K-Theory of the Leaf Space of Foliations Formed by the Generic \boldsymbol{K}-Orbits of Some Indecomposable $M D_{5}$-Group

Le Anh Vu and Duong Quang Hoa
Department of Mathematics and Informatics, University of Pedagogy, Ho Chi Minh City, Vietnam

Received March 23, 2010
Revised June 01, 2010

Abstract

The paper is a continuation of the authors' work [18]. In [18], we consider foliations formed by the maximal dimensional K-orbits ($M D_{5}$-foliations) of connected $M D_{5}$-groups such that their Lie algebras have 4-dimensional commutative derived ideals and give a topological classification of the considered foliations. In this paper, we study K-theory of the leaf space of some of these $M D_{5}$-foliations and analytically describe and characterize the Connes' C^{*}-algebras of the considered foliations by the method of K-functors.

2000 Mathematics Subject Classification: Primary 22E45; Secondary 46E25, 20C20.
Key words: Lie group, Lie algebra, $M D_{5}$-group, $M D_{5}$-algebra, K-orbit, Foliation, Measured foliation, C^{*}-algebra, Connes' C^{*}-algebra associated to a measured foliation.

1. Introduction

In the decades 1970s-1980s, works of Diep [4], Rosenberg [10], Kasparov [7], Son and Viet $[12], \ldots$ have seen that K-functors are well adapted to characterize a large class of group C^{*}-algebras. Kirillov's method of orbits allows to find out the class of Lie groups $M D$, for which the group C^{*}-algebras can be characterized by means of suitable K-functors (see [5]). In terms of Diep, an $M D$-group of dimension n (for short, an $M D_{n}$-group) is an n-dimensional solvable real Lie group whose orbits in the co-adjoint representation (i.e., the K - representation)
are the orbits of zero or maximal dimension. The Lie algebra of an $M D_{n}$-group is called an $M D_{n}$-algebra (see [5, Section 4.1]).

In 1982, studying foliated manifolds, Connes [3] introduced the notion of C^{*} algebra associated to a measured foliation. In the case of Reeb foliations (see Torpe [14]), the method of K-functors has been proved to be very effective in describing the structure of Connes' C^{*}-algebras. For every $M D$-group G, the family of K-orbits of maximal dimension forms a measured foliation in terms of Connes [3]. This foliation is called $M D$-foliation associated to G.

Combining the methods of Kirillov (see [8, Section 15]) and of Connes (see [3, Section 2, 5]), the first author had studied $M D_{4}$-foliations associated with all indecomposable connected $M D_{4}$-groups and characterized Connes' C^{*}-algebras of these foliations in [16]. Recently, Vu and Shum [17] have classified, up to isomorphism, all the $M D_{5}$-algebras having commutative derived ideals.

In [18], we have given a topological classification of $M D_{5}$-foliations associated to the indecomposable connected and simply connected $M D_{5}$-groups, such that $M D_{5}$-algebras of them have 4-dimensional commutative derived ideals. There are exactly 3 topological types of the considered $M D_{5}$-foliations, denoted by $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$. All $M D_{5}$-foliations of type \mathcal{F}_{1} are the trivial fibrations with connected fibre on 3 -dimensional sphere S^{3}, so Connes' C^{*}-algebras of them are isomorphic to the C^{*}-algebra $C\left(S^{3}\right) \otimes \mathcal{K}$ following [3, Section 5], where \mathcal{K} denotes the C^{*}-algebra of compact operators on an (infinite dimensional separable) Hilbert space.

The purpose of this paper is to study K-theory of the leaf space and to characterize the structure of Connes' C^{*}-algebras $C^{*}(V, \mathcal{F})$ of all $M D_{5}$-foliations (V, \mathcal{F}) of type \mathcal{F}_{2} by the method of K-functors. Namely, we will express $C^{*}(V, \mathcal{F})$ by two repeated extensions of the form

$$
\begin{gathered}
0 \longrightarrow C_{0}\left(X_{1}\right) \otimes \mathcal{K} \longrightarrow C^{*}(V, \mathcal{F}) \longrightarrow B_{1} \longrightarrow 0 \\
0 \longrightarrow C_{0}\left(X_{2}\right) \otimes \mathcal{K} \longrightarrow B_{1} \longrightarrow C_{0}\left(Y_{2}\right) \otimes \mathcal{K} \longrightarrow 0
\end{gathered}
$$

then we will compute the invariant system of $C^{*}(V, \mathcal{F})$ with respect to these extensions. If the given C^{*}-algebras are isomorphic to the reduced crossed products of the form $C_{0}(V) \rtimes H$, where H is a Lie group, we can use the Thom-Connes isomorphism to compute the connecting map δ_{0}, δ_{1}.

In another paper, we will study the similar problem for all $M D_{5}$-foliations of type \mathcal{F}_{3}.

