Vietnam Journal of MATHEMATICS © VAST 2010

Hankel Operators with Vector Valued Symbols on the Hardy Space

Namita Das¹ and Pabitra Kumar Jena²

P.G.Department of Mathematics, Utkal University Vani Vihar, Bhubaneswar- 751004, Orissa, India

²P.G.Department of Mathematics, Utkal University Vani Vihar, Bhubaneswar-751004, Orissa, India

Received June 24, 2009

Abstract. In this paper we have shown that the sequence $\left\{J_{qI_{n\times n}}^m T_{\Phi} T_{(zq)I_{n\times n}}^m\right\}$ converges strongly to the Hankel operator $S_{\Phi} \in \mathcal{L}(\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}))$ for $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ and for all inner functions $q \in H^{\infty}(\mathbb{T})$. Here T_{Φ} is the Toeplitz operator on the Hardy space $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}), I_{n\times n}$ is the identity matrix of order $n, J_{qI_{n\times n}}^m = \operatorname{diag}[J_q^m, J_q^m, \dots, J_q^m]$ where for $i \geq 0, m \geq 0, J_q^{m^*} z^i = q^m z^{m-i}, 0 \leq i \leq m$ and 0, otherwise.

2000 Mathematics Subject Classification: Primary 47B35,47B47 Key words: Hankel operators, inner functions, Hardy space.

1. Introduction

Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ and $L^2(\mathbb{T})$ be the space of square integrable, measurable functions on \mathbb{T} with respect to the normalized Lebesgue measure on \mathbb{T} . The sequence $\{e_n(z)\}_{n=-\infty}^{\infty} = \{z^n\}_{n=-\infty}^{\infty}$ forms an orthonormal basis for $L^2(\mathbb{T})$. Given $f \in L^1(\mathbb{T})$, the Fourier coefficients of f are $C_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta})e^{-in\theta}d\theta, n \in \mathbb{Z}$, where \mathbb{Z} is the set of all integers. The Hardy space $H^2(\mathbb{T})$ is the subspace of $L^2(\mathbb{T})$ consisting of functions f with $C_n(f) = 0$ for all negative integers n. Since $C_n = C_n(\cdot)$ is a bounded linear functional on $L^2(\mathbb{T})$ for any fixed n and $H^2(\mathbb{T}) = \bigcap_{n < 0} \ker C_n$, it follows that $H^2(\mathbb{T})$ is

a closed subspace of $L^2(\mathbb{T})$ and therefore a Hilbert space. Let \widetilde{P} denote the orthogonal projection from $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. Let $L^\infty(\mathbb{T})$ be the space of all essentially bounded measurable functions on \mathbb{T} . For $\varphi \in L^\infty(\mathbb{T})$, the Toeplitz operator T_φ from $H^2(\mathbb{T})$ into itself is defined by $T_\varphi f = \widetilde{P}(\varphi f)$ and the Hankel operator S_φ from $H^2(\mathbb{T})$ into itself is defined by $S_\varphi f = \widetilde{P}(\widetilde{J}(\varphi f))$. Here \widetilde{J} is the mapping from $L^2(\mathbb{T})$ into $L^2(\mathbb{T})$ defined by $\widetilde{J}f(z) = f(\overline{z})$. Let $\mathcal{L}(H)$ denote the algebra of bounded, linear operators from a Hilbert space H into itself and $\mathcal{LC}(H)$ be the set of all compact linear operators from H into itself. Let $H^\infty(\mathbb{T}) = \{f \in L^\infty(\mathbb{T}) : C_n(f) = 0 \text{ for } n < 0\}$. A function $q \in H^\infty(\mathbb{T})$ is said to be an inner function if $|q(e^{it})| = 1$ almost everywhere on \mathbb{T} . Let $I_{n \times n}$ be the identity matrix of order n.

Let $L^2_{\mathbb{C}^n}(\mathbb{T})$ denote the Hilbert space of \mathbb{C}^n -valued, norm-square integrable, measurable functions on \mathbb{T} and $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ the corresponding Hardy space of functions in $L^2_{\mathbb{C}^n}(\mathbb{T})$ with vanishing negative Fourier coefficients. We note that $L^2_{\mathbb{C}^n}(\mathbb{T}) = L^2(\mathbb{T}) \otimes \mathbb{C}^n$ and $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}) = H^2(\mathbb{T}) \otimes \mathbb{C}^n$ where the Hilbert space tensor product is used. If Φ is a bounded measurable M_n -valued function (where M_n denotes the algebra of matrices of order n with complex entries) in $L^\infty_{M_n}(\mathbb{T}) = L^\infty(\mathbb{T}) \otimes M_n$, then T_Φ denotes the Toeplitz operator defined on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ by $T_\Phi f = P(\Phi f)$ for $f \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ where P is the orthogonal projection of $L^2_{\mathbb{C}^n}(\mathbb{T})$ onto $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$. The Hankel operator S_Φ is a mapping from $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ into itself defined by $S_\Phi f = P(J(\Phi f))$ where $J : L^2_{\mathbb{C}^n}(\mathbb{T}) \to L^2_{\mathbb{C}^n}(\mathbb{T})$ is defined by $Jf(z) = f(\overline{z})$. In this paper we have shown that if $\Phi \in L^\infty_{M_n}(\mathbb{T})$ then for all inner functions $q \in H^\infty(\mathbb{T})$, the sequence $\{J^m_{q_{I^n \times n}} T_\Phi T^m_{(zq)I_{I^n \times n}}\}$ converges strongly to the Hankel operator $S_\Phi \in \mathcal{L}(\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}))$. This is an extension of a result given in [2] and [3]. It relates Toeplitz and Hankel operators in some asymptotic sense.

