Vietnam Journal of MATHEMATICS © VAST 2009

On the Hamiltonian and Classification Problems for some Families of Split Graphs*

Ngo Dac Tan

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Received January 13, 2009

Abstract. A graph G = (V, E) is called a split graph if there exists a partition $V = I \cup K$ such that the subgraphs G[I] and G[K] of G induced by I and K are empty and complete graphs, respectively. In this paper, we survey results on the hamiltonian and classification problems for split graphs G with the minimum degree $\delta(G) \geq |I| - 4$.

2000 Mathematics Subject Classification: 05C45, 05C75.

Key words: Split graph, Burkard-Hammer condition, Burkard-Hammer graph, hamiltonian graph, maximal nonhamiltonian split graph.

1. Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges. If G is a graph, then V(G) and E(G) (or V and E in short) will denote its vertex-set and its edge-set, respectively. For a subset $W \subseteq V(G)$, the set of all neighbours of W is denoted by $N_G(W)$ or N(W) in short. For a vertex $v \in V(G)$, the degree of v, denoted by v, is the number |N(v)|. The minimum degree of v, denoted by v, is the number |V(v)|. The minimum degree of v, denoted by v, is the number |V(v)|. Then the degree of v with respect to v, denoted by v, is the number |V(v)|. The subgraph of v induced by v is denoted by v. Unless otherwise indicated, our graph-theoretic terminology will follow [1].

 $^{^\}star$ This research was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

A graph G = (V, E) is called a *split graph* if there exists a partition $V = I \cup K$ such that the subgraphs G[I] and G[K] of G induced by I and K are empty and complete graphs, respectively. We will denote such a graph by $S(I \cup K, E)$. Further, a split graph $G = S(I \cup K, E)$ is called a *complete split graph* if every $u \in I$ is adjacent to every $v \in K$. The notion of split graphs was introduced in 1977 by Földes and Hammer [4]. These graphs are interesting because they are related to many problems in combinatorics (see [3, 5, 9]) and in computer science (see [6, 7]).

In this paper, we survey results on the hamiltonian and classification problems for split graphs $G = S(I \cup K, E)$ with the minimum degree $\delta(G) \ge |I| - 4$.

2. A Polynomial Time Algorithm for Checking Hamiltonicity of Split Graphs G with $\delta(G) \ge |I| - 2$

In 1980, Burkard and Hammer gave in [2] a necessary but not sufficient condition for hamiltonian split graphs $G = S(I \cup K, E)$ with |I| < |K|. We will talk about this condition in more detail in the next section. Burkard and Hammer also asked in [2] if this condition can be sharpened to a necessary and sufficient one. This question was investigated by Peemöller [8] and Tan and Hung [10]. In [8], Peemöller gave some conditions equivalent to the condition which Burkard and Hammere gave in [2]. He also remarked there that the hamiltonian problem for split graphs is NP-complete. However, this does not exclude the availability of a polynomial time algorithm for checking hamiltonicity of graphs in some subclasses of split graphs.

In 2004, Tan and Hung [10] characterized hamiltonian split graphs $G = S(I \cup K, E)$ with $|I| \leq |K|$ and the minimum degree $\delta(G) = \min\{\deg(u) \mid u \in V(G)\} \geq |I| - 2$. For this purpose they define the graphs G_n^m , D_n^4 and F_n^5 as in Table 1. The following two theorems are main results proved in [10].

Theorem 2.1. [10] Let $G = S(I \cup K, E)$ be a split graph with |I| = m, |K| = n and $\delta(G) \geq m-2$. Then G has a Hamilton cycle if and only if $m \leq n$ and |N(I')| > |I'| for any $\emptyset \neq I' \subseteq I$ with $m-2 \leq |I'| \leq \min\{m, n-1\}$, except the following graphs for which the sufficiency does not hold:

- (i) m = 3 < n and G is the graph G_n^3 ;
- (ii) m = 4 < n and G is a spanning subgraph of D_n^4 or G_n^4 ;
- (iii) $m = 4 \le n$ and G u is the graph G_n^3 for some $u \in I$;
- (iv) m = 5 < n and G is the graph F_n^5 or a spanning subgraph of G_n^5 ;
- (v) $6 \le m < n$ and G is a spanning subgraph of G_n^m .