2. The $M D_{5}-$ Foliations of Type \mathcal{F}_{2}

Originally, we will recall geometry of K-orbits of $M D_{5}$-groups which associate with $M D_{5}$-foliations of type \mathcal{F}_{2} (see [18]).

In this section, G will be always a connected and simply connected $M D_{5^{-}}$ group such that its Lie algebras \mathcal{G} is an indecomposable $M D_{5}$-algebra generated by $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$ with $\mathcal{G}^{1}:=[\mathcal{G}, \mathcal{G}]=\mathbb{R} . X_{2} \oplus \mathbb{R} . X_{3} \oplus \mathbb{R} . X_{4} \oplus \mathbb{R} . X_{5} \cong \mathbb{R}^{4}$, $a d_{X_{1}} \in \operatorname{End}(\mathcal{G}) \equiv \operatorname{Mat}_{4}(\mathbb{R})$. Namely, \mathcal{G} will be one of the following Lie algebras which are studied in [17, 18].
$\mathcal{G}_{5,4,11\left(\lambda_{1}, \lambda_{1}, \varphi\right)}$

$$
a d_{X_{1}}=\left[\begin{array}{cccc}
\cos \varphi-\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right] ; \lambda_{1}, \lambda_{2} \in \mathbb{R} \backslash\{0\}, \lambda_{1} \neq \lambda_{2}, \varphi \in(0, \pi)
$$

$\mathcal{G}_{5,4,12(\lambda, \varphi)}$

$$
a d_{X_{1}}=\left[\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right] ; \lambda \in \mathbb{R} \backslash\{0\}, \varphi \in(0, \pi)
$$

$\mathcal{G}_{5,4,13(\lambda, \varphi)}$

$$
a d_{X_{1}}=\left[\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right] ; \lambda \in \mathbb{R} \backslash\{0\}, \varphi \in(0, \pi)
$$

The connected and simply connected Lie groups corresponding to these algebras are denoted by $G_{5,4,11\left(\lambda_{1}, \lambda_{1}, \varphi\right)}, G_{5,4,12(\lambda, \varphi)}, G_{5,4,13(\lambda, \varphi)}$. All of these Lie groups are $M D_{5}$-groups (see [17]) and G is one of them. We now recall the geometric description of the K-orbits of G in the dual space \mathcal{G}^{*} of \mathcal{G}. Let $\left\{X_{1}^{*}, X_{2}^{*}, X_{3}^{*}, X_{4}^{*}, X_{5}^{*}\right\}$ be the basis in \mathcal{G}^{*} dual to the basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$ in \mathcal{G}. Denote by Ω_{F} the K-orbit of G including $F=(\alpha, \beta+i \gamma, \delta, \sigma)$ in $\mathcal{G}^{*} \cong \mathbb{R}^{5}$.

- If $\beta+i \gamma=\delta=\sigma=0$ then $\Omega_{F}=\{F\}$ (the 0-dimensional orbit).
- If $|\beta+i \gamma|^{2}+\delta^{2}+\sigma^{2} \neq 0$ then Ω_{F} is the 2-dimensional orbit as follows

$$
\Omega_{F}=\left[\begin{array}{c}
\left\{\left(x,(\beta+i \gamma) \cdot e^{\left(a \cdot e^{-i \varphi}\right)}, \delta \cdot e^{a \lambda_{1}}, \sigma \cdot e^{a \lambda_{2}}\right), x, a \in \mathbb{R}\right\} \\
\text { when } G=G_{5,4,11\left(\lambda_{1}, \lambda_{2}, \varphi\right)}, \lambda_{1}, \lambda_{2} \in \mathbb{R}^{*}, \varphi \in(0 ; \pi), \\
\left\{\left(x,(\beta+i \gamma) \cdot e^{\left(a \cdot e^{-i \varphi}\right)}, \delta \cdot e^{a \lambda}, \sigma \cdot e^{a \lambda}\right), x, a \in \mathbb{R}\right\} \\
\text { when } G=G_{5,4,12(\lambda, \varphi)}, \lambda \in \mathbb{R}^{*}, \varphi \in(0 ; \pi) \\
\left\{\left(x,(\beta+i \gamma) \cdot e^{\left(a \cdot e^{-i \varphi}\right)}, \delta \cdot e^{a \lambda}, \delta \cdot a e^{a \lambda}+\sigma \cdot e^{a \lambda}\right), x, a \in \mathbb{R}\right\} \\
\text { when } G=G_{5,4,13(\lambda, \varphi)}, \lambda \in \mathbb{R}^{*}, \varphi \in(0 ; \pi)
\end{array}\right.
$$

In [18], we have shown that, the family \mathcal{F} of maximal-dimensional K-orbits of G forms measured foliation in terms of Connes on the open submanifold

$$
V=\left\{(x, y, z, t, s) \in G^{*}: y^{2}+z^{2}+t^{2}+s^{2} \neq 0\right\} \cong \mathbb{R} \times\left(\mathbb{R}^{4}\right)^{*}\left(\subset \mathcal{G}^{*} \equiv \mathbb{R}^{5}\right)
$$