2. Hankel Operators and Inner Functions

In this section we obtain a characterization of Hankel operators on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ in terms of inner functions in $H^{\infty}(\mathbb{T})$. In fact we show that if S is a bounded linear operator on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ then S is a Hankel operator if and only if $ST_{qI_{n\times n}}=T^*_{q^+I_{n\times n}}S$ for all inner functions $q\in H^{\infty}(\mathbb{T})$ where $q^+(z)=\overline{q(\overline{z})}$. We first prove a result for Hankel operators on $H^2(\mathbb{T})$.

Lemma 2.1. Let $S \in \mathcal{L}(H^2(\mathbb{T}))$. Then $T_{q+}^*S = ST_q$ for all inner functions $q \in H^{\infty}(\mathbb{T})$ if and only if there exists $\varphi \in L^{\infty}(\mathbb{T})$ such that $S = S_{\varphi}$, a Hankel operator. Here $q^+(z) = \overline{q(\overline{z})}$.

Proof. Let $\mathcal{A} = \{\overline{\eta}h : \eta \text{ is inner and } h \in H^2(\mathbb{T})\}$. Then \mathcal{A} is a dense linear [4] subspace of $L^2(\mathbb{T})$. Define $\widetilde{J} : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ as $\widetilde{J}f(z) = f(\overline{z})$ for all $z \in \mathbb{T}$ and $\widetilde{S}f = Sf$ if $f \in H^2(\mathbb{T})$ and \widetilde{S} is bounded linear on $L^2(\mathbb{T})$. Thus $\widetilde{S}|_{H^2(\mathbb{T})} = S$. Define a map $\Omega : \mathcal{A} \to \mathbb{C}$ as $\Omega(\overline{\eta}h) = \langle \widetilde{S}(\overline{\eta}h), 1 \rangle$. Then Ω is well-defined and linear. In fact, if $\overline{\eta_1}h_1 = \overline{\eta_2}h_2$, then we have $\Omega(\overline{\eta_1}h_1) = \Omega(\overline{\eta_2}h_2)$. Further

$$\begin{split} |\Omega(\overline{\eta}h)| &\leq \|\widetilde{S}\| \|\overline{\eta}h\|. \text{ So } \Omega \text{ is a bounded, linear functional on } \mathcal{A}. \text{ Since } \mathcal{A} \text{ is dense in } L^2(\mathbb{T}), \text{ there exists a unique } \varphi \in L^2(\mathbb{T}) \text{ such that } \Omega(\overline{\eta}h) = \langle \overline{\eta}h, \overline{\varphi} \rangle \\ \text{and } |\langle \overline{\eta}h, \overline{\varphi} \rangle| &\leq \|\widetilde{S}\| \|\overline{\eta}h\|. \text{ Thus } \varphi \in L^\infty(\mathbb{T}). \text{ Define } \Gamma_\varphi : L^2(\mathbb{T}) \to L^2(\mathbb{T}) \text{ as } \\ \Gamma_\varphi f &= \widetilde{J}(\varphi f). \text{ Notice that } \Gamma_\varphi \text{ is bounded on } L^2(\mathbb{T}) \text{ and } \|\Gamma_\varphi\| \leq \|\varphi\|_\infty. \text{ Further, } \\ \langle \widetilde{S}(\overline{\eta}h), 1 \rangle &= \Omega(\overline{\eta}h) = \langle \overline{\eta}h, \overline{\varphi} \rangle = \langle \overline{\eta}^+h^+, \widetilde{J}\varphi \rangle = \langle \eta^+\widetilde{J}h, \varphi^+ \rangle = \langle (\widetilde{J}\varphi)\eta^+\widetilde{J}h, 1 \rangle = \\ \langle \widetilde{J}(\varphi\overline{\eta}h), 1 \rangle &= \langle \Gamma_\varphi(\overline{\eta}h), 1 \rangle. \text{ Since } \mathcal{A} \text{ is dense in } L^2(\mathbb{T}), \text{ we have } \langle \widetilde{S}f, 1 \rangle = \langle \Gamma_\varphi f, 1 \rangle \\ \text{ for all } f \in L^2(\mathbb{T}). \text{ In particular, for } g \in H^2(\mathbb{T}), \langle Sg, 1 \rangle = \langle \widetilde{S}g, 1 \rangle = \langle \Gamma_\varphi g, 1 \rangle = \\ \langle \widetilde{P}\Gamma_\varphi g, 1 \rangle &= \langle S_\varphi g, 1 \rangle. \text{ Now since } T_{q+}^*S = ST_q \text{ for all inner functions } q \in H^\infty(\mathbb{T}), \\ \text{ we obtain in particular, } T_{z+}^*S = ST_z. \text{ That is, } T_z^*S = T_{\overline{z}}S = ST_z. \text{ Thus for polynomials } p, u \text{ in } z, \text{we have } \langle S(pu^+), 1 \rangle = \langle ST_{pu^+}1, 1 \rangle = \langle T_{(pu^+)^+}^*S1, 1 \rangle = \\ \langle T_{\widetilde{J}(pu^+)}^*S1, 1 \rangle &= \langle S1, T_{(pu^+)^+}1 \rangle = \langle S1, (p^+u)1 \rangle = \langle S1, T_{p^+}u \rangle = \langle T_p^*S1, u \rangle = \\ \langle ST_p1, u \rangle &= \langle Sp, u \rangle. \text{ Thus } \langle Sp, u \rangle = \langle S(pu^+), 1 \rangle = \langle S_\varphi(pu^+), 1 \rangle = \langle S_\varphi(pu^+), 1 \rangle = \langle S_\varphi g, u \rangle. \\ \text{Since polynomials are dense in } H^2(\mathbb{T}), \text{ we have for } f, g \in H^2(\mathbb{T}), \langle Sf, g \rangle = \\ \langle S_\varphi f, g \rangle. \text{ Hence } S = S_\varphi. \\ \end{split}$$