It is not difficult to see that the graphs G_n^m, D_n^4 and F_n^5 are split graphs $G = S(I \cup K, E)$ satisfying $|I| = m < n = |K|, \delta(G) \ge m - 2$ and |N(I')| > |I'| for any $\emptyset \ne I' \subseteq I$ with $|I'| \ge m - 2$, but they have no Hamilton cycles. Every graph in (iii) also has no Hamilton cycles.

The graph	The vertex-set	The edge-set
G = (V, E)	$V = I \cup K$	$E = E_1 \cup E_2 \cup E_3.$
G_n^m	$I = \{u_1, \dots, u_m\},\$	$E_1 = \{u_1v_1, u_2v_2, u_3v_3\},$
$(3 \le m < n)$	$K = \{v_1, \dots, v_n\}.$	$E_2 = \{u_i v_j \mid i = 1, \dots, m; j = 4, \dots, m + 1\},\$
		$E_3 = \{v_i v_j \mid i \neq j; i, j = 1, \dots, n\}.$
D_n^4	$I = \{u_1, u_2, u_3, u_4\},\$	$E_1 = \{u_1v_2, u_2v_1, u_iv_i \mid i = 1, 2, 3, 4\},\$
(4 < n)	$K = \{v_1, \dots, v_n\}.$	$E_2 = \{u_i v_5 \mid i = 1, 2, 3, 4\},\$
		$E_3 = \{v_i v_j \mid i \neq j; i, j = 1, \dots, n\}.$
F_n^5	$I=\{u_1,\ldots,u_5\},$	$E_1 = \{u_i v_i \mid i = 1, \dots, 5\},\$
(6 < n)	$K = \{v_1, \dots, v_n\}.$	$E_2 = \{u_i v_j \mid i = 1, \dots, 5; j = 6, 7\},$
		$E_3 = \{v_i v_j \mid i \neq j; i, j = 1, \dots, n\}.$

Table 1 The graphs G_n^m , D_n^4 and F_n^5

Theorem 2.2. [10] Let $G = B(I_1 \cup I_2, E)$ be a bipartite graph with bipartition $V = I_1 \cup I_2$, where $|I_1| = m \le n = |I_2|$ and $\delta(I_1) = \min\{deg(v) \mid v \in I_1\} \ge m-2$. Then G has a Hamilton cycle if and only if m = n and |N(I')| > |I'| for any $\emptyset \ne I' \subseteq I_1$ with |I'| = m-2 or m-1, unless m=4 and G-u is the graph BG_4^3 for some $u \in I_1$, where BG_4^3 is obtained from G_4^3 by deleting all edges, the both endvertices of which are in I_2 .

Based on Theorem 2.1 we can develop a polynomial time algorithm to verify if a split graph $G = S(I \cup K, E)$ with |I| = m, |K| = n and $\delta(G) \ge m - 2$ has a Hamilton cycle.

An algorithm for checking hamiltonicity of split graphs $G = S(I \cup K, E)$ with $\delta(G) \ge |I| - 2$

Input: A split graph $G = S(I \cup K, E)$ with |I| = m, |K| = n and $\delta(G) \ge |I| - 2$.

Output: The answer "Yes" if G is hamiltonian and the answer "No" if G is not hamiltonian.

- Step 1. If m > n, answer "No" and stop. Otherwise continue.
- Step 2. For each $\emptyset \neq I' \subseteq I$ with $m-2 \leq |I'| \leq \min\{m,n-1\}$, compute N(I') and check if |N(I')| > |I'|. If |N(I')| > |I'| does not hold for some such a subset I', then answer "No" and stop. Otherwise continue.
- Step 3. If G is a spanning subgraph of G_n^m , then answer "No" and stop. Otherwise continue.
 - Step 4. If $m \neq 4$ and 5, then answer "Yes" and stop. Otherwise continue.