Furthermore, all foliations $\left(V, \mathcal{F}_{4,11\left(\lambda_{1}, \lambda_{2}, \varphi\right)}\right),\left(V, \mathcal{F}_{4,12(\lambda, \varphi)}\right),\left(V, \mathcal{F}_{4,13(\lambda, \varphi)}\right)$ are topologically equivalent to each other $\left(\lambda_{1}, \lambda_{2}, \lambda \in \mathbb{R} \backslash\{0\}, \varphi \in(0 ; \pi)\right)$. Thus, we need only to choose an envoy among them to describe the structure of the C^{*}-algebra. In this case, we choose the foliation $\left(V, \mathcal{F}_{4,12\left(1, \frac{\pi}{2}\right)}\right)$.

In [18], we have described the foliation $\left(V, \mathcal{F}_{4,12\left(1, \frac{\pi}{2}\right)}\right)$ by a suitable action of \mathbb{R}^{2}. Namely, we have the following result.

Proposition 2.1. The foliation $\left(V, \mathcal{F}_{4,12\left(1, \frac{\pi}{2}\right)}\right)$ can be given by an action of the commutative Lie group \mathbb{R}^{2} on the manifold V.

Proof. One needs only to verify that the following action λ of \mathbb{R}^{2} on V gives the foliation $\left(V, \mathcal{F}_{4,12\left(1, \frac{\pi}{2}\right)}\right)$

$$
\lambda: \mathbb{R}^{2} \times V \rightarrow V
$$

$((r, a),(x, y+i z, t, s)) \mapsto\left(x+r,(y+i z) . e^{-i a}, t . e^{a}, s . e^{a}\right)$,
where $(r, a) \in \mathbb{R}^{2},(x, y+i z, t, s) \in V \cong \mathbb{R} \times\left(\mathbb{C} \times \mathbb{R}^{2}\right)^{*} \cong \mathbb{R} \times\left(\mathbb{R}^{4}\right)^{*}$. Hereafter,
for simplicity of notation, we write (V, \mathcal{F}) instead of $\left(V, \mathcal{F}_{4,12\left(1, \frac{\pi}{2}\right)}\right)$.
It is easy to see that the graph of (V, \mathcal{F}) is indentical with $V \times \mathbb{R}^{2}$, so by $[3$, Section 5], it follows from Proposition 2.1 that

Corollary 2.2 (Analytical description of $C^{*}(V, \mathcal{F})$). The Connes' C^{*}-algebra $C^{*}(V, \mathcal{F})$ can be analytically described by the reduced crossed product of $C_{0}(V)$ by \mathbb{R}^{2} as follows

$$
C^{*}(V, \mathcal{F}) \cong C_{0}(V) \rtimes_{\lambda} \mathbb{R}^{2}
$$

3. $C^{*}(V, \mathcal{F})$ as Two Repeated Extensions

3.1. Let $V_{1}, W_{1}, V_{2}, W_{2}$ be the following submanifolds of V

$$
\begin{aligned}
V_{1} & =\{(x, y, z, t, s) \in V: s \neq 0\} \cong \mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R} \times \mathbb{R}^{*} \\
W_{1} & =V \backslash V_{1}=\{(x, y, z, t, s) \in V: s=0\} \cong \mathbb{R} \times\left(\mathbb{R}^{3}\right)^{*} \times\{0\} \cong \mathbb{R} \times\left(\mathbb{R}^{3}\right)^{*}, \\
V_{2} & =\left\{(x, y, z, t, 0) \in W_{1}: t \neq 0\right\} \cong \mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{*} \\
W_{2} & =W_{1} \backslash V_{2}=\left\{(x, y, z, t, 0) \in W_{1}: t=0\right\} \cong \mathbb{R} \times\left(\mathbb{R}^{2}\right)^{*}
\end{aligned}
$$

It is easy to see that the action λ in Proposition 2.1 preserves the subsets $V_{1}, W_{1}, V_{2}, W_{2}$. Let $i_{1}, i_{2}, \mu_{1}, \mu_{2}$ be the inclusions and the restrictions

$$
\begin{aligned}
& i_{1}: C_{0}\left(V_{1}\right) \rightarrow C_{0}(V), \quad i_{2}: C_{0}\left(V_{2}\right) \rightarrow C_{0}\left(W_{1}\right), \\
& \mu_{1}: C_{0}(V) \rightarrow C_{0}\left(W_{1}\right), \mu_{2}: C_{0}\left(W_{1}\right) \rightarrow C_{0}\left(W_{2}\right),
\end{aligned}
$$

where each function of $C_{0}\left(V_{1}\right)$ (resp. $C_{0}\left(V_{2}\right)$) is extented to the one of $C_{0}(V)$ (resp. $\left.C_{0}\left(W_{1}\right)\right)$ by taking the value of zero outside V_{1} (resp. V_{2}).