Conversely, if S_{φ} is a Hankel operator in $\mathcal{L}(H^{2}(\mathbb{T}))$, then for any inner function $\eta \in H^{\infty}(\mathbb{T})$ and for all $n, m \geq 0$, $\langle T_{\eta^{+}}^{*} S_{\varphi} z^{n}, z^{m} \rangle = \langle S_{\varphi} z^{n}, T_{\eta^{+}} z^{m} \rangle = \langle S_{\varphi} z^{n}, \eta^{+} z^{m} \rangle = \langle \widetilde{P} \widetilde{J}(\varphi z^{n}), \eta^{+} z^{m} \rangle = \langle \widetilde{J}(\varphi z^{n}), \eta^{+} z^{m} \rangle = \langle \varphi z^{n}, \overline{\eta} \overline{z}^{m} \rangle = \langle \varphi \eta z^{n}, \overline{z}^{m} \rangle = \langle \widetilde{J}(\varphi \eta z^{n}), z^{m} \rangle = \langle S_{\varphi}(\eta z^{n}), z^{m} \rangle = \langle S_{\varphi}(\eta z^{n}), z^{m} \rangle = \langle S_{\varphi}(\eta z^{n}), z^{m} \rangle$. Thus $T_{\eta^{+}}^{*} S_{\varphi} = S_{\varphi} T_{\eta}$ for all inner functions $\eta \in H^{\infty}(\mathbb{T})$.

Theorem 2.2. Let $S \in \mathcal{L}(\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}))$. The operator S is a Hankel operator on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ if and only if $ST_{qI_{n\times n}} = T^*_{q^+I_{n\times n}}S$ for all inner functions $q \in H^\infty(\mathbb{T})$.

Proof. Let $S \in \mathcal{L}(\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}))$. Since $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}) = H^2(\mathbb{T}) \oplus H^2(\mathbb{T}) \oplus ... \oplus H^2(\mathbb{T})$, hence

$$S = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & & \vdots \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{bmatrix}$$

where $S_{ij} \in \mathcal{L}(H^2(\mathbb{T})), 1 \leq i, j \leq n$. Thus $T^*_{q+I_{n\times n}}S = ST_{qI_{n\times n}}$ for all inner functions $q \in H^{\infty}(\mathbb{T})$ if and only if $T^*_{q+}S_{ij} = S_{ij}T_q$ for all inner functions $q \in H^{\infty}(\mathbb{T}), 1 \leq i, j \leq n$. But from Lemma 2.1, it follows that $S_{ij} = S_{\varphi_{ij}} \in \mathcal{L}(H^2(\mathbb{T}))$, a Hankel operator on $H^2(\mathbb{T})$ with symbol $\varphi_{ij} \in L^{\infty}(\mathbb{T}), 1 \leq i, j \leq n$. Hence

$$S = \begin{bmatrix} S_{\varphi_{11}} & S_{\varphi_{12}} & \cdots & S_{\varphi_{1n}} \\ S_{\varphi_{21}} & S_{\varphi_{22}} & \cdots & S_{\varphi_{2n}} \\ \vdots & \vdots & & \vdots \\ S_{\varphi_{n1}} & S_{\varphi_{n2}} & \cdots & S_{\varphi_{nn}} \end{bmatrix} = S_{\Phi} \in \mathcal{L}(\mathcal{H}^{2}_{\mathbb{C}^{n}}(\mathbb{T})),$$

a Hankel operator with symbol $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ and

$$\Phi = \begin{bmatrix} \varphi_{11} & \varphi_{12} & \cdots & \varphi_{1n} \\ \varphi_{21} & \varphi_{22} & \cdots & \varphi_{2n} \\ \vdots & \vdots & & \vdots \\ \varphi_{n1} & \varphi_{n2} & \cdots & \varphi_{nn} \end{bmatrix}.$$

Now suppose $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ and S_{Φ} is a Hankel operator on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$. Let

$$\Phi = \begin{bmatrix} \varphi_{11} & \varphi_{12} & \cdots & \varphi_{1n} \\ \varphi_{21} & \varphi_{22} & \cdots & \varphi_{2n} \\ \vdots & \vdots & & \vdots \\ \varphi_{n1} & \varphi_{n2} & \cdots & \varphi_{nn} \end{bmatrix}.$$

Then since $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}) = H^2(\mathbb{T}) \oplus \oplus H^2(\mathbb{T})$, hence

$$S_{\Phi} = \begin{bmatrix} S_{\varphi_{11}} & S_{\varphi_{12}} & \cdots & S_{\varphi_{1n}} \\ S_{\varphi_{21}} & S_{\varphi_{22}} & \cdots & S_{\varphi_{2n}} \\ \vdots & \vdots & & \vdots \\ S_{\varphi_{n1}} & S_{\varphi_{n2}} & \cdots & S_{\varphi_{nn}} \end{bmatrix}$$

where $S_{\varphi_{ij}} \in \mathcal{L}(H^2(\mathbb{T}))$ is a Hankel operator on $H^2(\mathbb{T})$ with symbol $\varphi_{ij} \in L^{\infty}(\mathbb{T})$. From Lemma 2.1, it follows that $T_{q^+}^* S_{\varphi_{ij}} = S_{\varphi_{ij}} T_q, 1 \leq i, j \leq n$. Hence

