Vietnam Journal
of
MATHEMATICS
© VAST 2010

Unicity Theory of Entire Functions that Share One Value IM

Pulak Sahoo

Department of Mathematics, Silda Chandra Sekhar College, Silda, Paschim Medinipur, West Bengal 721515, India.

Abstract. In the paper we study the uniqueness of entire functions concerning differential polynomials sharing one value IM. Our results will supplement two recent results of Zhang and Lin [13] and at the same time include a recent result of Banerjee [1].

2000 Mathematics Subject Classification: 30D35.

Key words: meromorphic function, uniqueness, differential polynomials

1. Introduction, Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C} . For $a \in \{\infty\} \cup \mathbb{C}$ we say that f and g share the value a CM (counting multiplicities) if f-a and g-a have the same zeros with the same multiplicities and we say that f and g share the value g IM (ignoring multiplicities) if we do not consider the multiplicities.

We denote by S(r, f) any quantity satisfying $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$ possibly outside a set of finite linear measure. For any $a \in \{\infty\} \cup \mathbb{C}$, we define

$$\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}.$$

Corresponding to one famous question of Hayman [6], Fang and Hua [3], Yang and Hua [11] obtained the following theorem.

Theorem A. Let f and g be two non-constant entire functions, $n \ge 6$ be a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_1 e^{cz}$

 c_2e^{-cz} , where c_1 , c_2 and c are three constants satisfying $(c_1c_2)^{n+1}c^2 = -1$ or $f \equiv tg$ for a constant t such that $t^{n+1} = 1$.

Considering kth derivative instead of 1st derivative Fang [4] proved the following theorems.

Theorem B ([4]). Let f and g be two non-constant entire functions, and let n, k be two positive integers with n > 2k + 4. If $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$ or $f \equiv tg$ for a constant t such that $t^n = 1$.

Theorem C ([4]). Let f and g be two non-constant entire functions, and let n, k be two positive integers with $n \geq 2k + 8$. If $[f^n(f-1)]^{(k)}$ and $[g^n(g-1)]^{(k)}$ share 1 CM, then $f \equiv g$.

Now a natural question arises:

Is Theorem B and Theorem C hold for some general differential polynomials like $[f^n(f^m-1)]^{(k)}$ or $[f^n(f-1)^m]^{(k)}$?

Recently X.Y. Zhang and W.C. Lin [13] answered the above question and proved the following theorems.

Theorem D ([13]). Let f and g be two non-constant entire functions, and let n, m and k be three positive integers with $n \ge 2k + m^* + 4$, and λ , μ be constants such that $|\lambda| + |\mu| \ne 0$. If $[f^n(\mu f^m + \lambda)]^{(k)}$ and $[g^n(\mu g^m + \lambda)]^{(k)}$ share 1 CM, then one of the following holds:

(i) If $\lambda \mu \neq 0$, then $f \equiv g$.

(ii) If $\lambda \mu = 0$, then either $f \equiv tg$, where t is a constant satisfying $t^{n+m^*} = 1$ or $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying

$$(-1)^k \lambda^2 (c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1$$

or

$$(-1)^k \mu^2 (c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1$$

and m^* is defined by $m^* = \chi_{\mu} m$, where

$$\chi_{\mu} = \begin{cases} 0 & \text{if } \mu = 0 \\ 1 & \text{if } \mu \neq 0. \end{cases}$$

Theorem E ([13]). Let f and g be two non-constant entire functions, and let n, m and k be three positive integers with n > 2k + m + 4. If $[f^n(f-1)^m]^{(k)}$ and $[g^n(g-1)^m]^{(k)}$ share 1 CM, then either $f \equiv g$ or f and g satisfy the algebraic equation R(f,g) = 0, where $R(w_1,w_2) = w_1^n(w_1-1)^m - w_2^n(w_2-1)^m$.

Now one may ask the following question which is the motivation of the paper. Can one obtain the same result as in Theorem D and Theorem E when CM is

replaced by IM?

It is worth mentioning that in the above area some investigations has already been carried out by A. Banerjee [2]. Banerjee proved the following result.

Theorem F ([2]). Let f and g be two non-constant entire functions and n and k be two positive integers with n > 5k + 7. Let $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share b IM for a non-zero constant b. Then either $f(z) = c_1e^{cz}$, $g(z) = c_2e^{-cz}$, where c_1 , c_2 and c are three constants satisfying $(-1)^k(c_1c_2)^n(nc)^{2k} = b^2$ or $f \equiv tg$ for some nth root of unity 1.

In the paper we will concentrate our attention to find a possible solution of the above question.