Step 5. If m = 4 < n and either G is a spanning subgraph of D_n^4 or G - u is G_n^3 for some $u \in I$, then answer "No" and stop. If m = 4 < n and neither G is a spanning subgraph of D_n^4 nor G - u is G_n^3 for any $u \in I$, then answer "Yes" and stop. Otherwise continue.

Step 6. If m=4=n and G-u is G_4^3 for some $u\in I$, then answer "No" and stop. If m=4=n and G-u is not G_4^3 for any $u\in I$, then answer "Yes" and stop. Otherwise continue.

Step 7. If m=5 < n and G is F_n^5 , then answer "No" and stop. Otherwise answer "Yes" and stop.

Now we consider the time that this algorithm requires. In below discussions, the graph G, the numbers m,n,\ldots are as in Theorem 2.1. The number of subsets I' with $\emptyset \neq I' \subseteq I$ and $m-2 \leq |I'| \leq \min\{m,n-1\}$ is at most $\binom{m}{m-2} + \binom{m}{m-1} + 1 = \frac{m(m-1)}{2} + m + 1$ which is a polynomial in m. For every subset I', the computation N(I') requires at most mn checking if $uv \in E$ where $u \in I'$ and $v \in K$. So the time that Step 2 requires is a polynomial in m+n, the number of vertices of G. Further, it is not difficult to show that a split graph $G = S(I \cup K, E)$ with m < n and |N(I')| > |I'| for any $\emptyset \neq I' \subseteq I$ with $m-2 \leq |I'| \leq m$ is a spanning subgraph of G_n^m if and only if |N(I)| = |I| + 1 and G possesses vertices v_1, v_2 and v_3 in K such that $|N_I(v_1)| = |N_I(v_2)| = |N_I(v_3)| = 1$ and $N_I(v_1), N_I(v_2), N_I(v_3)$ are pairwise disjoint. So, the time that Step 3 requires is also a polynomial in m+n. By similar discussions we can see that the time that other steps of the algorithm require is a polynomial in the number of vertices of G. Thus, our algorithm is a polynomial time one.

3. The Burkard-Hammer Condition and Hamiltonicity of Split Graphs G with $\delta(G) \ge |I| - 3$

In this section, we consider the hamiltonian problem for split graphs $G = S(I \cup K, E)$ with |I| < |K| and the minimum degree $\delta(G) \ge |I| - 3$. For split graphs $G = S(I \cup K, E)$ with |I| < |K|, Burkard and Hammer have given in [2] a necessary condition for them to be hamiltonian. We describe this condition now.

Let $G = S(I \cup K, E)$ be a split graph and $I' \subseteq I$, $K' \subseteq K$. Denote by $B_G(I' \cup K', E')$ the graph $G[I' \cup K'] - E(G[K'])$. It is clear that $G' = B_G(I' \cup K', E')$ is a bipartite graph with the bipartition subsets I' and K'. So we will call $B_G(I' \cup K', E')$ the bipartite subgraph of G induced by I' and K'. For a component $G'_j = B_G(I'_j \cup K'_j, E'_j)$ of $G' = B_G(I' \cup K', E')$ we define

$$k_G(G'_j) = k_G(I'_j, K'_j) = \begin{cases} |I'_j| - |K'_j| & \text{if } |I'_j| > |K'_j| \\ 0, & \text{otherwise.} \end{cases}$$

If $G' = B_G(I' \cup K', E')$ has r components $G'_1 = B_G(I'_1 \cup K'_1, E'_1), \ldots, G'_r = B_G(I'_r \cup K'_r, E'_r)$, then we define

$$k_G(G') = k_G(I', K') = \sum_{j=1}^r k_G(G'_j).$$

A component $G'_j = B_G(I'_j \cup K'_j, E'_j)$ of $G' = B_G(I' \cup K', E')$ is called a T-component (resp., H-component, L-component) if $|I'_j| > |K'_j|$ (resp., $|I'_j| = |K'_j|$, $|I'_j| < |K'_j|$). Let $h_G(G') = h_G(I', K')$ denote the number of H-components of G'.

Now we can formulate the necessary but not sufficient condition for hamiltonian split graphs which Burkard and Hammer have proved in [2].