$$T_{q+I_{n\times n}}^* S_{\varPhi} = \hat{S}_{\varPhi} T_{qI_{n\times n}}.$$

3. The Hankel Sequence Associated with Toeplitz Operators

In this section we construct a sequence $\{J^m_{qI_{n\times n}}T_{\Phi}T^m_{(zq)I_{n\times n}}\}$ associated with the Toeplitz operator T_{Φ} on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ that converges strongly to the Hankel operator S_{Φ} on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ for all inner functions $q \in H^{\infty}(\mathbb{T})$. This sequence is referred to as the Hankel sequence associated with T_{Φ} . We further prove that if $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$, then $\{J^m_{qI_{n\times n}}S_{\Phi}T^m_{(zq)I_{n\times n}}\}$ converges strongly to 0 for all inner functions $q \in H^{\infty}(\mathbb{T})$.

Theorem 3.1. If $\varphi \in L^{\infty}(\mathbb{T})$, then for all inner functions $q \in H^{\infty}(\mathbb{T})$, the sequence $\{J_q^m T_{\varphi} T_{(zq)}^m\}$ converges strongly to $S_{\varphi} \in \mathcal{L}(H^2(\mathbb{T}))$, the Hankel operator with symbol φ and where for $i \geq 0, m \geq 0$,

$$J_q^{m^*}z^i = \begin{cases} q^m z^{m-i}, \ 0 \le i \le m \\ 0, & otherwise. \end{cases}$$

Proof. Notice that for $i, j \geq 0, i, j \in \mathbb{Z}, \langle S_{\varphi}z^{j}, z^{i} \rangle = \langle \widetilde{P}\widetilde{J}(\varphi z^{j}), z^{i} \rangle = \langle \widetilde{J}(\varphi z^{j}), z^{i} \rangle = \langle \varphi, z^{-(i+j)} \rangle = \hat{\varphi}(-(i+j)), \text{ where } \hat{\varphi}(n) \text{ is the } n\text{-th Fourier coefficient of } \varphi.$ Further, for $i, j \geq 0, i, j \in \mathbb{Z}$,

$$\langle J_q^m T_{\varphi} T_{(zq)}^m z^j, z^i \rangle = \langle T_{\varphi}(z^m q^m z^j), J_q^{m*} z^i \rangle$$

$$\begin{split} &= \begin{cases} \langle \widetilde{P}(\varphi z^m q^m z^j), q^m z^{m-i} \rangle, \ 0 \leq i \leq m \\ 0, & \text{otherwise} \end{cases} \\ &= \begin{cases} \langle \varphi z^j, z^{-i} \rangle, \ 0 \leq i \leq m \\ 0, & \text{otherwise} \end{cases} \\ &= \langle P_m S_{\varphi} z^j, z^i \rangle \end{split}$$

where P_m is the orthogonal projection from $H^2(\mathbb{T})$ onto span $\{1, z, ..., z^m\}$. Thus $J_q^m T_\varphi T_{(zq)}^m = P_m S_\varphi$. Since $P_m \longrightarrow I$ strongly, hence the sequence $\{J_q^m T_\varphi T_{(zq)}^m\}$ converges strongly to the Hankel operator S_φ .

Theorem 3.2. Let $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$. Then for all inner functions $q \in H^{\infty}(\mathbb{T})$, the sequence $\{J^m_{qI_{n\times n}}T_{\Phi}T^m_{(zq)I_{n\times n}}\}$ converges strongly to the Hankel operator $S_{\Phi} \in \mathcal{L}(\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}))$ where $J^m_{qI_{n\times n}} = diag[J^m_q, J^m_q, ..., J^m_q]$ and $I_{n\times n}$ is the identity matrix of order n.

Proof. Let

$$\Phi = \begin{bmatrix} \varphi_{11} & \varphi_{12} & \cdots & \varphi_{1n} \\ \varphi_{21} & \varphi_{22} & \cdots & \varphi_{2n} \\ \vdots & \vdots & & \vdots \\ \varphi_{n1} & \varphi_{n2} & \cdots & \varphi_{nn} \end{bmatrix}.$$

Then

$$T_{\varPhi} = \begin{bmatrix} T_{\varphi_{11}} & T_{\varphi_{12}} & \cdots & T_{\varphi_{1n}} \\ T_{\varphi_{21}} & T_{\varphi_{22}} & \cdots & T_{\varphi_{2n}} \\ \vdots & \vdots & & \vdots \\ T_{\varphi_{n1}} & T_{\varphi_{n2}} & \cdots & T_{\varphi_{nn}} \end{bmatrix}.$$

Now for $f \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}), f = (f_1, f_2, ..., f_n),$

$$\left\| J_{qI_{n\times n}}^m T_{\varPhi} T_{(zq)I_{n\times n}}^m f - S_{\varPhi} f \right\|^2 \le \sum_{i=1}^n \sum_{j=1}^n \left\| J_q^m T_{\varphi_{ij}} T_{(zq)}^m f_j - S_{\varphi_{ij}} f_j \right\|^2.$$

By Theorem 3.1, for all inner functions $q \in H^{\infty}(\mathbb{T})$, $\left\|J_q^m T_{\varphi_{ij}} T_{(zq)}^m f_j - S_{\varphi_{ij}} f_j\right\| \longrightarrow 0$ for $1 \leq i, j \leq n$ as $m \longrightarrow \infty$. That is, $J_q^m T_{\varphi_{ij}} T_{(zq)}^m \to S_{\varphi_{ij}}$ strongly for $1 \leq i, j \leq n$ as $m \longrightarrow \infty$. Thus $\left\|J_{qI_{n\times n}}^m T_{\Phi} T_{(zq)I_{n\times n}}^m f - S_{\Phi} f\right\| \longrightarrow 0$ as $m \to \infty$ and for all $f \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} . Let $H^2(\mathbb{D})$ be the space of analytic functions f on \mathbb{D} such that

$$||f||_{H^2(\mathbb{D})}^2 = \sup_{r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.$$