We now state the main results of the paper which also include the above result of A. Banerjee.

Theorem 1.1. Let f and g be two non-constant entire functions, and let n, m and k be three positive integers. Let $[f^n(\mu f^m + \lambda)]^{(k)}$ and $[g^n(\mu g^m + \lambda)]^{(k)}$ share the value 1 IM where λ , μ are constants such that $|\lambda| + |\mu| \neq 0$. Then one of the following holds:

- (i) If $\lambda \mu \neq 0$ and n > 5k + 6m + 7, then $f \equiv g$.
- (ii) If $\lambda \mu = 0$ and $n > 5k m^* + 7$, then either $f \equiv tg$, where t is a constant satisfying $t^{n+m^*} = 1$ or $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying

$$(-1)^k \lambda^2 (c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1$$

or

$$(-1)^k \mu^2 (c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1,$$

where m^* is the same as in Theorem D.

Theorem 1.2. Let f and g be two non-constant entire functions, and let $n(\geq 1)$, $m(\geq 0)$ and $k(\geq 1)$ be three integers. Let $[f^n(f-1)^m]^{(k)}$ and $[g^n(g-1)^m]^{(k)}$ share the value 1 IM. Then one of the following holds:

- (i) when m = 0 and n > 5k + 7, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$ or $f \equiv tg$ for a constant t such that $t^n = 1$;
- (ii) when $m \ge 1$ and n > 5k + 4m + 9, then either $f \equiv g$ or f and g satisfy the algebraic equation R(f,g) = 0, where $R(x,y) = x^n(x-1)^m y^n(y-1)^m$.

Though the standard definitions and notations of the value distribution theory available in [7], we explain some definitions and notations which are used in the paper.

Definition 1.3 ([8]). For $a \in \{\infty\} \cup \mathbb{C}$ we denote by $N(r, a; f \mid = 1)$ the counting functions of simple a-points of f.

For a positive integer p we denote by $N(r, a; f | \leq p)$ $(N(r, a; f | \geq p))$ the counting function of those a-points of f whose multiplicities are not greater (less) than

p, where each a-point is counted according to its multiplicity.

 $\overline{N}(r, a; f | \leq p)$ and $\overline{N}(r, a; f | \geq p)$ are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Also N(r, a; f | < p) and N(r, a; f | > p) are defined analogously.

Definition 1.4 ([9]). Let p be a positive integer or infinity. We denote by $N_p(r, a; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \le p$ and p times if m > p. That is $N_p(r, a; f) = \overline{N}(r, a; f) + \overline{N}(r, a; f) \ge 2) + ... + \overline{N}(r, a; f) \ge p$.

Definition 1.5. For $a \in C \cup \{\infty\}$ we put

$$\delta_k(a, f) = 1 - \limsup_{r \to \infty} \frac{N_k(r, a; f)}{T(r, f)}.$$

Definition 1.6. Let f and g be two non-constant meromorphic functions such that f and g share the value 1 IM. We define by $N_{11}(r, 1; f)$ the counting function for common simple 1-points of f and g where multiplicity is not counted.

Definition 1.7. Let f and g be two non-constant meromorphic functions such that f and g share the value 1 IM. Let z_0 be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote by $\overline{N}_L(r, 1; f)$ the counting function of those 1-points of f and g where p > q, with multiplicity being not counted. $\overline{N}_L(r, 1; g)$ is defined analogously.

2. Lemmas and Propositions

In this section we present some lemmas and propositions which will be needed in the sequel.

Proposition 2.1 ([13]). Let f be a transcendental entire function, and n, m, k be three positive integers with $n \geq k + 2$, and λ , μ are complex numbers such that $|\lambda| + |\mu| \neq 0$. Then $[f^n(\mu f^m + \lambda)]^{(k)} = 1$ has infinitely many solutions.

Proposition 2.2 ([13]). Let f be a transcendental entire function, and n, m, k be three non-negative integers such that $n \ge k+2 \ge 3$. Then $[f^n(f-1)^m]^{(k)} = 1$ has infinitely many solutions.

