Vietnam Journal
of
MATHEMATICS
© VAST 2009

Oscillation for a Nonlinear Difference Equation

Dinh Cong Huong

Department of Mathathematics, Quy Nhon University 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam

> Received June 16, 2009 Revised August 03, 2009

Abstract. In this paper, some oscillatory results for nonlinear difference equations

$$x_{n+1} = \lambda_n x_n + \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i}), \quad n = 0, 1, \dots$$

where $m_i, \forall i = 1, ..., r$ are fixed positive integers, $\{\lambda_n\}_n$ is a sequence of positive real numbers and the function F is defined on the set of the real numbers are obtained.

2000 Mathematics Subject Classification: 39A12.

Key words: Nonlinear difference equation, oscillation, nonoscillation.

1. Introduction

Recently there has been a considerable interest in the oscillation of solutions of difference equations of the form

$$x_{n+1} = \lambda_n x_n + \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i}), \quad n = 0, 1, 2, \dots$$
 (1)

where r, m_1, m_2, \ldots, m_r are fixed positive integers, the functions $\alpha_i(n)$ are defined on the set of positive integers, and the function F is defined on the set of the real numbers, (see for example the work in [1, 2, 3] and the references cited therein). In [1, 2], the authors investigated the oscillation of (1) in case $\lambda_n = 1$ or $\lambda_n = \lambda \geqslant 1$ and $\alpha_i(n) \geqslant 0, \forall i = 1, 2, \ldots, r, \forall n = 0, 1, \ldots$ In [3], the authors studied the oscillation of difference equation

$$x_{n+1} - x_n + \sum_{i=1}^r \alpha_i(n) x_{n-m_i} = 0, \quad n = 0, 1, 2, \dots$$

in case the positivity of $\alpha_i(n)$ is not required.

Motivated by the above work, in the present paper, we aim to study the oscillation of (1) where $\{\lambda_n\}_n$ is an arbitrary sequence of positive real numbers and the positivity of $\alpha_i(n)$ is not required.

2. The Results

In this section, by \mathbb{N} we denote the set of positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and by \mathbb{R} the set of the real numbers. For all $\ell \in \mathbb{N}_0$ we use $\mathbb{N}_\ell = \{n \in \mathbb{N} : n \geqslant \ell\}$.

Theorem 2.1. Let F be a nonincreasing function, xF(x) < 0, $x \neq 0, -F(x) \geqslant x$, F(ax) = aF(x), $\forall a, x \in \mathbb{R}$, and

$$\liminf_{n\to\infty}\sum_{i=1}^r\frac{\alpha_i(n)}{\lambda_n^{m_i+1}}>0,\ \limsup_{n\to\infty}\sum_{i=1}^r\frac{\alpha_i(n)}{\lambda_n^{m_i+1}}>1-\liminf_{n\to\infty}\sum_{i=1}^r\frac{\alpha_i(n)}{\lambda_n^{m_i+1}},$$

where $\alpha_i(n) \ge 0, n \in \mathbb{N}_0, i = 1, \dots, r$. Then, (1) is oscillatory.

Proof. Consider the following inequalities

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} - \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right) \leqslant 0, \quad n \in \mathbb{N}_0$$
 (2)

and

$$\frac{v_{n+1}}{\lambda_n^{n+1}} - \frac{v_n}{\lambda_n^n} - \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{v_{n-m_i}}{\lambda_n^{n-m_i}}\right) \geqslant 0, \quad n \in \mathbb{N}_0.$$
 (3)

We will prove that (2) has no eventually positive solution and (3) has no eventually negative solution. Indeed, let $\{x_n\}_n$ be a solution of (2), $x_n > 0$ for $n \in \mathbb{N}_{n_1}, n_1 \in \mathbb{N}_0$. By the hypothesis

$$\liminf_{n \to \infty} \sum_{i=1}^{r} \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} = \beta > 0,$$

so there exists $0 < \epsilon < \beta$ and $n_2 \in \mathbb{N}, n_2 \geqslant n_1$ such that

$$\sum_{i=1}^{r} \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} \geqslant \beta - \epsilon > 0$$

for all $n \in \mathbb{N}_{n_2}$. Put

$$n_3 = \max\{n_1 + m^*, n_2\}, \quad m^* = \max_{1 \le i \le r} m_i.$$

We have $\left\{\frac{x_n}{\lambda_n^n}\right\}_n$ being eventually nonincreasing for all $n \in \mathbb{N}_{n_3}$. Since F is a nonincreasing function on \mathbb{R} , we get