If $f \in H^2(\mathbb{D})$, then Fatou's theorem implies that the limit

$$\widetilde{f}(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta})$$

exists for almost every θ and it is well known [5] that $\widetilde{f} \in H^2(\mathbb{T})$. If $g \in H^2(\mathbb{T})$ then it is also true [5] that

$$||g||_{H^2(\mathbb{T})}^2 = \sup_{r < 1} \frac{1}{2\pi} \int_0^{2\pi} |\hat{g}(re^{i\theta})|^2 d\theta$$

where \hat{g} is the harmonic extension of g to \mathbb{D} . Since there is an isometrical isomorphism between $H^2(\mathbb{D})$ and $H^2(\mathbb{T})$, we shall not distinguish between $H^2(\mathbb{D})$ and $H^2(\mathbb{T})$.

Theorem 3.3. Let $K \in \mathcal{LC}(\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}))$. Then $T^{*m}_{q^+I_n \times n} \longrightarrow 0$ in the strong operator topology for all inner functions $q \in H^\infty(\mathbb{T})$ and $T^{*m}_{q^+I_n \times n}K \to 0$ in the norm topology as $m \to \infty$.

Proof. For $\lambda \in \mathbb{D}$, let $K_{\lambda}(t) = \frac{1}{1 - \overline{\lambda}e^{it}}$ be the reproducing kernel of the Hardy space $H^2(\mathbb{T})$ and k_{λ} be the normalized reproducing kernel of the Hardy space

$$H^2(\mathbb{T})$$
, that is, $k_{\lambda}(t) = \frac{\sqrt{1-|\lambda|^2}}{1-\overline{\lambda}e^{it}}$. Let $f = \sum_{i=1}^p c_i k_{\lambda_i}$. Then

$$T_{q^+}^{*m}\left(\sum_{i=1}^p c_i k_{\lambda_i}\right) = \sum_{i=1}^p c_i [q(\overline{\lambda_i})]^m k_{\lambda_i}.$$

Hence

$$\left\|T_{q^+}^{*m}\left(\sum_{i=1}^p c_i k_{\lambda_i}\right)\right\| \leq \sum_{i=1}^p |c_i||q(\overline{\lambda_i})|^m \|k_{\lambda_i}\| = \sum_{i=1}^p |c_i||q(\overline{\lambda_i})|^m \longrightarrow 0 \text{ as } m \longrightarrow \infty.$$

This is so as q is inner and therefore |q(z)| < 1 for $z \in \mathbb{D}$. Since the reproducing kernels $K_{\lambda}, \lambda \in \mathbb{D}$, span $H^{2}(\mathbb{D})$, we obtain $T_{q^{+}}^{*m} \longrightarrow 0$ in the strong operator topology for all inner functions $q \in H^{\infty}(\mathbb{T})$. It is not difficult now to verify that $T_{q^{+}I_{n\times n}}^{*m} \longrightarrow 0$ in the strong operator topology for all inner functions $q \in H^{\infty}(\mathbb{T})$. For a rank one operator, $f \otimes g$ (here $(f \otimes g)(h) = \langle h, g \rangle f$), we have $T_{q^{+}}^{*m}(f \otimes g) = (T_{q^{+}}^{*m}f)\otimes g$. Since $\overline{\mathcal{LF}(H^{2}(\mathbb{T}))} = \mathcal{LC}(H^{2}(\mathbb{T}))$, it is proved that $T_{q^{+}}^{*m}L \to 0$ in norm as $m \to \infty$ for all compact operators $L \in \mathcal{LC}(H^{2}(\mathbb{T}))$. Now let $K \in \mathcal{LC}(\mathcal{H}_{\mathbb{C}^{n}}^{2}(\mathbb{T}))$. Then

$$K = \begin{bmatrix} K_{11} & K_{12} & \cdots & K_{1n} \\ K_{21} & K_{22} & \cdots & K_{2n} \\ \vdots & \vdots & & \vdots \\ K_{n1} & K_{n2} & \cdots & K_{nn} \end{bmatrix}$$

where $K_{ij} \in \mathcal{LC}(H^2(\mathbb{T})), 1 \leq i, j \leq n$. Hence $T_{q^+ I_{n \times n}}^{*m} K = [T_{q^+}^{*m} K_{ij}]_{1 \leq i, j \leq n}$. Therefore, for $F \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}), F = (f_1, f_2, ..., f_n), f_i \in H^2(\mathbb{T}),$

$$\left\| T_{q^{+}I_{n\times n}}^{*m} KF \right\|^{2} = \int_{0}^{2\pi} \left(\sum_{i=1}^{n} \left| \sum_{j=1}^{n} T_{q^{+}}^{*m} K_{ij} f_{j}(e^{i\theta}) \right|^{2} \right) \frac{d\theta}{2\pi}$$

$$= \sum_{i=1}^{n} \int_{0}^{2\pi} \left| \sum_{j=1}^{n} T_{q^{+}}^{*m} K_{ij} f_{j}(e^{i\theta}) \right|^{2} \frac{d\theta}{2\pi} \le \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{2\pi} |T_{q^{+}}^{*m} K_{ij} f_{j}(e^{i\theta})|^{2} \frac{d\theta}{2\pi}$$

$$= \sum_{i,j=1}^{n} \|T_{q^{+}}^{*m} K_{ij} f_{j}\|^{2} \longrightarrow 0 \text{ as } m \to \infty.$$