Theorem 3.1. [2] Let $G = S(I \cup K, E)$ be a split graph with |I| < |K|. If G is hamiltonian, then

$$k_G(I', K') + \max\left\{1, \frac{h_G(I', K')}{2}\right\} \le |N_G(I')| - |K'|$$

holds for all $\emptyset \neq I' \subseteq I, K' \subseteq N_G(I')$ with $(k_G(I', K'), h_G(I', K')) \neq (0, 0)$.

We will shortly call the condition in Theorem 3.1 the Burkard-Hammer condition. Also, we will call a split graph $G = S(I \cup K, E)$ with |I| < |K|, which satisfies the Burkard-Hammer condition, a Burkard-Hammer graph.

The Burkard-Hammer condition is a necessary but not sufficient condition for the existence of a Hamilton cycle in split graphs $G = S(I \cup K, E)$ with |I| < |K|. In [2], an example of a split graph satisfying the Burkard-Hammer condition but having no Hamilton cycles has been given. This graph is the graph $H^{1,6}$ in our Table 2.

Tan and Hung have proved in [11] the following results for split graphs $G = S(I \cup K, E)$.

Theorem 3.2. [11] Let $G = S(I \cup K, E)$ be a split graph satisfying the Burkard-Hammer condition, then for any $u \in I$ and $v \in K$ with $uv \notin E$ the graph G + uv is also a split graph satisfying the Burkard-Hammer condition.

Theorem 3.3. [11] Let $G = S(I \cup K, E)$ be a split graph with |I| < |K| and the minimum degree $\delta(G) \ge |I| - 3$. Then

- (i) If $|I| \neq 5$ then G has a Hamilton cycle if and only if G satisfies the Burkard-Hammer condition;
- (ii) If |I| = 5 and G satisfies the Burkard-Hammer condition, then G has no Hamilton cycles if and only if G is isomorphic to one of the graphs $H^{1,n}$, $H^{2,n}$, $H^{3,n}$ or $H^{4,n}$ listed in Table 2.

On Fig. 1 we show the graph $H^{4,n}$.

Theorem 3.3 shows that the Burkard-Hammer condition is almost a necessary and sufficient condition for split graphs $G = S(I \cup K, E)$ with |I| < |K| and the minimum degree $\delta(G) \geq |I| - 3$ to be hamiltonian. There are only four kinds

The graph	The vertex-set	The edge-set
G	$V(G) = I^* \cup K^*$	$E(G) = E_1^* \cup \ldots \cup E_5^* \cup E_{K^*}^*$
$H^{1,n}$	$I^* = \{u_1^*, u_2^*, u_3^*, u_4^*, u_5^*\},\$	$E_1^* = \{u_1^* v_1^*, u_1^* v_2^*\},$
(n > 5)	$K^* = \{v_1^*, v_2^*, \dots, v_n^*\}.$	$E_2^* = \{u_2^* v_2^*, u_2^* v_4^*\},$
		$E_3^* = \{u_3^* v_2^*, u_3^* v_3^*, u_3^* v_6^*\},\$
		$E_4^* = \{u_4^* v_1^*, u_4^* v_4^*, u_4^* v_6^*\},$
		$E_5^* = \{u_5^* v_5^*, u_5^* v_6^*\},$
		$E_{K^*}^* = \{v_i^* v_j^* i \neq j; i, j = 1, \dots, n\}.$
$H^{2,n}$	$V(H^{2,n}) = V(H^{1,n})$	$E(H^{2,n}) = E(H^{1,n}) \cup \{u_4^* v_2^*\}$
$H^{3,n}$	$V(H^{3,n}) = V(H^{1,n})$	$E(H^{3,n}) = E(H^{1,n}) \cup \{u_5^* v_2^*\}$
$H^{4,n}$	$V(H^{4,n}) = V(H^{1,n})$	$E(H^{4,n}) = E(H^{1,n}) \cup \{u_4^* v_2^*, u_5^* v_2^*\}$

Table 2 The graphs $H^{1,n}$, $H^{2,n}$, $H^{3,n}$ and $H^{4,n}$

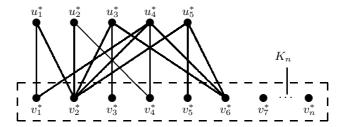


Fig. 1 The graph $H^{4,n}$

of exceptional graphs: $H^{1,n}$, $H^{2,n}$, $H^{3,n}$ and $H^{4,n}$. Since all these exceptional graphs are split graphs $G = S(I \cup K, E)$ with |I| < |K| and $\delta(G) = |I| - 3$, we have immediately the following corollary.