$$\frac{x_n}{\lambda_n^n} \geqslant -\sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right) \geqslant -\sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-1}}{\lambda_n^{n-1}}\right) \geqslant (\beta - \epsilon) \frac{x_{n-1}}{\lambda_n^{n-1}},$$

for all $n \in \mathbb{N}_{n_3}$. On the other hand,

$$0 \geqslant \frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} - \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right)$$
$$\geqslant \frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} - \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_n}{\lambda_n^n}\right)$$
$$\geqslant (\beta - \epsilon) \frac{x_n}{\lambda_n^n} - \frac{x_n}{\lambda_n^n} + \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} \frac{x_n}{\lambda_n^n}.$$

Hence

$$\frac{x_n}{\lambda_n^n} \left[\beta - \epsilon - 1 + \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i + 1}} \right] \leqslant 0.$$

It implies

$$\sum_{i=1}^{r} \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} \le 1 - \beta + \epsilon$$

for all $n \in \mathbb{N}_{n_3}$. Therefore,

$$\limsup_{n \to \infty} \sum_{i=1}^{r} \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} \le 1 - \beta + \epsilon.$$

Since $\epsilon > 0$ is arbitrary we have

$$\limsup_{n \to \infty} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} \leqslant 1 - \beta = 1 - \liminf_{n \to \infty} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}},$$

which contradicts the hypothesis. Hence, (2) has no eventually positive solution.

Next, we assume that $\{v_n\}_n$ is a solution of (3) such that $v_n < 0$ for all $n \in \mathbb{N}_{n_1}, n_1 \in \mathbb{N}_0$. Putting $x_n = -v_n, n \in \mathbb{N}_0$, we obtain a contradiction. The proof is complete.

Theorem 2.2. Let F be a nonincreasing and continuous function; F(0) = 0; $xF(x) < 0, -F(x) \ge x, \quad x \ne 0$; $F(ax) = aF(x), \forall a, x \in \mathbb{R}$; and

$$\liminf_{x \to 0} \frac{F(x)}{x} = M < 0.$$

 $Suppose\ further\ that$

$$\limsup_{n\to\infty}\sum_{i=1}^r\sum_{\ell=n}^{n+m^*}\frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}}>-\frac{1}{M},$$

where $m^* = \max_{1 \leq i \leq r} m_i$, $\alpha_i(n) \geq 0$, $n \in \mathbb{N}_0$, i = 1, ..., r. Then, (1) is oscillatory.

Proof. We write the equation (1) in the following form

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} = \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right), \quad n \in \mathbb{N}_0.$$
 (4)

Let $\{x_n\}_n$ be a solution of (4), $x_n > 0$ for $n \in \mathbb{N}_{n_1}, n_1 \in \mathbb{N}_0$. Since $\alpha_i(n) \geqslant 0$ for all $i = 1, \ldots, r$ and $n \in \mathbb{N}_{n_1 + m^*}$, from (4) we have $\left\{\frac{x_n}{\lambda_n^n}\right\}_{\substack{n \\ n \to \infty}}^n$ that is nonincreasing for all $n \in \mathbb{N}_{n_1 + m^*}$. Thus, there exists $\lim_{n \to \infty} \frac{x_n}{\lambda_n^n}$. Put $\lim_{n \to \infty} \frac{x_n}{\lambda_n^n} = \beta$. We have $\beta \geqslant 0$. Taking the limit in (4), we obtain $F(\beta) = 0$. This implies $\beta = 0$. Summing the equation (4) from n_2 to $n_2 + m^*$ (where $n_2 \in \mathbb{N}_{n_1}$) we obtain

$$\frac{x_{n_2+m^*+1}}{\lambda_n^{n_2+m^*+1}} - \frac{x_{n_2}}{\lambda_n^{n_2}} = \sum_{i=1}^r \sum_{\ell=n_2}^{n_2+m^*} \frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}} F\left(\frac{x_{\ell-m_i}}{\lambda_\ell^{\ell-m_i}}\right).$$