Hence $T_{q^+I_{n\times n}}^{*^m}K\to 0$ strongly. Further, it follows that

$$\|T_{q^+I_{n\times n}}^{*m}KF\|^2 \le \|T_{q^+}^{*m}K_{11}\|^2 \sum_{j=1}^n \|f_j\|^2 = \left\|T_{q^+}^{*^m}K_{11}\right\|^2 \|F\|^2$$

if $\|T_{q^+}^{*^m}K_{11}\| = \max_{1 \le i,j \le n} \|T_{q^+}^{*^m}K_{ij}\|$. Thus $\|T_{q^+I_{n \times n}}^{*m}K\|^2 \le \|T_{q^+}^{*m}K_{11}\|^2 \to 0$ as $m \to \infty$. Thus $T_{q^+I_{n \times n}}^{*m}K \longrightarrow 0$ in norm as $m \to \infty$.

Lemma 3.4. Let $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ and S_{Φ} be the Hankel operator with symbol Φ on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$. Then $S_{\Phi}T^m_{qI_{n\times n}}\longrightarrow 0$ strongly as $m\to\infty$.

Proof. Let $\Phi = [\varphi_{ij}]_{1 \leq i,j \leq n}$. Then $S_{\Phi} = [S_{\varphi_{ij}}]_{1 \leq i,j \leq n}$ and hence

$$S_{\Phi}T_{qI_{n\times n}}^{m} = T_{q^{+}I_{n\times n}}^{*m}S_{\Phi} = [T_{q^{+}}^{*m}S_{\varphi_{ij}}]_{1 \leq i,j \leq n}.$$

Now for $F \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T}), F = (f_1, f_2, ..., f_n), f_i \in H^2(\mathbb{T}), 1 \leq i \leq n$, we have

$$\begin{split} \left\| S_{\varPhi} T_{qI_{n\times n}}^m F \right\|^2 &= \int_0^{2\pi} \left(\sum_{i=1}^n \left| \sum_{j=1}^n T_{q^+}^{*m} S_{\varphi_{ij}} f_j(e^{i\theta}) \right|^2 \right) \frac{d\theta}{2\pi} \\ &= \sum_{i=1}^n \int_0^{2\pi} \left| \sum_{j=1}^n T_{q^+}^{*m} S_{\varphi_{ij}} f_j(e^{i\theta}) \right|^2 \frac{d\theta}{2\pi} \\ &\leq \sum_{i=1}^n \sum_{j=1}^n \int_0^{2\pi} |T_{q^+}^{*m} S_{\varphi_{ij}} f_j(e^{i\theta})|^2 \frac{d\theta}{2\pi} \\ &= \sum_{i,j=1}^n \|T_{q^+}^{*m} S_{\varphi_{ij}} f_j \|^2. \end{split}$$

Since $T_{q^+}^{*m} \longrightarrow 0$ strongly, hence $\sum_{i,j=1}^n \left\| T_{q^+}^{*m} S_{\varphi_{ij}} f_j \right\|^2 \to 0$ as $m \to \infty$ and therefore $\left\| S_{\varPhi} T_{qI_{n \times n}}^m F \right\|^2 \longrightarrow 0$ as $m \to \infty$. Thus $S_{\varPhi} T_{qI_{n \times n}}^m \longrightarrow 0$ strongly as $m \to \infty$.

Theorem 3.5. If $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ then $\{J^m_{qI_{n\times n}}S_{\Phi}T^m_{(zq)I_{n\times n}}\}$ converges strongly to 0 for all inner functions $q \in H^{\infty}(\mathbb{T})$.

 $\begin{array}{l} \textit{Proof.} \ \text{Notice that since} \ J_q^{m*}z^i = \left\{ \begin{array}{l} q^mz^{m-i}, \ 0 \leq i \leq m \\ 0, \qquad \text{otherwise} \end{array} \right. \\ \text{hence} \ J_q^{m*}z^i = M_{(zq)^m}JP_mz^i \ \text{where} \ J: L^2(\mathbb{T}) \to L^2(\mathbb{T}) \ \text{is defined as} \ Jf(z) = f(\overline{z}) \ \text{and} \ M_{\varphi} \ : L^2(\mathbb{T}) \longrightarrow L^2(\mathbb{T}) \ \text{is the multiplication operator with symbol} \\ \varphi \in L^{\infty}(\mathbb{T}) \ \text{and} \ P_m \ \text{is the projection of} \ H^2(\mathbb{T}) \ \text{onto span} \ \{1, z, ..., z^m\}. \ \text{Thus} \end{array}$

$$J_q^m = P_m J M_{(zq)^m}^* = P_m J M_{\overline{z}^m \overline{q}^m}$$

and hence

$$J_{qI_{n\times n}}^m S_{\varPhi} T_{(zq)I_{n\times n}}^m = [J_q^m S_{\varphi_{ij}} T_{(zq)}^m]_{1 \le i,j \le n}$$

if $\Phi = [\varphi_{ij}]_{1 \le i,j \le n}, \varphi_{ij} \in L^{\infty}(\mathbb{T})$. Now

$$\begin{split} J_{q}^{m}S_{\varphi_{ij}}T_{(zq)}^{m} = & P_{m}JM_{\overline{z}^{m}\overline{q}^{m}}S_{\varphi_{ij}}T_{z^{m}q^{m}} = P_{m}JM_{\overline{z}^{m}\overline{q}^{m}}T_{(z^{m}q^{m})^{+}}^{*}S_{\varphi_{ij}} \\ = & P_{m}JM_{\overline{z}^{m}\overline{q}^{m}}T_{\overline{z}^{m}(Jq)^{m}}S_{\varphi_{ij}} = P_{m}JM_{\overline{z}^{m}\overline{q}^{m}}T_{z^{m}q^{+m}}^{*}S_{\varphi_{ij}} \\ = & P_{m}J(T_{z^{m}q^{+m}}M_{z^{m}q^{m}})^{*}S_{\varphi_{ij}} = P_{m}JT_{z^{2m}q^{m}q^{+m}}^{*}S_{\varphi_{ij}}. \end{split}$$