Lemma 2.3 ([10]). Let f be a non-constant meromorphic function and let $a_n(z) (\not\equiv 0), a_{n-1}(z), \ldots, a_0(z)$ be meromorphic functions such that $T(r, a_i(z)) = S(r, f)$ for $i = 0, 1, 2, \ldots, n$. Then

$$T(r, a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0) = nT(r, f) + S(r, f).$$

Lemma 2.4 ([1]). Let f and g be two non-constant meromorphic functions, and let p and k be two positive integers. Then

$$N_p(r,0;f^{(k)}) \leq N_{p+k}(r,0;f) + k\overline{N}(r,\infty;f) - \sum_{m=p+1}^{\infty} \overline{N}\left(r,0;\frac{f^{(k)}}{f}\mid \geq m\right) + S(r,f).$$

Lemma 2.5 ([7, 12]). Let f be a transcendental meromorphic function, and let $a_1(z)$, $a_2(z)$ be two distinct meromorphic functions such that $T(r, a_i(z)) = S(r, f)$, i=1,2. Then

$$T(r, f) \leq \overline{N}(r, \infty; f) + \overline{N}(r, a_1; f) + \overline{N}(r, a_2; f) + S(r, f).$$

Lemma 2.6 ([7, 12]). Let f be a transcendental entire function, and let k be a positive integer. Then for any non-zero finite complex number c

$$T(r,f) \le N(r,0;f) + N(r,c;f^{(k)}) - N(r,0;f^{(k+1)}) + S(r,f)$$

$$\le N_{k+1}(r,0;f) + \overline{N}(r,c;f^{(k)}) - N_0(r,0;f^{(k+1)}) + S(r,f),$$

where $N_0(r, 0; f^{(k+1)})$ denotes the counting function which only counts those points such that $f^{(k+1)} = 0$ but $f(f^{(k)} - c) \neq 0$.

Lemma 2.7 ([5]). Let f(z) be a non-constant entire function, and let $k \geq 2$ be a positive integer. If $f(z)f^{(k)}(z) \neq 0$, then $f(z) = e^{az+b}$, where $a \neq 0$, b are constants.

Lemma 2.8. Let f and g be two non-constant entire functions, and let k be a positive integer. If $f^{(k)}$ and $g^{(k)}$ share the value 1 IM and

$$\Delta = \Theta(0, f) + \Theta(0, g) + 2\delta_{k+1}(0, f) + 3\delta_{k+1}(0, g) > 6,$$
(1)

then either $f^{(k)}g^{(k)} \equiv 1$ or $f \equiv g$.

Proof. Let

$$H(z) = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1},\tag{2}$$

where $F \equiv f^{(k)}$ and $G \equiv g^{(k)}$. From (2) we see that if z_0 is a common simple 1-point of F and G, then it is a zero of H. Thus we have

$$N_{11}(r,1;F) = N_{11}(r,1;G) \le \overline{N}(r,0;H) \le T(r,H) + O(1)$$

$$\le N(r,\infty;H) + S(r,f) + S(r,g).$$
(3)

It is easy to see that H(z) has poles only at zeros of F' and G' and 1-points of F whose multiplicities are not equal to the multiplicities of the corresponding 1-points of G. So from (2) we have

$$\begin{split} N(r,\infty;H) &\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}_L(r,1;F) + \overline{N}_L(r,1;G) \\ &\quad + N_0(r,0;F') + N_0(r,0;G'), \end{split} \tag{4}$$

where $N_0(r, 0; F')$ and $N_0(r, 0; G')$ have the same meaning as in Lemma 2.6. By Lemma 2.6 we have

$$T(r,f) \le N_{k+1}(r,0;f) + \overline{N}(r,1;F) - N_0(r,0;F') + S(r,f), \tag{5}$$

and

$$T(r,g) \le N_{k+1}(r,0;g) + \overline{N}(r,1;G) - N_0(r,0;G') + S(r,g). \tag{6}$$

Since F and G share 1 IM, we obtain

$$\overline{N}(r,1;F) + \overline{N}(r,1;G) \leq N_{11}(r,1;F) + \overline{N}_{L}(r,1;G) + N(r,1;F)
\leq N_{11}(r,1;F) + \overline{N}_{L}(r,1;G) + T(r,F) + O(1)
\leq N_{11}(r,1;F) + \overline{N}_{L}(r,1;G) + m(r,F) + O(1)
\leq N_{11}(r,1;F) + \overline{N}_{L}(r,1;G) + m(r,f) + m\left(r,\frac{F}{f}\right) + O(1)
\leq N_{11}(r,1;F) + \overline{N}_{L}(r,1;G) + T(r,f) + S(r,f).$$
(7)

Now since f is an entire function and by Lemma 2.4 we have

$$\overline{N}_{L}(r,1;F) \leq N(r,1;F) - \overline{N}(r,1;F)
\leq N\left(r,\infty;\frac{F}{F'}\right)
\leq N\left(r,\infty;\frac{F'}{F}\right) + S(r,f)
\leq \overline{N}(r,0;F) + S(r,f)
\leq N_{k+1}(r,0;f) + S(r,f).$$
(8)