It implies

$$\begin{split} &\frac{x_{n_2+m^*+1}}{\lambda_n^{n_2+m^*+1}} - \frac{x_{n_2}}{\lambda_n^{n_2}} - \sum_{i=1}^r \sum_{\ell=n_2}^{n_2+m^*} \frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}} F\left(\frac{x_{\ell-m_i}}{\lambda_\ell^{\ell-m_i}}\right) \leqslant 0, \\ &\frac{x_{n_2+m^*+1}}{\lambda_n^{n_2+m^*+1}} - \frac{x_{n_2}}{\lambda_n^{n_2}} \left[1 + \sum_{i=1}^r \sum_{\ell=n_2}^{n_2+m^*} \frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}} \frac{F\left(\frac{x_{n_2}}{\lambda_n^{n_2}}\right)}{\frac{x_{n_2}}{\lambda_n^{n_2}}}\right] \leqslant 0, \\ &\frac{x_{n_2+m^*+1}}{\lambda_n^{n_2+m^*+1}} - \frac{x_{n_2}}{\lambda_n^{n_2}} \left[1 + \sum_{i=1}^r \sum_{\ell=n_2}^{n_2+m^*} \frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}} M\right] \leqslant 0. \end{split}$$

Therefore

$$1 + \sum_{i=1}^{r} \sum_{\ell=n_2}^{n_2 + m^*} \frac{\alpha_i(\ell)}{\lambda_{\ell}^{m_i + 1}} M \geqslant 0,$$

and

$$\limsup_{n_2 \to \infty} \sum_{i=1}^r \sum_{\ell=n_2}^{n_2+m^*} \frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}} \leqslant -\frac{1}{M}.$$

This contradicts the hypothesis. The proof is complete.

Theorem 2.3. Assume that

$$xF(x) < 0, \ x \neq 0 \ and \ \liminf_{x \to 0} \frac{F(x)}{x} = M < 0.$$

Then, (1) is oscillatory if the following inequality holds

$$(-M)\frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} \sum_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} > 1,$$
 (5)

where $\alpha_i(n) \geqslant 0, n \in \mathbb{N}, 1 \leqslant i \leqslant r, \ \tilde{m} = \min_{1 \leqslant i \leqslant r} m_i.$

Proof. We first prove that the inequality

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} - \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right) \leqslant 0, \quad n \in \mathbb{N}_0$$
 (6)

has no eventually positive solution. Assume, for the sake of contradiction, that (6) has a solution $\{x_n\}_n$ with $x_n > 0$ for all $n \ge n_1, n_1 \in \mathbb{N}$. Setting $v_n = \frac{x_n \lambda_n}{x_{n+1}}$ and dividing this inequality by $\frac{x_n}{\lambda_n^n}$, we obtain

$$\frac{1}{v_n} \leqslant 1 + \left[\sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n} \frac{F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right)}{\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}} \prod_{\ell=1}^{m_i} v_{n-\ell} \right], \tag{7}$$

where $n \geqslant n_1 + m$, $m = \max_{1 \le i \le r} m_i$.

Clearly, $\left\{\frac{x_n}{\lambda_n^n}\right\}_n$ is nonincreasing with $n \ge n_1 + m$, and so $v_n \ge 1$ for all $n \ge n_1 + m$. From (5) and (7) we see that $\{v_n\}_n$ is an above bounded sequence. Putting $\liminf_{n \to \infty} v_n = \beta$, we get

$$\limsup_{n \to \infty} \frac{1}{v_n} = \frac{1}{\beta} \leqslant 1 + \liminf_{n \to \infty} \left\{ \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n} \frac{F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right)}{\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}} v_{n-m_i} \cdots v_{n-1} \right\},$$

or

$$\frac{1}{\beta} \leqslant 1 + \sum_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot M \cdot \beta^{m_i}. \tag{8}$$

Since

$$\beta^{m_i} \geqslant \beta^{\tilde{m}}, \quad \forall i = 1, \dots, r,$$

we have

$$-\liminf_{n\to\infty}\sum_{i=1}^r\frac{\alpha_i(n)}{\lambda_n}M\leqslant\frac{\beta-1}{\beta^{\tilde{m}+1}}.$$

We shall prove that

$$\frac{\beta - 1}{\beta^{\tilde{m}+1}} \leqslant \frac{\tilde{m}^{\tilde{m}}}{(\tilde{m}+1)^{\tilde{m}+1}}.$$

Consider the function $f(\beta) = \frac{\beta-1}{\beta^{\tilde{m}+1}}$, $\beta \geqslant 1$. It is easy to check that $f'(\beta) = \frac{\beta^{\tilde{m}}(-\tilde{m}\beta+\tilde{m}+1)}{(\beta^{\tilde{m}+1})^2}$, $f'(\beta) = 0 \Leftrightarrow \beta = \frac{\tilde{m}+1}{\tilde{m}}$, $f'(\beta) < 0$ for $\beta > \frac{\tilde{m}+1}{\tilde{m}}$, $f'(\beta) > 0$ for $\beta < \frac{\tilde{m}+1}{\tilde{m}}$. Thus,

$$\max_{\beta \geqslant 1} f(\beta) = f\left(\frac{\tilde{m}+1}{\tilde{m}}\right) = \frac{\tilde{m}^{\tilde{m}}}{(\tilde{m}+1)^{\tilde{m}+1}}$$