Thus for $F \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$, $F = (f_1, f_2, ..., f_n)$, $f_i \in H^2(\mathbb{T})$, $1 \leq i \leq n$, we have

$$\begin{aligned} \left\| J_{qI_{n\times n}}^{m} S_{\Phi} T_{(zq)I_{n\times n}}^{m} F \right\|^{2} &= \int_{0}^{2\pi} \left(\sum_{i=1}^{n} \left| \sum_{j=1}^{n} J_{q}^{m} S_{\varphi_{ij}} T_{(zq)}^{m} f_{j}(e^{i\theta}) \right|^{2} \right) \frac{d\theta}{2\pi} \\ &\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{2\pi} \left| J_{q}^{m} S_{\varphi_{ij}} T_{(zq)}^{m} f_{j}(e^{i\theta}) \right|^{2} \frac{d\theta}{2\pi} \\ &= \sum_{i,j=1}^{n} \left\| J_{q}^{m} S_{\varphi_{ij}} T_{(zq)}^{m} f_{j} \right\|^{2} \\ &= \sum_{i,j=1}^{n} \left\| P_{m} J T_{z^{2m} q^{m} q^{+m}}^{*} S_{\varphi_{ij}} f_{j} \right\|^{2} \\ &\leq \sum_{i=1}^{n} \left\| T_{z^{2m} q^{m} q^{+m}}^{*} S_{\varphi_{ij}} f_{j} \right\|^{2} \end{aligned}$$

since $||J|| \le 1$ and $||P_m|| \le 1$. Thus by Lemma 3.4,

$$\left\| J_{qI_{n\times n}}^m S_{\Phi} T_{(zq)I_{n\times n}}^m F \right\|^2 \le \sum_{i,j=1}^n \left\| S_{\varphi_{ij}} T_{z^{2m} q^{+m} q^m} f_j \right\|^2 \longrightarrow 0 \text{ as } m \to \infty.$$

Hence
$$J_{qI_{n\times n}}^m S_{\Phi} T_{(zq)I_{n\times n}}^m \longrightarrow 0$$
 strongly as $m \to \infty$.

4. The Hankel Sequence Associated with Multiplication Operators

In this section we consider the multiplication operators M_{Φ} defined on $L^{2}_{\mathbb{C}^{n}}(\mathbb{T})$ with symbol $\Phi \in L^{\infty}_{M_{n}}(\mathbb{T})$. We construct a sequence using the multiplication operator M_{Φ} which converges strongly to a bounded linear operator B_{Φ} on $L^{2}_{\mathbb{C}^{n}}(\mathbb{T})$ and $PB_{\Phi}|_{\mathcal{H}^{2}_{\mathbb{C}^{n}}(\mathbb{T})} = S_{\Phi}$, a Hankel operator.

For $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$, define the multiplication operator $M_{\Phi}: L^2_{\mathbb{C}^n}(\mathbb{T}) \longrightarrow L^2_{\mathbb{C}^n}(\mathbb{T})$ with symbol Φ as $M_{\Phi}f = \Phi f$. Let

$$Q_m = P_m I_{n \times n} = \begin{bmatrix} P_m & 0 & \cdots & 0 \\ 0 & P_m & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & P_m \end{bmatrix}$$

and $U_{qI_{n\times n}}^m=Q_mM_{q^+I_{n\times n}}^mJ$ for all inner functions $q\in H^\infty(\mathbb{T}), m\in\mathbb{Z}_+$. Consider the sequence $\{\sigma_m(M_\phi)\}=\{U_{qI_{n\times n}}^mM_\Phi M_{qI_{n\times n}}^m\}$. This sequence is referred to as the Hankel sequence associated with multiplication operator M_Φ on $L^2_{\mathbb{C}^n}(\mathbb{T})$.

Theorem 4.1. For $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$, the sequence $\{\sigma_m(M_{\Phi})\}$ converges strongly to a bounded linear operator $B_{\Phi} \in \mathcal{L}(L^2_{\mathbb{C}^n}(\mathbb{T}))$ for all inner functions $q \in H^{\infty}(\mathbb{T})$ and $PB_{\Phi}|_{\mathcal{H}^2_{cn}(\mathbb{T})} = S_{\Phi}$, the Hankel operator on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ with symbol Φ .

Proof. We shall first verify that $JM_{\Phi}M_{qI_{n\times n}}=M_{q^+I_{n\times n}}^*JM_{\Phi}$ for all inner functions $q\in H^{\infty}(\mathbb{T})$ where $q^+(z)=\overline{q(\overline{z})}$.