It is known a fact that $i_{1}, i_{2}, \mu_{1}, \mu_{2}$ are λ-equivariant and the following sequences are equivariantly exact:

$$
\begin{gather*}
0 \longrightarrow C_{0}\left(V_{1}\right) \xrightarrow{i_{1}} C_{0}(V) \xrightarrow{\mu_{1}} C_{0}\left(W_{1}\right) \longrightarrow 0 \tag{1}\\
0 \longrightarrow C_{0}\left(V_{2}\right) \xrightarrow{i_{2}} C_{0}\left(W_{1}\right) \xrightarrow{\mu_{2}} C_{0}\left(W_{2}\right) \longrightarrow 0 . \tag{2}
\end{gather*}
$$

3.2. Now we denote by $\left(V_{1}, \mathcal{F}_{1}\right),\left(W_{1}, \mathcal{F}_{1}\right),\left(V_{2}, \mathcal{F}_{2}\right),\left(W_{2}, \mathcal{F}_{2}\right)$ restrictions of the foliations (V, \mathcal{F}) on $V_{1}, W_{1}, V_{2}, W_{2}$, respectively.

Theorem 3.1. $C^{*}(V, \mathcal{F})$ admits the following canonical repeated extensions

$$
\begin{gather*}
0 \longrightarrow J_{1} \xrightarrow{\widehat{i_{1}}} C^{*}(V, F) \xrightarrow{\widehat{\mu_{1}}} B_{1} \longrightarrow 0 \tag{1}\\
0 \longrightarrow J_{2} \xrightarrow{\widehat{i_{2}}} B_{1} \xrightarrow{\widehat{\mu_{2}}} B_{2} \longrightarrow 0 \tag{2}
\end{gather*}
$$

where

$$
\begin{aligned}
J_{1} & =C^{*}\left(V_{1}, \mathcal{F}_{1}\right) \cong C_{0}\left(V_{1}\right) \rtimes_{\lambda} \mathbb{R}^{2} \cong C_{0}\left(\mathbb{R}^{3} \cup \mathbb{R}^{3}\right) \otimes K, \\
J_{2} & =C^{*}\left(V_{2}, \mathcal{F}_{2}\right) \cong C_{0}\left(V_{2}\right) \rtimes_{\lambda} \mathbb{R}^{2} \cong C_{0}\left(\mathbb{R}^{2} \cup \mathbb{R}^{2}\right) \otimes K, \\
B_{2} & =C^{*}\left(W_{2}, \mathcal{F}_{2}\right) \cong C_{0}\left(W_{2}\right) \rtimes_{\lambda} \mathbb{R}^{2} \cong C_{0}\left(\mathbb{R}_{+}\right) \otimes K, \\
B_{1} & =C^{*}\left(W_{1}, \mathcal{F}_{1}\right) \cong C_{0}\left(W_{1}\right) \rtimes_{\lambda} \mathbb{R}^{2},
\end{aligned}
$$

and the homomorphisms $\widehat{i_{1}}, \widehat{i_{2}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}$ are defined by

$$
\begin{aligned}
& \left(\widehat{i_{k}} f\right)(r, s)=i_{k} f(r, s), \quad k=1,2 \\
& \left(\widehat{\mu_{k}} f\right)(r, s)=\mu_{k} f(r, s), \quad k=1,2
\end{aligned}
$$

Proof. We note that the graph of $\left(V_{1}, \mathcal{F}_{1}\right)$ is indentical with $V_{1} \times \mathbb{R}^{2}$, so by [3, Section 5], $J_{1}=C^{*}\left(V_{1}, \mathcal{F}_{1}\right) \cong C_{0}\left(V_{1}\right) \rtimes_{\lambda} \mathbb{R}^{2}$. Similarly, we have

$$
\begin{aligned}
B_{1} & \cong C_{0}\left(W_{1}\right) \rtimes_{\lambda} \mathbb{R}^{2}, \\
J_{2} & \cong C_{0}\left(V_{2}\right) \rtimes_{\lambda} \mathbb{R}^{2} \\
B_{2} & \cong C_{0}\left(W_{2}\right) \rtimes_{\lambda} \mathbb{R}^{2}
\end{aligned}
$$

From the equivariantly exact sequences in 3.1 and by [2, Lemma 1.1] we obtain the repeated extensions $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$.