Similarly we have

$$\overline{N}_L(r,1;G) \le N_{k+1}(r,0;g) + S(r,g).$$
 (9)

From (3)-(9) we obtain

$$T(r,f) + T(r,g) \le \overline{N}(r,0;f) + \overline{N}(r,0;g) + 2N_{k+1}(r,0;f) + 3N_{k+1}(r,0;g) + T(r,f) + S(r,f) + S(r,g),$$

i.e.

$$T(r,g) \le \overline{N}(r,0;f) + \overline{N}(r,0;g) + 2N_{k+1}(r,0;f) + 3N_{k+1}(r,0;g) + S(r,f) + S(r,g).$$

We suppose that there exists a set I of infinite measure such that $T(r, f) \leq T(r, g)$ for $r \in I$. Then for $r \in I$,

$$T(r,g) \le \{ [7 - \Theta(0,f) - \Theta(0,g) - 2\delta_{k+1}(0,f) - 3\delta_{k+1}(0,g)] + \varepsilon \} T(r,g) + S(r,g),$$

for $r \in I$ and $0 < \varepsilon < \Delta - 6$. From this we get

$$(\Delta - 6)T(r, g) \le S(r, g)$$

for $r \in I$, which is a contradiction. This contradiction arises due to the assumption that $H(z) \not\equiv 0$. Hence $H(z) \equiv 0$.

This implies

$$\frac{F''}{F'} - \frac{2F'}{F-1} \equiv \frac{G''}{G'} - \frac{2G'}{G-1}.$$

Solving it we get

$$\frac{1}{F-1} \equiv \frac{BG+A-B}{G-1},\tag{10}$$

where $A(\neq 0)$ and B are constants. Now we consider the following cases.

Case I. Let $B \neq 0$ and A = B.

If B = -1, we obtain by (10) $FG \equiv 1$.

If $B \neq -1$, from (10) we get

$$\frac{1}{F} \equiv \frac{BG}{(1+B)G-1}.$$

So by Lemma 2.4 we have

$$\overline{N}\left(r, \frac{1}{1+B}; G\right) \le \overline{N}(r, 0; F) \le N_{k+1}(r, 0; f) + S(r, f).$$

By Lemma 2.6 we obtain

$$T(r,g) \leq N_{k+1}(r,0;g) + \overline{N}\left(r, \frac{1}{1+B}; G\right) - N_0(r,0; G') + S(r,g)$$

$$\leq N_{k+1}(r,0;g) + N_{k+1}(r,0;f) + S(r,f) + S(r,g)$$

$$\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + 2N_{k+1}(r,0;f) + 3N_{k+1}(r,0;g)$$

$$+ S(r,f) + S(r,g)$$

$$\leq (7 - \Delta)T(r,g) + S(r,g).$$

Thus we obtain

$$(\Delta - 6)T(r, g) \leq S(r, g),$$

 $r \in I$, which is a contradiction.

Case II. Let $B \neq 0$ and $A \neq B$. If B = -1, from (10) we obtain

$$F \equiv \frac{A}{-[G - (a+1)]}.$$

If $B \neq -1$, then we get from (10) that

$$F - \left(1 + \frac{1}{B}\right) \equiv \frac{-A}{B^2 \left(G + \frac{A - B}{B}\right)}.$$

Since f is an entire function, by Lemma 2.4, Lemma 2.6 and by using the same argument as in Case I, we get a contradiction in both cases.

Case III. Let B = 0. Then we obtain from (10) that

$$f = \frac{1}{A}g + Q(z),\tag{11}$$

where Q(z) is a polynomial. If $Q(z) \not\equiv 0$, then by Lemma 2.5, we have

$$T(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,Q;f) + S(r,f)$$

$$\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + S(r,f).$$
(12)

Clearly by (11), we obtain

$$T(r, f) = T(r, g) + S(r, f).$$
 (13)

So from (12), we obtain

$$T(r, f) \le \{2 - [\Theta(0, f) + \Theta(0, g)] + \varepsilon\}T(r, f) + S(r, f),$$

where

$$0 < \varepsilon < 2 - 2\delta_{k+1}(0, f) + 3 - 3\delta_{k+1}(0, g).$$

Therefore we obtain

$$(\Delta - 6)T(r, f) < S(r, f)$$

for $r \in I$, which is a contradiction. Hence $Q(z) \equiv 0$ and so from (11) we get

$$f = \frac{1}{A}g. (14)$$

Since $f^{(k)}$ and $g^{(k)}$ share 1 IM, we obtain from (14) that A=1 and so $f\equiv g$. This proves the lemma.