Therefore

$$(-M)\frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}}\sum_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \leqslant 1,$$

which contradicts condition (5). Hence, (6) has no eventually positive solution. Similarly, we can prove that the inequality

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} - \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_i}}{\lambda_n^{n-m_i}}\right) \geqslant 0, \quad n \in \mathbb{N}$$

has no eventually negative solution. So, the proof is complete.

Corollary 2.4. Assume that the condition (5) in Theorem 2.3 is replaced by

$$r\left(\prod_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M)\right)^{\frac{1}{r}} > \frac{\hat{m}^{\hat{m}}}{(\hat{m}+1)^{\hat{m}+1}},\tag{9}$$

where $\alpha_i(n) \ge 0, n \in \mathbb{N}, 1 \le i \le r$ and $\hat{m} = \frac{1}{r} \sum_{i=1}^r m_i$. Then, (1) is oscillatory.

Proof. We will prove that the inequality (6) has no eventually positive solution. Assume, for the sake of contradiction, that (6) has a solution $\{x_n\}_n$ with $x_n > 0$ for all $n \ge n_1, n_1 \in \mathbb{N}$. Using arithmetic and geometric mean inequality, we obtain

$$\sum_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M) \cdot \beta^{m_i} \geqslant r \left(\prod_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M) \cdot \beta^{m_i} \right)^{\frac{1}{r}},$$

which is the same as

$$\sum_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M) \cdot \beta^{m_i} \geqslant r \left(\prod_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M) \right)^{\frac{1}{r}} \beta^{\hat{m}}.$$

This yields

$$\frac{1}{\beta} \leqslant 1 - r \left(\prod_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M) \right)^{\frac{1}{r}} \beta^{\hat{m}}.$$

It implies

$$r\left(\prod_{i=1}^{r} \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \cdot (-M)\right)^{\frac{1}{r}} \leqslant \frac{\hat{m}^{\hat{m}}}{(\hat{m}+1)^{\hat{m}+1}}.$$

which contradicts condition (9). Hence, (6) has no eventually positive solution.

Example 2.5. Consider the difference equation

$$x_{n+1} = \sqrt[n]{1 + 2^{n(-1)^n}} x_n + \sum_{i=1}^r (1 + 2^{n(-1)^n})^{\frac{2(m_i+1)}{n}} (-x_{n-m_i}), \ n = 0, 1, 2, \dots,$$
(10)

where r, m_1, m_2, \ldots, m_r are fixed positive integers. It is clear that this equation is a particular case of (1), where $\lambda_n = \sqrt[n]{1 + 2^{n(-1)^n}}$, $\alpha_i(n) = (1 + 2^{n(-1)^n})^{\frac{2(m_i+1)}{n}}$, $\forall n \in \mathbb{N}, 1 \leq i \leq r$, and $F(x) \equiv -x$.

After some computations, we obtain

$$\liminf_{n \to \infty} \sum_{i=1}^{r} \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} = \liminf_{n \to \infty} \sum_{i=1}^{r} \left[(1 + 2^{n(-1)^n})^{\frac{1}{n}} \right]^{m_i+1} = r > 0$$

and

$$\begin{split} \limsup_{n \to \infty} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} &= 2 \sum_{i=1}^r 2^{m_i} > 1 - \liminf_{n \to \infty} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}}; \\ \limsup_{n \to \infty} \sum_{i=1}^r \sum_{\ell=n}^{n+m^*} \frac{\alpha_i(\ell)}{\lambda_\ell^{m_i+1}} &= 2m^* \sum_{i=1}^r 2^{m_i} > 1 = -\frac{1}{M}, m^* = \max_{1 \leqslant i \leqslant r} m_i; \\ (-M) \frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} \sum_{i=1}^r \liminf_{n \to \infty} \frac{\alpha_i(n)}{\lambda_n} \\ &= 1 \cdot \frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} \cdot \sum_{i=1}^r \liminf_{n \to \infty} \left[\left(1 + 2^{n(-1)^n}\right)^{\frac{1}{n}} \right]^{2m_i+1} \\ &= 1 \cdot \frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} \cdot r > 1, \tilde{m} = \min_{1 \leqslant i \leqslant r} m_i. \end{split}$$

It is easy to verify that all conditions of Theorems 2.1, 2.2, 2.3 hold. Hence (10) is oscillatory.