Furthermore, the foliation $\left(V_{1}, \mathcal{F}_{1}\right)$ can be derived from the submersion

$$
\begin{gathered}
p_{1}: V_{1} \approx \mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R} \times \mathbb{R}^{*} \rightarrow \mathbb{R}^{3} \cup \mathbb{R}^{3} \\
p_{1}(x, y, z, t, s)=(y, z, t, \operatorname{sign} s)
\end{gathered}
$$

Hence, by a result of $[3$, p. 562$]$, we get $J_{1} \cong C_{0}\left(\mathbb{R}^{3} \cup \mathbb{R}^{3}\right) \otimes K$. The same argument shows that

$$
J_{2} \cong C_{0}\left(\mathbb{R}^{2} \cup \mathbb{R}^{2}\right) \otimes K, B_{2} \cong C_{0}\left(\mathbb{R}_{+}\right) \otimes K
$$

4. Computing the Invariant System of $C^{*}(V, \mathcal{F})$

Definition 4.1. The set of elements $\left\{\gamma_{1}, \gamma_{2}\right\}$ corresponding to the repeated extensions $\left(\gamma_{1}\right),\left(\gamma_{2}\right)$ in the Kasparov groups $\operatorname{Ext}\left(B_{i}, J_{i}\right), i=1,2$ is called the system of invariants of $C^{*}(V, \mathcal{F})$ and denoted by Index $C^{*}(V, \mathcal{F})$.

Remark 4.2. Index $C^{*}(V, \mathcal{F})$ determines the so-called stable type of $C^{*}(V, \mathcal{F})$ in the set of all repeated extensions

$$
\begin{aligned}
& 0 \longrightarrow J_{1} \longrightarrow E \longrightarrow B_{1} \longrightarrow 0 \\
& 0 \longrightarrow J_{2} \longrightarrow B_{1} \longrightarrow B_{2} \longrightarrow 0
\end{aligned}
$$

The main result of the paper is the following.
Theorem 4.3. Index $C^{*}(V, \mathcal{F})=\left\{\gamma_{1}, \gamma_{2}\right\}$, where
$\gamma_{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$ in the group $\operatorname{Ext}\left(B_{1}, J_{1}\right)=\operatorname{Hom}\left(\mathbb{Z}^{2}, \mathbb{Z}^{2}\right) ;$
$\gamma_{2}=(1,1)$ in the group $\operatorname{Ext}\left(B_{2}, J_{2}\right)=\operatorname{Hom}\left(\mathbb{Z}, \mathbb{Z}^{2}\right)$.
To prove this theorem, we need some lemmas as follows.
Lemma 4.4. Set $I_{2}=C_{0}\left(\mathbb{R}^{2} \times \mathbb{R}^{*}\right)$ and $A_{2}=C_{0}\left(\left(\mathbb{R}^{2}\right)^{*}\right)$. The following diagram is commutative

where β_{1} is the isomorphism defined in [13, Theorem 9.7] or in [2, Corollary VI.3], $j \in \mathbb{Z} / 2 \mathbb{Z}$.

Proof. Let

$$
\begin{aligned}
& k_{2}: I_{2}=C_{0}\left(\mathbb{R}^{2} \times \mathbb{R}^{*}\right) \rightarrow C_{0}\left(\left(\mathbb{R}^{3}\right)^{*}\right) \\
& v_{2}: C_{0}\left(\left(\mathbb{R}^{3}\right)^{*}\right) \rightarrow A_{2}=C_{0}\left(\left(\mathbb{R}^{2}\right)^{*}\right)
\end{aligned}
$$

be the inclusion and restriction defined similarly as in 3.1.
One gets the exact sequence

$$
0 \longrightarrow I_{2} \xrightarrow{k_{2}} C_{0}\left(\left(\mathbb{R}^{3}\right)^{*}\right) \xrightarrow{v_{2}} A_{2} 0
$$

Note that

$$
\begin{aligned}
C_{0}\left(V_{2}\right) & \cong C_{0}\left(\mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{*}\right) \cong C_{0}(\mathbb{R}) \otimes I_{2} \\
C_{0}\left(W_{2}\right) & \cong C_{0}\left(\mathbb{R} \times\left(\mathbb{R}^{2}\right)^{*}\right) \cong C_{0}(\mathbb{R}) \otimes A_{2} \\
C_{0}\left(W_{1}\right) & \cong C_{0}\left(\mathbb{R} \times\left(\mathbb{R}^{3}\right)^{*}\right) \cong C_{0}(\mathbb{R}) \otimes C_{0}\left(\mathbb{R}^{3}\right)^{*}
\end{aligned}
$$

The extension (2) thus can be identified with the following one

$$
0 \longrightarrow C_{0}(\mathbb{R}) \otimes I_{2} \xrightarrow{i d \otimes k_{2}} C_{0}(\mathbb{R}) \otimes C_{0}\left(\mathbb{R}^{3}\right)^{*} \xrightarrow{i d \otimes v_{2}} C_{0}(\mathbb{R}) \otimes A_{2} \longrightarrow 0
$$

Now, using [13, Theorem 9.7, Corollary 9.8] we obtain the assertion of Lemma 4.4.