3. Proofs of the Theorems

Proof of Theorem 1.1. We consider $F(z) = f^n(\mu f^m + \lambda)$ and $G(z) = g^n(\mu g^m + \lambda)$. Then $[F(z)]^{(k)}$ and $[G(z)]^{(k)}$ share 1 IM. Now

$$\Delta = \Theta(0, F) + \Theta(0, G) + 2\delta_{k+1}(0, F) + 3\delta_{k+1}(0, G).$$

We consider the following three cases.

Case 1. Let $\lambda \mu \neq 0$. By using Lemma 2.3 we have

$$\Theta(0,F) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r,0;F)}{T(r,F)}$$

$$= 1 - \limsup_{r \to \infty} \frac{\overline{N}(r,0;f^n(\mu f^m + \lambda))}{(n+m)T(r,f)}$$

$$\geq 1 - \limsup_{r \to \infty} \frac{(m+1)T(r,f)}{(n+m)T(r,f)}$$

$$\geq \frac{n-1}{n+m}.$$
(15)

Similarly,

$$\Theta(0,G) \ge \frac{n-1}{n+m}.\tag{16}$$

$$\delta_{k+1}(0,F) = 1 - \limsup_{r \to \infty} \frac{N_{k+1}(r,0;F)}{T(r,F)}$$

$$= 1 - \limsup_{r \to \infty} \frac{N_{k+1}(r,0;f^{n}(\mu f^{m} + \lambda))}{(n+m)T(r,f)}$$

$$\geq 1 - \limsup_{r \to \infty} \frac{(k+m+1)T(r,f)}{(n+m)T(r,f)}$$

$$\geq \frac{n-k-1}{n+m}.$$
(17)

Similarly,

$$\delta_{k+1}(0,G) \ge \frac{n-k-1}{n+m}.\tag{18}$$

From (15)-(18) we obtain

$$\Delta = 2\frac{n-1}{n+m} + 5\frac{n-k-1}{n+m} = \frac{7n-5k-7}{n+m}.$$

Since n > 5k + 6m + 7, we get $\Delta > 6$. So by Lemma 2.8 we obtain either $F^{(k)}G^{(k)} \equiv 1$ or $F \equiv G$. Now we consider the following two subcases.

Subcase (i) Let

$$F^{(k)}G^{(k)} \equiv 1.$$

i.e.

$$[f^{n}(\mu f^{m} + \lambda)]^{(k)}[g^{n}(\mu g^{m} + \lambda)]^{(k)} \equiv 1.$$
(19)

Since f and g are entire functions and n > 5k + 6m + 7, it is clear that

$$f \neq 0$$
 and $g \neq 0$. (20)

Let $f(z) = e^{\alpha(z)}$, where $\alpha(z)$ is an entire function. Then we obtain

$$[\mu f^{n+m}]^{(k)} = t_1(\alpha', \alpha'', ..., \alpha^{(k)}) e^{(n+m)\alpha(z)}$$
(21)

and

$$[\lambda f^n]^{(k)} = t_2(\alpha', \alpha'', ..., \alpha^{(k)}) e^{n\alpha(z)}, \tag{22}$$

where $t_i(\alpha', \alpha'', ..., \alpha^{(k)}) \not\equiv 0$ (i = 1, 2) are differential polynomials. Since g is an entire function, we have from (19) that

$$[f^n(\mu f^m + \lambda)]^{(k)} \neq 0.$$

So from (21) and (22) we get

$$t_1(\alpha', \alpha'', ..., \alpha^{(k)})e^{m\alpha(z)} + t_2(\alpha', \alpha'', ..., \alpha^{(k)}) \neq 0.$$
 (23)

Since α is an entire function, we have

$$T(r, \alpha') = S(r, f)$$

and

$$T(r, \alpha^{(j)}) \le T(r, \alpha') + S(r, f) = S(r, f)$$

for j = 1, 2, ..., k. Hence we have

$$T(r,t_i) = S(r,f) \tag{24}$$

for i=1,2. So by (23), (24), Lemma 2.3 and Lemma 2.5 we get

$$mT(r,f) \leq T(r,t_1e^{m\alpha}) + S(r,f)$$

$$\leq \overline{N}(r,0;t_1e^{m\alpha}) + \overline{N}(r,0;t_1e^{m\alpha} + t_2) + S(r,f)$$

$$\leq T\left(r,\frac{1}{t_1}\right) + S(r,f)$$

$$= S(r,f),$$

which is a contradiction.