Proposition 2.6. Let F be a nonincreasing function, $xF(x) < 0, x \neq 0, -F(x) \ge x$, $F(ax) = aF(x), \forall a, x \in \mathbb{R}, m_1 > m_2 > \ldots > m_r > 0$ and suppose there exists a sufficiently large integer N such that

$$\alpha_1(n) \geqslant 0, \alpha_1(n)\lambda_n^{n-m_1} + \alpha_2(n)\lambda_n^{n-m_2} \geqslant 0, \cdots, \sum_{i=1}^r \alpha_i(n)\lambda_n^{n-m_i} \geqslant 0 \text{ for } n \geqslant N.$$

Assume further that for any given positive integer n_1 there exists an integer $n_2 \ge n_1$ such that $\alpha_i(n) \ge 0$, i = 1, ..., r for $n \in [n_2, n_2 + m_1]$. Let $\{x_n\}_n$ be a solution of (1) such that $\{x_n\}_n$ is eventually positive. Then $\{\frac{x_n}{\lambda_n^n}\}_n$ is eventually nonincreasing and

$$\sum_{i=1}^{r} \alpha_i(n) F(x_{n-m_i}) \leqslant -\frac{x_{n-m_r}}{\lambda_n^{n-m_r}} \sum_{i=1}^{r} \alpha_i(n) \lambda_n^{n-m_i}$$

$$\tag{11}$$

holds eventually.

Proof. Let $x_{n-m_1} > 0$ for $n \ge N$. Then there exists $n_2 \ge N$ such that $\alpha_i(n) \ge 0$, $i = 1, \ldots, r, n \in [n_2, n_2 + m_1]$. This implies that

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} = \frac{1}{\lambda_n^{n+1}} \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i}) \leqslant 0 \text{ for } n \in [n_2, n_2 + m_1].$$

We shall show that $\left\{\frac{x_n}{\lambda_n^n}\right\}_n$ is nonincreasing for $n \in [n_2 + m_1, n_2 + m_1 + m_r]$. Since

$$n - m_i \in [n_2, n_2 + m_1], \quad \text{ for } n \in [n_2 + m_1, n_2 + m_1 + m_r]$$

SO

$$\frac{x_{n-m_1}}{\lambda_n^{n-m_1}} \geqslant \frac{x_{n-m_2}}{\lambda_n^{n-m_2}} \geqslant \dots \geqslant \frac{x_{n-m_r}}{\lambda_n^{n-m_r}}.$$

Therefore

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n}$$

$$= \frac{1}{\lambda_n^{n+1}} \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i})$$

$$\leqslant \frac{1}{\lambda_n^{n+1}} [\alpha_1(n) \lambda_n^{n-m_1} + \alpha_2(n) \lambda_n^{n-m_2}] F\left(\frac{x_{n-m_2}}{\lambda_n^{n-m_2}}\right) + \sum_{i=3}^r \alpha_i(n) F(x_{n-m_i})$$

$$\leqslant \cdots \cdots \cdots \cdots$$

$$\leqslant \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_r}}{\lambda_n^{n-m_r}}\right) \leqslant 0,$$

for $n \in [n_2 + m_1, n_2 + m_1 + m_r]$. Repeating the above procedure we can show that $\left\{\frac{x_n}{\lambda_n^n}\right\}_n$ is nonincreasing for $n \in [n_2 + m_1 + \ell m_r, n_2 + m_1 + (\ell+1)m_r]$, for $\ell \in \mathbb{N}_0$. That is, $\left\{\frac{x_n}{\lambda_n^n}\right\}_n$ is nonincreasing for $n \geqslant n_2$. On the other hand, from inequality

$$\frac{1}{\lambda_n^{n+1}} \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i}) \leqslant \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_r}}{\lambda_n^{n-m_r}}\right)$$

we have the inequality (11).

Theorem 2.7. Assume that the assumptions of Proposition 2.6 hold. Further, assume that $\sum_{j=N}^{\infty} \sum_{i=1}^{r} \alpha_i(j) \lambda_j^{j-m_i} = \infty$. Then every nonoscillatory solution of (1) tends to 0 as $n \to \infty$.