Lemma 4.5. Set $I_{1}=C_{0}\left(\mathbb{R}^{2} \times \mathbb{R}^{*}\right)$ and $A_{1}=C\left(S^{2}\right)$. The following diagram is commutative

where β_{2} is the Bott isomorphism, $j \in \mathbb{Z} / 2 \mathbb{Z}$.
Proof. The proof is similar to that of Lemma 4.4, by using the exact sequence (1) and diffeomorphisms: $V \cong \mathbb{R} \times\left(\mathbb{R}^{4}\right)^{*} \cong \mathbb{R} \times \mathbb{R}_{+} \times S^{3}, W_{1} \cong \mathbb{R} \times\left(\mathbb{R}^{3}\right)^{*} \cong$ $\mathbb{R} \times \mathbb{R}_{+} \times S^{2}$.

Before computing the K-groups, we need the following notations. Let $u: \mathbb{R} \rightarrow$ S^{1} be the map

$$
u(z)=e^{2 \pi i\left(z / \sqrt{1+z^{2}}\right)}, z \in \mathbb{R}
$$

Denote by $u_{+}\left(\right.$resp. $\left.u_{-}\right)$the restriction of u on $\mathbb{R}_{+}\left(\right.$resp. $\left.\mathbb{R}_{-}\right)$. Note that the class $\left[u_{+}\right]\left(\right.$resp. $\left.\left[u_{-}\right]\right)$is the canonical generator of $K_{1}\left(C_{0}\left(\mathbb{R}_{+}\right)\right) \cong \mathbb{Z}$ (resp. $\left.K_{1}\left(C_{0}\left(\mathbb{R}_{-}\right)\right) \cong \mathbb{Z}\right)$. Let us consider the matrix valued function $p:\left(\mathbb{R}^{2}\right)^{*} \cong$ $S^{1} \times \mathbb{R}_{+} \rightarrow M_{2}(\mathbb{C})\left(\right.$ resp. $\bar{p}: S^{2} \cong D / S^{1} \rightarrow M_{2}(\mathbb{C})$) defined by:

$$
p(x ; y)(\text { resp. } \bar{p}(x, y))=\frac{1}{2}\left(\begin{array}{cc}
1-\cos \pi \sqrt{x^{2}+y^{2}} & \frac{x+i y}{\sqrt{x^{2}+y^{2}}} \sin \pi \sqrt{x^{2}+y^{2}} \\
\frac{x-i y}{\sqrt{x^{2}+y^{2}}} \sin \pi \sqrt{x^{2}+y^{2}} & 1+\cos \pi \sqrt{x^{2}+y^{2}}
\end{array}\right) .
$$

Then p (resp. \bar{p}) is an idempotent of rank 1 for each $(x ; y) \in\left(\mathbb{R}^{2}\right)^{*}$ (resp. $\left.(x ; y) \in D / S^{1}\right)$. Let $[b] \in K_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)$ be the Bott element, [1] be the generator of $K_{0}\left(C\left(S^{1}\right)\right) \cong \mathbb{Z}$.

Lemma 4.6. (See [15, p. 234])
(i) $K_{0}\left(B_{1}\right) \cong \mathbb{Z}^{2}, K_{1}\left(B_{1}\right)=0$,
(ii) $K_{0}\left(J_{2}\right) \cong \mathbb{Z}^{2}$ is generated by $\varphi_{0} \beta_{1}\left([b] \boxtimes\left[u_{+}\right]\right)$and $\varphi_{0} \beta_{1}\left([b] \boxtimes\left[u_{-}\right]\right) ; K_{1}\left(J_{2}\right)=$ 0 ,
(iii) $K_{0}\left(B_{2}\right) \cong \mathbb{Z}$ is generated by $\varphi_{0} \beta_{1}\left([1] \boxtimes\left[u_{+}\right]\right) ; K_{1}\left(B_{2}\right) \cong \mathbb{Z}$ is generated by $\varphi_{1} \beta_{1}\left([p]-\left[\varepsilon_{1}\right]\right)$, where $\varphi_{j}, j \in \mathbb{Z} / 2 \mathbb{Z}$, is the Thom-Connes isomorphism (see [2]), β_{1} is the isomorphism in Lemma 4.4, ε_{1} is the constant matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and \boxtimes is the external tensor product (see, for example, [2, VI.2]).

Lemma 4.7. (i) $K_{0}\left(C^{*}(V, \mathcal{F})\right) \cong \mathbb{Z}, K_{1}\left(C^{*}(V, \mathcal{F})\right) \cong \mathbb{Z}$,
(ii) $K_{0}\left(J_{1}\right)=0 ; K_{1}\left(J_{1}\right) \cong \mathbb{Z}^{2}$ is generated by $\varphi_{1} \beta_{2}\left([b] \boxtimes\left[u_{+}\right]\right)$and $\varphi_{1} \beta_{2}([b] \boxtimes$ [u_]),
(iii) $K_{1}\left(B_{1}\right)=0 ; K_{0}\left(B_{1}\right) \cong \mathbb{Z}^{2}$ is generated by $\varphi_{0} \beta_{2}[\overline{1}]$ and $\varphi_{0} \beta_{2}\left([\bar{p}]-\left[\varepsilon_{1}\right]\right)$, where $\overline{1}$ is unit element in $C\left(S^{2}\right), \varphi_{0}$ is the Thom-Connes isomorphism, β_{2} is the Bott isomorphism.