Subcase (ii) Let

$$F \equiv G$$
.

That is

$$f^{n}(\mu f^{m} + \lambda) \equiv g^{n}(\mu g^{m} + \lambda). \tag{25}$$

Let $h = \frac{f}{g}$. If $h \not\equiv 1$, from (25) we obtain

$$g^m = -\frac{\lambda}{\mu} \frac{1 - h^n}{1 - h^{n+m}}.$$

Since g is an entire function, every zero of $h^{n+m}-1$ is a zero of h^n-1 and hence of h^m-1 . Since n>5k+6m+7, we obtain that h is a constant, which is a contradiction as f and g are non-constant. Therefore $h\equiv 1$, that is $f\equiv g$.

Case 2. Let $\lambda=0$ and $\mu\neq 0$. In this case $F=\mu f^{n+m}$ and $G=\mu g^{n+m}$. Proceeding in the same way as Case 1, we obtain

$$\Theta(0,F) \ge \frac{n+m-1}{n+m},\tag{26}$$

$$\Theta(0,G) \ge \frac{n+m-1}{n+m},\tag{27}$$

$$\delta_{k+1}(0,F) \ge \frac{n+m-k-1}{n+m},$$
(28)

$$\delta_{k+1}(0,G) \ge \frac{n+m-k-1}{n+m}. (29)$$

Since n > 5k - m + 7, by (1), (26)-(29) we obtain $\Delta > 6$. So by Lemma 2.8 we obtain either $F^{(k)}G^{(k)} \equiv 1$ or $F \equiv G$. Now we consider the following two subcases.

Subcase (i) Let

$$F^{(k)}G^{(k)} \equiv 1,$$

i.e.

$$[\mu f^{n+m}]^{(k)} [\mu g^{n+m}]^{(k)} \equiv 1. \tag{30}$$

By the nature of f and g it is clear that

$$[\mu f^{n+m}]^{(k)} \neq 0$$
 and $[\mu g^{n+m}]^{(k)} \neq 0.$ (31)

If $k \geq 2$, then by (20), (30), (31) and Lemma 2.7 we obtain that $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying

$$(-1)^k \mu^2 (c_1 c_2)^{n+m} [(n+m)c]^{2k} = 1.$$

Let k = 1. Let $f(z) = e^{\alpha(z)}$, $g(z) = e^{\beta(z)}$ where $\alpha(z)$ and $\beta(z)$ are two entire functions. So from (30) we have

$$\mu^2 (n+m)^2 \alpha' \beta' e^{(n+m)(\alpha+\beta)} \equiv 1. \tag{32}$$

Thus α' and β' have no zeros and we may take $\alpha' = e^{\gamma(z)}$ and $\beta' = e^{\delta(z)}$, where γ and δ are two entire functions. So from (32) we get

$$\mu^2(n+m)^2 e^{(n+m)(\alpha+\beta)+\gamma+\delta} \equiv 1.$$

Differentiating it we get

$$(n+m)e^{\gamma} + \gamma' \equiv -((n+m)e^{\delta} + \delta'). \tag{33}$$

Since γ and δ are entire, we have $T(r, \gamma') = S(r, e^{\gamma})$ and $T(r, \delta') = S(r, e^{\delta})$. From this we have

$$T(r, e^{\gamma}) = T(r, e^{\delta}) + S(r, e^{\gamma}) + S(r, e^{\delta}).$$

This implies that $S(r, e^{\gamma}) = S(r, e^{\delta}) = S(r)$, say. Let $\rho = -(\gamma' + \delta')$. Then $T(r, \rho) = S(r)$. If $\rho \not\equiv 0$, (33) can be written as

$$\frac{e^{\gamma}}{\rho} + \frac{e^{\delta}}{\rho} \equiv \frac{1}{n+m}.$$

From this and the second fundamental theorem of Nevanlinna, we get

$$T(r, e^{\gamma}) \leq T\left(r, \frac{e^{\delta}}{\rho}\right) + S(r)$$

$$\leq \overline{N}\left(r, \infty; \frac{e^{\delta}}{\rho}\right) + \overline{N}\left(r, 0; \frac{e^{\delta}}{\rho}\right) + \overline{N}\left(r, \frac{1}{n+m}; \frac{e^{\delta}}{\rho}\right) + S(r)$$

$$\leq S(r),$$

a contradiction. So by (33) we have

$$\alpha' + \beta' = e^{\gamma} + e^{\delta} = -\left(\frac{\gamma'}{n+m} + \frac{\delta'}{n+m}\right) \equiv 0,$$