Proof. Let $\{x_n\}_n$ be an eventually positive solution of (1). By Proposition 2.6, $\left\{\frac{x_n}{\lambda_n^n}\right\}_n$ is eventually nonincreasing and hence there exists $\lim_{n\to\infty}\frac{x_n}{\lambda_n^n}=\beta$. We have $\beta\geqslant 0$. If $\beta>0$, by summing (1) from N to n we have

$$0 = \frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_N}{\lambda_n^N} - \frac{1}{\lambda_n^{n+1}} \sum_{j=N}^n \sum_{i=1}^r \alpha_i(j) F(x_{j-m_i}),$$

$$\geqslant \frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_N}{\lambda_n^N} + \frac{1}{\lambda_n^{n+1}} \sum_{j=N}^n \frac{x_{j-m_r}}{\lambda_j^{j-m_r}} \sum_{i=1}^r \alpha_i(j) \lambda_j^{j-m_i}$$

$$\geqslant \frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_N}{\lambda_n^N} + \frac{1}{\lambda_n^{n+1}} \frac{x_{n-m_r}}{\lambda_n^{n-m_r}} \sum_{j=N}^n \sum_{i=1}^r \alpha_i(j) \lambda_j^{j-m_i}.$$

Letting $n \to \infty$ we get a contradiction. Therefore $\beta = 0$. The proof is complete.

Proposition 2.8. In addition to the assumptions of Proposition 2.6, suppose that $\lambda_n \geqslant 1, \forall n$ and there exists a positive number γ such that

$$\sum_{j=n-m_r}^{n} \sum_{i=1}^{r} \alpha_i(j) \lambda_j^{j-m_i} \geqslant \gamma > 0 \text{ for all large } n.$$
 (12)

Let $\{x_n\}_n$ be an eventually positive solution of (1). Then $\left\{\frac{x_{n-m_r}}{x_n}\right\}_n$ is eventually bounded above.

Proof. From (12), for any large integer \overline{N} there exists an integer n such that $\overline{N} \in [n-m_r,n]$ and

$$\sum_{j=n-m_r}^{\overline{N}} \sum_{i=1}^r \alpha_i(j) \lambda_j^{j-m_i} \geqslant \frac{\gamma}{2}, \quad \sum_{j=\overline{N}}^n \sum_{i=1}^r \alpha_i(j) \lambda_j^{j-m_i} \geqslant \frac{\gamma}{2}.$$

Summing (1) from $n - m_r$ to \overline{N} we have

$$\frac{x_{\overline{N}+1}}{\lambda_n^{\overline{N}+1}} - \frac{x_{n-m_r}}{\lambda_n^{n-m_r}} = \frac{1}{\lambda_n^{n+1}} \sum_{j=n-m_r}^{\overline{N}} \sum_{i=1}^r \alpha_i(j) F(x_{j-m_i})$$

$$\Rightarrow \frac{x_{n-m_r}}{\lambda_n^{n-m_r}} = \frac{x_{\overline{N}+1}}{\lambda_n^{\overline{N}+1}} - \frac{1}{\lambda_n^{n+1}} \sum_{j=n-m_r}^{\overline{N}} \sum_{i=1}^r \alpha_i(j) F(x_{j-m_i})$$

$$\geqslant \frac{x_{\overline{N}+1}}{\lambda_n^{\overline{N}+1}} + \frac{1}{\lambda_n^{n+1}} \sum_{j=n-m_r}^{\overline{N}} \frac{x_{j-m_r}}{\lambda_j^{j-m_r}} \sum_{i=1}^r \alpha_i(j) \lambda_j^{j-m_i}$$

$$\geqslant \frac{x_{\overline{N}+1}}{\lambda_n^{\overline{N}+1}} + \frac{x_{\overline{N}-m_r}}{\lambda_n^{\overline{N}-m_r}} \sum_{j=n-m_r}^{\overline{N}} \sum_{i=1}^r \alpha_i(j) \lambda_j^{j-m_i}.$$

Hence

$$\frac{x_{n-m_r}}{\lambda_n^{n-m_r}} \geqslant \frac{x_{\overline{N}+1}}{\lambda_n^{\overline{N}+1}} + \frac{x_{\overline{N}-m_r}}{\lambda_n^{\overline{N}-m_r}} \frac{\gamma}{2}.$$
 (13)

Similarly, summing (1) from \overline{N} to n we have

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_{\overline{N}}}{\lambda_n^{\overline{N}}} = \frac{1}{\lambda_n^{n+1}} \sum_{j=\overline{N}}^n \sum_{i=1}^r \alpha_i(j) F(x_{j-m_i}).$$

Hence

$$\frac{x_{\overline{N}}}{\lambda_n^{\overline{N}}} \geqslant \frac{x_{n+1}}{\lambda_n^{n+1}} + \frac{x_{n-m_r}}{\lambda_n^{n-m_r}} \frac{\gamma}{2}.$$
 (14)

Combining (13) and (14) we have $\frac{x_{\overline{N}-m_r}}{x_{\overline{N}}} \leq (2/\gamma)^2$. Since \overline{N} is arbitrary the proof is complete.

