bigcup \{F \in BC(X) | F \subset G\}$ and hence $G = \bigcup \{F \in BC(X) | F \subset G\}$.
 - $(iii) \Rightarrow (iv)$: This is obvious.
- (iv) \Rightarrow (v): Let x be any point of X and $y \in b$ -Ker($\{x\}$). There exists $V \in BO(X)$ such that $x \in V$ and $y \notin V$; hence b-Cl($\{y\}$) $\cap V = \emptyset$. By (iv), ($\bigcap \{G \in BO(X)|b$ -Cl($\{y\}$)} $\subset G$) $\cap V = \emptyset$ and there exists $G \in BO(X)$ such that $x \notin G$ and b-Cl($\{y\}$) $\subset G$. Therefore, b-Cl($\{x\}$) $\cap G = \emptyset$ and $y \notin b$ -Cl($\{x\}$). Consequently, we obtain b-Cl($\{x\}$) $\subset b$ -Ker($\{x\}$).

 $(v)\Rightarrow(i)$: Let $G \in BO(X)$ and $x \in G$. Let $y \in b$ -Ker $(\{x\})$, then $x \in b$ -Cl $(\{y\})$ and $y \in G$. This implies that b-Ker $(\{x\}) \subset G$. Therefore, we obtain $x \in b$ -Cl $(\{x\}) \subset b$ -Ker $(\{x\}) \subset G$. This shows that (X, τ) is a b- R_0 space.

Proposition 4.9. If (X, τ) is a b-R₀-space, then (X, τ^{Λ_b}) is a T₁-space (hence b-T₁-space).

Proof. Since (X, τ) is a $b - R_0$ -space, then by Theorem 4.8, any b-open set A in (X, τ) can be expressed as $A = \bigcup \{F : F \subseteq A, F^c \in BO(X, \tau)\}$ i.e., $A = A^{V_b}$. By Theorem 4.6, every singleton $\{x\}$ of X is a $g.\Lambda_b$ -set. Then we have $C^{\Lambda_b}(\{x\}) = \{x\}$ and hence $\{x\}$ is a τ^{Λ_b} -closed set. Therefore, every singleton is closed in (X, τ^{Λ_b}) .

Definition 4.10. A topological space (X, τ) is said to be a T^{V_b} -space, if every τ^{A_b} -open set is a $g.V_b$ -set.

Theorem 4.11. (X, τ) is a T^{V_b} -space if and only if $S^{V_b} = \tau^{\Lambda_b}$.

Proof. Necessity. Since X is a T^{V_b} -space, then $\tau^{\Lambda_b} \subseteq S^{V_b}$. Therefore it is enough to prove that $S^{V_b} \subseteq \tau^{\Lambda_b}$. Let $B \in S^{V_b}$. Then $\operatorname{Int}^{V_b}(B) = B$ since B is a $g.V_b$ -set. By Lemma 4.7 $B \in \tau^{\Lambda_b}$. Thus $S^{V_b} = \tau^{\Lambda_b}$.

Sufficiency. It is clear, by assumption and Definition 4.1.

Theorem 4.12. Every b- $T_{1/2}$ space is a T^{V_b} -space.

Proof. Let B be a τ^{A_b} -open set, i.e., $B = \operatorname{Int}^{V_b}(B)$ (Lemma 4.7). Since every V_b -set is a $g.V_b$ -set (Proposition 2.6(b)), it is enough to show that, $\operatorname{Int}^{V_b}(B)$ is a V_b -set, i.e., $(\operatorname{Int}^{V_b}(B))^{V_b} = \operatorname{Int}^{V_b}(B)$. Really, let $\Omega_{V_b} = \{B : B \text{ is a } V_b\text{-set}\}$. By Proposition 2.6(b) and assumption we have that $\Omega_{V_b} = S^{V_b}$. Therefore by definition, Proposition 2.5(j) and the fact that $\Omega_{V_b} = S^{V_b}$ we have

$$(\operatorname{Int}^{V_b}(B))^{V_b} = (\bigcup \{F : B \supseteq F, F \in S^{V_b}\})^{V_b}$$

$$= (\bigcup \{F : B \supseteq F, F \in \Omega_{V_b}\})^{V_b}$$

$$\supseteq \bigcup \{F^{V_b} : B \supseteq F, F \in \Omega_{V_b}\}$$

$$= \bigcup \{F^{V_b} : B \supseteq F, F \in S^{V_b}\}$$

$$= \operatorname{Int}^{V_b}(B).$$

By Proposition 2.1(g) we have $(\operatorname{Int}^{V_b}(B))^{V_b} = \operatorname{Int}^{V_b}(B)$ and hence $\operatorname{Int}^{V_b}(B)$ is a V_b -set.

Theorem 4.13. The image of a T^{V_b} space under a $g.\Lambda_b$ -homeomorphism is a T^{V_b} -space.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be a $g.\Lambda_b$ -homeomorphism of a T^{V_b} -space (X,τ) onto a topological space (Y,σ) . Let B be any σ^{Λ_b} -open set of (Y,σ) . We show that B is a $g.V_b$ -set of (Y,σ) , i.e., $\sigma^{\Lambda_b}=S^{V_b}$ in (Y,σ) . We show that B is a $g.V_b$ -set of (Y,σ) , i.e., $\sigma^{\Lambda_b}=S^{V_b}$ in (Y,σ) . It follows from the assumptions that $(f^{-1}(B))^c=f^{-1}(C^{\Lambda_b}(B^c))\supseteq C^{\Lambda_b}((f^{-1}(B))^c)$, i.e., $(f^{-1}(B))^c=C^{\Lambda_b}((f^{-1}(B))^c)$. Hence $f^{-1}(B)$ is a τ^{Λ_b} -open set of (X,τ) . Since (X,τ) is a T^{V_b} -space and f is a $g.\Lambda_b$ -homeomorphism we obtain that B is a $g.V_b$ -set of (Y,σ) . Therefore, (Y,σ) is a T^{V_b} -space.

Remark 4.14. In particular we have, that the image of a T^{V_b} -space under a homeomorphism is a T^{V_b} -space (i.e., the property T^{V_b} -space is topological).

Acknowledgement. The author is grateful to the referee for his remarkable work which improved the quality of this paper.

References

- 1. D. Andrijevic, On b-open sets, Mat. Vesnik 48 (1996), 59-64.
- 2. J. Bhuvaneswari and N. Rajesh, A new type of generalized homeomorphisms, submitted.
- 3. M. Caldas, S. Jafari, and T. Noiri, On Λ_b -sets and the associated topology τ^{Λ_b} , Acta Math. Hungar. 110 (2006), 337–345.
- 4. E. Ekici, On R-spaces, $International\ J.\ Pure\ and\ Appl.\ Math.\ 25\ (2005),\ 163-172.$
- A. A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta University (Egypt), 1997.