i.e. $\gamma = \delta + (2s+1)\pi i$ for some integer s. Again $\gamma' + \delta' \equiv 0$ implies $\gamma + \delta = d$, where d is a constant. Taking $\gamma = d_1$ we get $\delta = d - d_1 = d_2$, where d_1 , d_2 are constants. Again $\alpha' + \beta' \equiv 0$ implies $\alpha = cz + \log c_1$ and $\beta = -cz + \log c_2$. Since $f = e^{\alpha}$ and $g = e^{\beta}$, by (32) we obtain that $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying

$$(-1)^k \mu^2 (c_1 c_2)^{n+m} [(n+m)c]^{2k} = 1.$$

Subcase (ii) Let

$$F \equiv G$$
,

i.e.

$$\mu f^{n+m} \equiv \mu g^{n+m},$$

hence

$$f \equiv tg$$
,

where t is a constant satisfying $t^{n+m} = 1$.

Case 3. Let $\lambda \neq 0$ and $\mu = 0$. Then $F = \lambda f^n$ and $G = \lambda g^n$. This case can be proved by using the same argument as in Case 2. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Consider $F(z) = f^n(f-1)^m$ and $G(z) = g^n(g-1)^m$.

$$\Theta(0,F) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r,0;F)}{T(r,F)}
= 1 - \limsup_{r \to \infty} \frac{\overline{N}(r,0;f^{n}(f-1)^{m})}{(n+m)T(r,f)}
\geq 1 - \limsup_{r \to \infty} \frac{(1+m^{**})T(r,f)}{(n+m)T(r,f)}
\geq \frac{n+m-1-m^{**}}{n+m},$$
(34)

where

$$m^{**} = \begin{cases} 0 \text{ if } m = 0\\ 1 \text{ if } m \ge 1. \end{cases}$$

Similarly,

$$\Theta(0,G) \ge \frac{n+m-1-m^{**}}{n+m}.$$
 (35)

$$\delta_{k+1}(0,F) = 1 - \limsup_{r \to \infty} \frac{N_{k+1}(r,0;F)}{T(r,F)}$$

$$= 1 - \limsup_{r \to \infty} \frac{N_{k+1}(r,0;f^n(f-1)^m)}{(n+m)T(r,f)}$$

$$\geq 1 - \limsup_{r \to \infty} \frac{(k+m+1)T(r,f)}{(n+m)T(r,f)}$$

$$\geq \frac{n-k-1}{n+m}.$$
(36)

Similarly,

$$\delta_{k+1}(0,G) \ge \frac{n-k-1}{n+m}.$$
 (37)

From (34)-(37) it is easily checked that $\Delta > 6$ provided $n > 5k + 4m + 2m^{**} + 7$. Since

$$5k + 4m + 2m^{**} + 7 = \begin{cases} 5k + 7 & \text{if } m = 0\\ 5k + 4m + 9 & \text{if } m \ge 1, \end{cases}$$

by Lemma 2.8 we obtain either $F^{(k)}G^{(k)}\equiv 1$ or $F\equiv G$. Now we consider the following two cases.

Case 1. Let

$$F^{(k)}G^{(k)} \equiv 1,$$

i.e.

$$[f^n(f-1)^m]^{(k)}[g^n(g-1)^m]^{(k)} \equiv 1.$$
(38)

Then we consider the following two subcases.

Subcase (i) Let m=0. Then by (38) and proceeding in the same way as in case 2 [subcase (i)] of Theorem 1.1 we obtain $f(z)=c_1e^{cz}$, $g(z)=c_2e^{-cz}$, where c_1 , c_2 and c are three constants satisfying $(-1)^k(c_1c_2)^n(nc)^{2k}=1$.

Subcase (ii) Let $m \ge 1$. Since f and g are entire functions, we have $f \ne 0$ and $g \ne 0$. Let $f(z) = e^{\alpha(z)}$, where $\alpha(z)$ is a non-constant entire function. Clearly

$$[f^{n+m}(z)]^{(k)} = s_m(\alpha', \alpha'', ..., \alpha^{(k)})e^{(n+m)\alpha(z)},$$
(39)

•

•

$$(-1)^{m-i} [{}^{m}C_{i}f^{n+i}(z)]^{(k)} = s_{i}(\alpha', \alpha'', ..., \alpha^{(k)}) e^{(n+i)\alpha(z)},$$
(40)