Theorem 2.9. In addition to the hypotheses of Propositon 2.8 suppose that $\lambda_n \geqslant 1, \forall n \text{ and}$

$$\liminf_{n \to \infty} \frac{1}{m_r} \sum_{j=n-m_r}^{n-1} \sum_{i=1}^r \frac{\alpha_i(j)}{\lambda_j^{m_i+1}} > \frac{m_r^{m_r}}{(m_r+1)^{m_r+1}}.$$

Then, (1) is oscillatory.

Proof. Assume the contrary and let $\{x_n\}_n$ be an eventually positive solution of (1), then by Proposition 2.6,

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} = \frac{1}{\lambda_n^{n+1}} \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i}),$$

$$\leqslant \frac{1}{\lambda_n^{n+1}} \sum_{i=1}^r \alpha_i(n) \lambda_n^{n-m_i} F\left(\frac{x_{n-m_r}}{\lambda_n^{n-m_r}}\right)$$

$$= \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} F\left(\frac{x_{n-m_r}}{\lambda_n^{n-m_r}}\right)$$

$$\leqslant -\sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}} \frac{x_{n-m_r}}{\lambda_n^{n-m_r}}$$

$$\leqslant -\frac{x_n}{\lambda_n^n} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}}.$$
(15)

Hence, eventually

$$1 - \frac{x_{n+1}}{\lambda_n x_n} \geqslant \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i + 1}}$$

and so

$$\frac{1}{m_r} \sum_{j=n-m_r}^{n-1} \sum_{i=1}^r \frac{\alpha_i(j)}{\lambda_j^{m_i+1}} \leqslant \frac{1}{m_r} \sum_{j=n-m_r}^{n-1} \left(1 - \frac{x_{j+1}}{x_j \lambda_j}\right)$$

$$= 1 - \frac{1}{m_r} \sum_{j=n-m_r}^{n-1} \frac{x_{j+1}}{x_j \lambda_j}$$

$$\leqslant 1 - \left(\prod_{j=n-m_r}^{n-1} \frac{x_{j+1}}{x_j \lambda_j}\right)^{\frac{1}{m_r}}$$

$$= 1 - \left(\frac{x_n}{x_{n-m_r}} \frac{1}{\prod_{j=n-m_r}^{n-1} \lambda_j}\right)^{\frac{1}{m_r}}.$$

Putting $\alpha = \frac{m_r^{m_r}}{(m_r+1)^{m_r+1}}$, from the inequality

$$\liminf_{n \to \infty} \frac{1}{m_r} \sum_{i=n-m_r}^{n-1} \sum_{i=1}^r \frac{\alpha_i(j)}{\lambda_j^{m_i+1}} > \frac{m_r^{m_r}}{(m_r+1)^{m_r+1}}$$

we can choose a constant β such that for n sufficiently large

$$\alpha < \beta \leqslant \frac{1}{m_r} \sum_{j=n-m_r}^{n-1} \sum_{i=1}^r \frac{\alpha_i(j)}{\lambda_j^{m_i+1}}.$$

Therefore, for all large n, $\left(\frac{x_n}{x_{n-m_r}}\right)^{\frac{1}{m_r}} \left(\frac{1}{\prod\limits_{j=n-m_r}^{n-1}\lambda_j}\right)^{\frac{1}{m_r}} \leqslant 1-\beta$, which in particular implies that $0<\beta<1$. Since

$$\max_{0 \leqslant \lambda \leqslant 1} [(1 - \lambda)\lambda^{\frac{1}{m_r}}] = \alpha^{\frac{1}{m_r}},$$

we have

$$1 - \lambda \leqslant \alpha^{\frac{1}{m_r}} / \beta^{\frac{1}{m_r}}$$

and

$$\frac{1}{\prod\limits_{j=n-m_r}^{n-1}\lambda_j}\frac{\beta}{\alpha}x_n\leqslant x_{n-m_r},$$

or

$$\frac{1}{\lambda_n^{n-m_r} \prod_{j=n-m_r}^{n-1} \lambda_j} \frac{\beta}{\alpha} x_n \leqslant \frac{x_{n-m_r}}{\lambda_n^{n-m_r}}.$$
 (16)