Proof. (i) $K_{i}\left(C^{*}(V, \mathcal{F})\right) \cong K_{i}\left(C\left(S^{3}\right)\right) \cong \mathbb{Z}, i=0,1$.
(ii) The proof is similar to (ii) of Lemma 4.6.
(iii) By $\left[9\right.$, p. 206], we have $K_{0}\left(C\left(S^{2}\right)\right)=\mathbb{Z}[\overline{1}]+\mathbb{Z}[q]$, where $q \in P_{2}\left(C\left(S^{2}\right)\right)$. Otherwise, in [9, p. 48, 53, 56]; [13, p. 162], one has shown that the map

$$
\operatorname{dim}: K_{0}\left(C\left(S^{2}\right)\right) \rightarrow \mathbb{Z}
$$

is a surjective group homomorphism which satisfied $\operatorname{dim}[\overline{1}]=1, \operatorname{ker}(\operatorname{dim})=\mathbb{Z}$ and non-zero element $q \in P_{2}\left(C\left(S^{2}\right)\right)$ in the kernel of the map dim has the form $[q]=[\bar{p}]-\left[\varepsilon_{1}\right]$. Hence, the result is derived straight away because β_{2} and φ_{0} are isomorphisms.

Proof of Theorem 4.3. (i) Computation of $\left(\gamma_{1}\right)$. Recall that the extension $\left(\gamma_{1}\right)$ in Theorem 3.1 gives rise to a six-term exact sequence

By [11, Theorem 4.14], the isomorphisms

$$
\operatorname{Ext}\left(B_{1}, J_{1}\right) \cong \operatorname{Hom}\left(\left(K_{0}\left(B_{1}\right), K_{1}\left(J_{1}\right)\right) \cong \operatorname{Hom}\left(\mathbb{Z}^{2}, \mathbb{Z}^{2}\right)\right.
$$

associates the invariant $\gamma_{1} \in \operatorname{Ext}\left(B_{1}, J_{1}\right)$ to the connecting map $\delta_{0}: K_{0}\left(B_{1}\right) \rightarrow$ $K_{1}\left(J_{1}\right)$.

Since the Thom-Connes isomorphism commutes with K-theoretical exact sequence (see [14, Lemma 3.4.3]), we have the following commutative diagram $(j \in \mathbb{Z} / 2 \mathbb{Z})$:

In view of Lemma 4.5, the following diagram is commutative

Consequently, instead of computing $\delta_{0}: K_{0}\left(B_{1}\right) \rightarrow K_{1}\left(J_{1}\right)$, it is sufficient to compute $\delta_{0}: K_{0}\left(A_{1}\right) \rightarrow K_{1}\left(I_{1}\right)$. Thus, by the proof of Lemma 4.7, we have to define $\delta_{0}\left([\bar{p}]-\left[\varepsilon_{1}\right]\right)=\delta_{0}([\bar{p}])$ (because $\delta_{0}\left(\left[\varepsilon_{1}\right]\right)=(0 ; 0)$ and $\left.\delta_{0}([\overline{1}])=(0 ; 0)\right)$. By the usual definition (see [13, p. 170]), for $[\bar{p}] \in K_{0}\left(A_{1}\right), \delta_{0}([\bar{p}])=\left[e^{2 \pi i \tilde{p}}\right] \in$ $K_{1}\left(I_{1}\right)$, where \tilde{p} is a preimage of \bar{p} in (a matrix algebra over) $C\left(S^{3}\right)$, i.e. $v_{1} \tilde{p}=\bar{p}$.

We can choose $\tilde{p}(x, y, z)=\frac{z}{\sqrt{1+z^{2}}} \bar{p}(x, y),(x, y, z) \in S^{3}$.
Let \tilde{p}_{+}(resp. $\left.\tilde{p}_{-}\right)$be the restriction of \tilde{p} on $\mathbb{R}^{2} \times \mathbb{R}_{+}\left(\right.$resp. $\left.\mathbb{R}^{2} \times \mathbb{R}_{-}\right)$. Then we have

$$
\delta_{0}([\bar{p}])=\left[e^{2 \pi i \tilde{p}}\right]=\left[e^{2 \pi i \tilde{p}_{+}}\right]+\left[e^{2 \pi i \tilde{p}_{-}}\right] \in K_{1}\left(C_{0}\left(\mathbb{R}^{2}\right) \otimes C_{0}\left(\mathbb{R}_{+}\right)\right) \oplus K_{1}\left(C_{0}\left(\mathbb{R}^{2}\right) \otimes\right.
$$