Corollary 3.4. Let $G = S(I \cup K, E)$ be a split graph with |I| < |K| and $\delta(G) \ge |I| - 2$. Then G has a Hamilton cycle if and only if G satisfies the Burkard-Hammer condition.

4. The Classification Problem for Nonhamiltonian Split Graphs G with $\delta(G) = |I| - 4$

A split graph $G = S(I \cup K, E)$ is called a maximal nonhamiltonian split graph if G is nonhamiltonian but the graph G + uv is hamiltonian for every $uv \notin E$ where $u \in I$ and $v \in K$. It is known from Theorem 3.2 that any nonhamiltonian Burkard-Hammer graph is contained in a maximal nonhamiltonian Burkard-

Hammer graph. So knowledge about maximal nonhamiltonian Burkard-Hammer graphs provides us certain information about nonhamiltonian Burkard-Hammer graphs and also about hamiltonian split graphs. For example, if a split graph $G = S(I \cup K, E)$ with |I| < |K| is not contained in any maximal nonhamiltonian Burkard-Hammer graphs, then it is not difficult to see that G has a Hamilton cycle if and only if G satisfies the Burkard-Hammer condition. Therefore, there is an interest in the classification problem for maximal nonhamiltonian Burkard-Hammer graphs.

Corollary 3.4 shows that there are no nonhamiltonian Burkard-Hammer graphs and therefore no maximal nonhamiltonian Burkard-Hammer graphs $G = S(I \cup K, E)$ with $\delta(G) \geq |I| - 2$. Further, Theorem 3.3 shows that for every integer n > 5 there exists up to isomorphisms exactly one maximal nonhamiltonian Burkard-Hammer graph $G = S(I \cup K, E)$ with |K| = n and $\delta(G) = |I| - 3$ which is the graph $H^{4,n}$. In this section, we talk about the classification problem for maximal nonhamiltonian Burkard-Hammer graphs $G = S(I \cup K, E)$ with $\delta(G) = |I| - 4$. We need the following construction of split graphs introduced by Tan and Iamjaroen in [12].

Let $G_1 = S(I_1 \cup K_1, E_1)$ and $G_2 = S(I_2 \cup K_2, E_2)$ be split graphs with

$$V(G_1) \cap V(G_2) = \emptyset$$

and v be a vertex of K_1 . We say that a graph G is an expansion of G_1 by G_2 at v if G is the graph obtained from $(G_1 - v) \cup G_2$ by adding the set of edges

$$E_0 = \{x_i v_j \mid x_i \in V(G_1) \setminus \{v\}, v_j \in K_2 \text{ and } x_i v \in E_1\}.$$

It is clear that such a graph G is a split graph $S(I \cup K, E)$ with $I = I_1 \cup I_2$, $K = (K_1 \setminus \{v\}) \cup K_2$ and is uniquely determined by G_1, G_2 and $v \in K_1$. Because of this, we will denote this graph G by $G_1[G_2, v]$. Further, a graph G is called an expansion of G_1 by G_2 if it is an expansion of G_1 by G_2 at some vertex $v \in K_1$.

As an example, we show on Fig. 2 the expansion of the graph $H^{4,n}$ by the complete split graph $G_2 = S(I_2 \cup K_2, E_2)$ with $I_2 = \{u_1, u_2, u_3\}$ and $K_2 = \{v_1, v_2, v_3, v_4\}$ at the vertex v_2^* of $H^{4,n}$.