Substituting (16) into (15) we obtain

$$\frac{x_{n+1}}{\lambda_n^{n+1}} - \frac{x_n}{\lambda_n^n} \leqslant -\frac{x_n}{\lambda_n^n} \frac{1}{\lambda_n^{-m_r} \prod_{j=n-m_r}^{n-1} \lambda_j} \frac{\beta}{\alpha} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}}.$$

Hence

$$1 - \frac{x_{n+1}}{x_n \lambda_n} \geqslant \frac{1}{\lambda_n^{-m_r}} \frac{1}{\prod_{j=n-m_r}^{n-1} \lambda_j} \frac{\beta}{\alpha} \sum_{i=1}^r \frac{\alpha_i(n)}{\lambda_n^{m_i+1}},$$

and so

$$\frac{1}{\lambda_n^{-m_r}} \frac{1}{\prod_{j=n-m_r}^{n-1} \lambda_j} \frac{\beta}{\alpha} \frac{1}{m_r} \sum_{j=n-m_r}^{n-1} \sum_{i=1}^r \frac{\alpha_i(j)}{\lambda_j^{m_i+1}} \leqslant 1 - \left(\frac{x_n}{x_{n-m_r}} \frac{1}{\prod_{j=n-m_r}^{n-1} \lambda_j} \right)^{\frac{1}{m_r}}.$$

Thus

$$\left(\frac{x_n}{x_{n-m_r}}\right)^{\frac{1}{m_r}} \left(\frac{1}{\prod\limits_{j=n-m_r}^{n-1} \lambda_j}\right)^{\frac{1}{m_r}} \leqslant 1 - \frac{1}{\lambda_n^{-m_r}} \frac{1}{\prod_{j=n-m_r}^{n-1} \lambda_j} \frac{\beta^2}{\alpha}$$

and eventually

$$\frac{1}{\lambda_n^{-m_r}} \frac{1}{\prod\limits_{j=n-m_r}^{n-1} \lambda_j} \left(\frac{\beta}{\alpha}\right)^2 x_n \leqslant \frac{x_{n-m_r}}{\lambda_n^{n-m_r}}.$$

By induction, for every m = 1, 2, ..., there exists an integer n_k such that

$$\frac{1}{\lambda_n^{-m_r}} \frac{1}{\prod\limits_{j=n-m_r}^{n-1} \lambda_j} \left(\frac{\beta}{\alpha}\right)^k x_n \leqslant \frac{x_{n-m_r}}{\lambda_n^{n-m_r}}, \quad n \geqslant n_k,$$

or

$$\frac{\lambda_n^n}{\prod\limits_{j=n-m_r}^{n-1} \lambda_j} \left(\frac{\beta}{\alpha}\right)^k \leqslant \frac{x_{n-m_r}}{x_n}, \quad n \geqslant n_k,$$

which implies that $\left\{\frac{x_{n-m_r}}{x_n}\right\}_n$ is eventually unbounded. But this, in view of Proposition 2.8, is impossible.

3. Conclusion

In this paper, we obtain some new results for oscillation of the difference equation (1) in two following cases

- $\{\lambda_n\}_n$ is an arbitrary sequence of positive real numbers and $\alpha_i(n) \ge 0$, $\forall n \in \mathbb{N}_0$ (Theorems 2.1, 2.2, 2.3);
- $\lambda_n \ge 1$, $\forall n \in \mathbb{N}_0$ and the positivity of $\alpha_i(n)$ is not required (Theorems 2.7, 2.9).

Acknowledgements. The author would like to thank the referees for the careful reading and helpful suggestions to improve this paper.

References

- 1. D. C. Huong, On the asymptotic behaviour of solutions of a nonlinear difference equation with bounded multiple delay, *Vietnam J. Math.* **34** (2) (2006), 163–170.
- 2. D. C. Huong and P. T. Nam, On the oscillation, convergence and boundedness of a nonlinear difference equation with multiple delay, *Vietnam J. Math.* **36** (2), (2008), 151–160.
- 3. B. S. Lalli and B. G. Zhang, Oscillation of difference equations, *Colloquium Mathematicum* LXV (1993), 25–32.