•

•

$$(-1)^m [f^n(z)]^{(k)} = s_0(\alpha', \alpha'', ..., \alpha^{(k)}) e^{n\alpha(z)}, \tag{41}$$

where $s_i(\alpha', \alpha'', ..., \alpha^{(k)})$ (i = 0, 1, 2, ..., m) are differential polynomials. Obviously

$$s_i(\alpha', \alpha'', ..., \alpha^{(k)}) \not\equiv 0$$

for i = 0, 1, 2, ..., m, and

$$[f^n(f-1)^m]^{(k)} \neq 0.$$

From (39) - (41) we have

$$s_m(\alpha', \alpha'', ..., \alpha^{(k)})e^{m\alpha(z)} + ... + s_0(\alpha', \alpha'', ..., \alpha^{(k)}) \neq 0.$$
 (42)

Since $\alpha(z)$ is an entire function, we obtain

$$T(r, \alpha') = S(r, f)$$

and

$$T(r, \alpha^{(j)}) = S(r, f)$$

for j=1,2,...,k. Hence $T(r,s_i)=S(r,f)$ for j=1,2,...,k. So from (42), Lemmas 2.3 and 2.5 we obtain

$$\begin{split} mT(r,f) &= T(r,s_m e^{m\alpha} + ...s_1 e^{\alpha}) + S(r,f) \\ &\leq \overline{N}(r,0;s_m e^{m\alpha} + ... + s_1 e^{\alpha}) + \overline{N}(r,0;s_m e^{m\alpha} + ... + s_1 e^{\alpha} + s_0) + S(r,f) \\ &\leq \overline{N}(r,0;s_m e^{(m-1)\alpha} + ... + s_1) + S(r,f) \\ &\leq (m-1)T(r,f) + S(r,f), \end{split}$$

which is a contradiction.

Case 2. Let

$$F \equiv G$$
.

i.e.

$$f^{n}(f-1)^{m} \equiv g^{n}(g-1)^{m}. \tag{43}$$

We now consider the following two subcases.

Subcase (i) Let m=0. Then by (43) we have $f\equiv tg$ for a constant t such that $t^n=1$.

Subcase (ii) Let $m \geq 1$. Then from (43) we get

$$f^{n}[f^{m} + \dots + (-1)^{i} {}^{m}C_{m-i}f^{m-i} + \dots + (-1)^{m}] = g^{n}[g^{m} + \dots + (-1)^{i} {}^{m}C_{m-i}g^{m-i} + \dots + (-1)^{m}].$$
(44)

Let $h = \frac{f}{g}$. If h is a constant, by putting f = gh in (44) we get

$$g^{n+m}(h^{n+m}-1)+\ldots+(-1)^{i-m}C_{m-i}\,g^{n+m-i}(h^{n+m-i}-1)+\ldots+(-1)^{m}g^{n}(h^{n}-1)=0,$$

which implies h = 1. Thus $f \equiv g$.

If h is not a constant, then from (43) we can say that f and g satisfy the algebraic equation R(f,g) = 0, where $R(x,y) = x^n(x-1)^m - y^n(y-1)^m$. This completes the proof of Theorem 1.2.

References

1. A. Banerjee, Uniqueness of meromorphic functions sharing a small function with their derivatives, *Math. Vesnik.* **60** (2008), 121-135.

- 2. A. Banerjee, Uniqueness of certain non-linear differential polynomials sharing the same value, *Int. J. Pure Appl. Math.* **48** (2008), 41-56.
- 3. M.L.Fang and X.H.Hua, Entire functions that share one value, *J. Nanjing Univ. Math. Biquarterly* **13** (1996), 44-48.
- 4. M. L. Fang, Uniqueness and value sharing of entire functions, *Comput. Math. Appl.* 44 (2002), 828-831.
- G. Frank, Eine Vermutung von Hayman uber Nullstellen meromorpher Funktion, Math. Z. 149 (1976), 29-36.
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
- 7. W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- 8. I. Lahiri, Value distribution of certain differential polynomials, *Int. J. Math. Math. Sc.* **28** (2001) 83-91.
- I. Lahiri, Weighted sharing of three values, Z. Anal. Anwendungen 23 (2004), 237
 252.
- C. C.Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107
 112.
- 11. C. C.Yang and X.H.Hua, Uniqueness and value sharing of meromorphic functions, *Ann. Acad. Sci. Fenn. Math.* **22** (1997), 395-406.
- 12. L. Yang, Value Distribution Theory, Springer- Verlag, Berlin, 1993.
- 13. X. Y. Zhang and W.C. Lin, Uniqueness and value sharing of entire functions, *J. Math. Anal. Appl.* **343** (2008), 938-950.