Notice that if $\Phi = (\varphi_{ij})_{1 \leq i,j \leq n}$ then $JM_{\Phi}M_{qI_{n \times n}} = M_{q^+I_{n \times n}}^* JM_{\Phi}$ for all inner functions $q \in H^{\infty}(\mathbb{T})$ if and only if $\widetilde{J}M_{\varphi_{ij}}M_q = M_{q^+}^*\widetilde{J}M_{\varphi_{ij}}$ for all inner functions $q \in H^{\infty}(\mathbb{T})$ and for all $i, j \in \{1, 2, ..., n\}$. Again

$$\langle \widetilde{J} M_{\varphi_{ij}} M_q z^j, z^i \rangle = \langle M_{\varphi_{ij}q} z^j, z^{-i} \rangle = \langle \varphi_{ij} q z^j, z^{-i} \rangle$$

and

$$\begin{split} \langle M_{q^+}^* \widetilde{J} M_{\varphi_{ij}} z^j, z^i \rangle = & \langle \widetilde{J}(\varphi_{ij} z^j), M_{q^+} z^i \rangle = \langle \varphi_{ij} z^j, \widetilde{J}(q^+ z^i) \rangle = \langle \varphi_{ij} z^j, \overline{q} z^{-i} \rangle \\ = & \langle \varphi_{ij} q z^j, z^{-i} \rangle \end{split}$$

for all $i, j \in \mathbb{Z}$. Hence $\widetilde{J}M_{\varphi_{ij}}M_q = M_{q^+}^*\widetilde{J}M_{\varphi_{ij}}, 1 \leq i, j \leq n$ and for all inner functions $q \in H^{\infty}(\mathbb{T})$. Thus

$$U_{qI_{n\times n}}^m M_{\varPhi} M_{qI_{n\times n}}^m = Q_m M_{q^+I_{n\times n}}^m J M_{\varPhi} M_{qI_{n\times n}}^m$$

$$\begin{split} &= \left(P_m M_{q^+}^m \widetilde{J} M_{\varphi_{ij}} M_q^m \right)_{1 \leq i,j \leq n} \\ &= \left(P_m M_{q^+}^m M_{q^+}^{*^m} \widetilde{J} M_{\varphi_{ij}} \right)_{1 \leq i,j \leq n} \\ &= \left(P_m M_{q^+}^m M_{\widetilde{J}q}^m \widetilde{J} M_{\varphi_{ij}} \right)_{1 \leq i,j \leq n} \\ &= \left(P_m \widetilde{J} M_{\varphi_{ij}} \right)_{1 \leq i,j \leq n} \end{split}$$

for all inner functions $q \in H^{\infty}(\mathbb{T})$. Now for $f \in \mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$; $f = (f_1, f_2, ..., f_n)$,

$$\left\| U_{qI_{n\times n}}^m M_{\Phi} M_{qI_{n\times n}}^m f - J M_{\Phi} f \right\|^2 \leq \sum_{i=1}^n \sum_{j=1}^n \left\| P_m \widetilde{J} M_{\varphi_{ij}} f_j - \widetilde{J} M_{\varphi_{ij}} f_j \right\|^2 \longrightarrow 0$$

as $m \longrightarrow \infty$. Hence $U^m_{qI_{n \times n}} M_{\Phi} M^m_{qI_{n \times n}} \longrightarrow JM_{\Phi}$ strongly as $m \longrightarrow \infty$ for all inner functions $q \in H^{\infty}(\mathbb{T})$ and $PJM_{\Phi}|_{\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})} = S_{\Phi}$, the Hankel operator on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ with symbol Φ .

Corollary 4.2. Let $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ be such that $U^m_{qI_{n\times n}}M_{\Phi}M^m_{qI_{n\times n}}\longrightarrow 0$ strongly as $m\to\infty$ for all inner functions $q\in H^{\infty}(\mathbb{T})$. Then $\Phi\in M_{zI_{n\times n}}H^{\infty}_{M_n}(\mathbb{T})$ where $H^{\infty}_{M_n}(\mathbb{T})=H^{\infty}(\mathbb{T})\otimes M_n$.

Proof. Suppose $\Phi \in L^{\infty}_{M_n}(\mathbb{T})$ and $\Phi = (\varphi_{ij})_{1 \leq i,j \leq n}$ and $U^m_{qI_{n \times n}} M_{\Phi} M^m_{qI_{n \times n}} \longrightarrow 0$ strongly as $m \to \infty$ for all inner functions $q \in H^{\infty}(\mathbb{T})$. Then by Theorem 4.1, $JM_{\Phi} \equiv 0$ and therefore $S_{\Phi} \equiv 0$. Hence $S_{\varphi_{ij}} \equiv 0$ on $H^2(\mathbb{T})$ for all $i, j \in \{1, 2, ..., n\}$. That is, $\varphi_{ij} \in zH^{\infty}(\mathbb{T})$ and $\Phi \in M_{zI_{n \times n}} H^{\infty}_{M_n}(\mathbb{T})$.

These asymptotic results are useful in obtaining distance formulas for operators on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$ relating to Toeplitz and Hankel operators. Such distance formulas for Toeplitz and Hankel operators on $H^2(\mathbb{T})$ were studied in [1],[2] and [3]. This will be taken up in a future work for operators on $\mathcal{H}^2_{\mathbb{C}^n}(\mathbb{T})$.

References

- 1. J. Barria and P. R. Halmos, Asymptotic Toeplitz operators, *Trans. Amer. Math. Soc.* **273**(1982), 621-630.
- A. Feintuch, On Hankel operators associated with a class of non-Toeplitz operators, J. Funct. Analysis 94 (1990), 1-13.
- 3. A. Feintuch, On Asymptotic Toeplitz and Hankel operators, *Operator Theory: Adv. Appl.* 41 (1989), 241-254.
- W. Rudin, New construction of functions holomorphic in the unit ball of Cⁿ, Conference Board of the Mathematical science Regional conference series in Mathematics, 63 (1986).
- K. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcell Dekker, Inc. 139, New York, 1990.