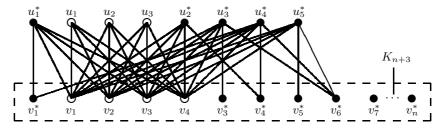


Fig. 2 The expansion $H^{4,n}[G_2, v_2^*]$

Recently, Tan and Iamjaroen have constructed in [13] a family of maximal nonhamiltonian Burkard-Hammer graphs $G = S(I \cup K, E)$ with $\delta(G) = |I| - 4$.

These graphs are $H^{4,n}[G_2, v_2^*]$, where $G_2 = S(I_2 \cup K_2, E_2)$ is a complete split graph with $|I_2| = |K_2| - 1 \ge 1$. Later in [14] they have shown that if a maximal nonhamiltonian Burkard-Hammer graph $G = S(I \cup K, E)$ with $\delta(G) = |I| - 4$ has $|I| \ne 6, 7$, then G must be a graph in the family constructed by them in [13]. Namely, they have proved the following result.

Theorem 4.1. [14] Let $G = S(I \cup K, E)$ be a split graph with $|I| \neq 6, 7$ and $\delta(G) = |I| - 4$. Then G is a maximal nonhamiltonian Burkard-Hammer graph if and only if G is isomorphic to the expansion $H^{4,t}[G_2, v_2^*]$ where t = |K| - |I| + 5 and $G_2 = S(I_2 \cup K_2, E_2)$ is a complete split graph with $|K_2| - 1 = |I_2| = |I| - 5 \geq 3$.

Thus, we have got the classification of maximal nonhamiltonian Burkard-Hammer graphs $G = S(I \cup K, E)$ with $\delta(G) = |I| - 4$ for the case $|I| \neq 6, 7$.

References

- 1. M. Behzad and G. Chartrand, *Introduction to the Theory of Graphs*, Allyn and Bacon, Boston, 1971.
- R. E. Burkard and P. L. Hammer, A note on hamiltonian split graphs, J. Combin. Theory Ser. B 28 (1980), 245–248.
- 3. V. Chvátal and P. L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977), 145–162.
- 4. S. Földes and P. L. Hammer, Split graphs, In: Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La, 1977) pp. 311–315. Congressus Numerantium, No XIX, Utilitas Math., Winnipeg, Man, 1977.
- 5. S. Földes and P. L. Hammer, On a class of matroid-producing graphs, In: *Combinatorics* (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331–352, Colloq. Math. Soc. Janós Bolyai 18, North-Holland, Amsterdam-New York, 1978.
- 6. P. B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the PV_{chunk} class of synchronizing primitive, $SIAM\ J.\ Computing\ {\bf 6}\ (1977),\ 88-108.$
- A. H. Hesham and El. R. Hesham, Task allocation in distributed systems: a split graph model, J. Combin. Math. Combin. Comput. 14 (1993), 15–32.
- 8. J. Peemöller, Necessary conditions for hamiltonian split graphs, *Discrete Math.* **54** (1985), 39–47.
- U. N. Peled, Regular Boolean functions and their polytope, Chap VI, Ph. D. Thesis, Univ. of Waterloo, Dept. Combin. and Optimization, 1975.
- 10. N. D. Tan and L. X. Hung, Hamilton cycles in split graphs with large minimum degree, *Discussiones Math. Graph Theory* **24** (2004), 23–40.
- 11. N. D. Tan and L. X. Hung, On the Burkard-Hammer condition for hamiltonian split graphs, *Discrete Math.* **296** (2005), 59 –72.
- 12. N. D. Tan and C. Iamjaroen, Constructions for nonhamiltonian Burkard-Hammer graphs, In: *Combinatorial Geometry and Graph Theory* (Proc. of Indonesia-Japan Joint Conf., September 13–16, 2003, Bandung, Indonesia) 185–199, *Lecture Notes in Computer Science* 3330, Springer, Berlin Heidelberg, 2005.
- 13. N. D. Tan and C. Iamjaroen, A necessary condition for maximal nonhamiltonian Burkard-Hammer graphs, *J. Discrete Math. Sciences & Cryptography* **9** (2006), 235–252.
- N. D. Tan and C. Iamjaroen, A classification for maximal nonhamiltonian Burkard-Hammer graphs, *Discussiones Math. Graph Theory* 28 (2008), 67–89.