$$
\left.C_{0}\left(\mathbb{R}_{-}\right)\right)=K_{1}\left(I_{1}\right)
$$

By [13, Section 4], for each function $f: \mathbb{R}_{ \pm} \rightarrow Q_{n} \widetilde{C_{0}\left(\mathbb{R}^{2}\right)}$ such that $\lim _{x \rightarrow \pm 0} f(t)=\lim _{x \rightarrow \pm \infty} f(t)$, where $Q_{n} \widetilde{C_{0}\left(\mathbb{R}^{2}\right)}=\left\{a \in M_{n} \widetilde{C_{0}\left(\mathbb{R}^{2}\right)}, e^{2 \pi i a}=I d\right\}$, the class $[f] \in K_{1}\left(C_{0}\left(\mathbb{R}^{2}\right) \otimes C_{0}\left(\mathbb{R}_{ \pm}\right)\right)$can be determined by $[f]=W_{f} \cdot[b] \boxtimes\left[u_{ \pm}\right]$, where $W_{f}=\frac{1}{2 \pi i} \int_{\mathbb{R}_{ \pm}} \operatorname{Tr}\left(f^{\prime}(z) f^{-1}(z)\right) d z$ is the winding number of f.

By simple computation, we get $\delta_{0}([p])=[b] \boxtimes\left[u_{+}\right]+[b] \boxtimes\left[u_{-}\right]$. Thus $\gamma_{1}=$ $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right) \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{2}, \mathbb{Z}^{2}\right)$.
(ii) Computation of $\left(\gamma_{2}\right)$. The extension $\left(\gamma_{2}\right)$ gives rise to a six-term exact sequence

By [11, Theorem 4.14], $\gamma_{2}=\delta_{1} \in \operatorname{Hom}\left(K_{1}\left(B_{2}\right), K_{0}\left(J_{2}\right)\right)=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{Z}^{2}\right)$. Similarly to part (i), taking account of Lemmas 4.4 and 4.6, we have the following commutative diagram $(j \in \mathbb{Z} / 2 \mathbb{Z})$

Thus we can compute $\delta_{0}: K_{0}\left(A_{2}\right) \rightarrow K_{1}\left(I_{2}\right)$ instead of $\delta_{1}: K_{1}\left(B_{2}\right) \rightarrow K_{0}\left(J_{2}\right)$. By the proof of Lemma 4.6, we have to define $\delta_{0}\left([p]-\left[\epsilon_{1}\right]\right)=\delta_{0}([p])$ (because $\left.\delta_{0}\left(\left[\epsilon_{1}\right]\right)=(0,0)\right)$. Using the same argument as above, we get $\delta_{0}([p])=[b] \boxtimes\left[u_{+}\right]+$ $[b] \boxtimes\left[u_{-}\right]$. Thus $\gamma_{2}=(1,1) \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{Z}^{2}\right) \cong \mathbb{Z}^{2}$. The proof is complete.

References

1. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extension of C^{*}-algebra and K-homology, Ann. Math. 105 (1977), 265-324.
2. A. Connes, An analogue of the Thom isomorphism for crossed products of a C^{*} algebra by an action of $\mathbb{R}, A d v$. In Math. 39 (1981), 31-55.
3. A. Connes, A survey of foliations and operator algebras, Proc. Sympos. Pure Math. 38 (1982), 521-628.
4. D. N. Diep, Structure of the group C^{*}-algebra of the group of affine transformations of the line (Russian), Funktsional. Anal. I Prilozhen 9 (1975), 63-64.
5. D. N. Diep, Method of Noncommutative Geometry for Group C ${ }^{*}$-algebras, Reseach Notes in Mathematics Series, Vol. 416, Cambridge: Chapman and Hall-CRC Press, 1999.
6. M. Karoubi, K-theory: An introduction, Grund. der Math. Wiss. Vol. 226, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
7. G. G. Kasparov, The operator K-functor and extensions of C^{*}-algebras, Math. USSR Izvestija 16 (3) (1981), 513-572.
8. A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin-Heidenberg-New York, 1976.
9. M. Rordam, F. Larsen, and N. Laustsen, An Introduction to K-Theory for C^{*} Algebras, Cambridge University Press, United Kingdom, 2000.
10. J. Rosenberg, The C^{*}-algebras of some real p-adic solvable groups, Pacific J. Math. 65 (1) (1976), 175-192.
11. J. Rosenberg, Homological invariants of extension of C^{*}-algebras, Proc. Sympos. Pure Math. 38 (1982), AMS Providence R.I., 35-75.
12. V. M. Son and H. H. Viet, Sur la structure des C^{*}-algebres dúne classe de groupes de Lie, J. Operator Theory 11 (1984), 77-90.
13. J. L. Taylor, Banach algebras and topology, in: Algebras in Analysis, Academic Press, New York, 1975, pp. 118-186.
14. A. M. Torpe, K-theory for the leaf space of foliations by Reeb component, J. Func. Anal. 61 (1985), 15-71.
15. L. A. Vu, On the structure of the C^{*}-algebra of the foliation formed by the orbits of maximal dimendion of the real diamond group, J. Operator Theory 24 (1990), 227-238.
16. L. A. Vu, The foliation formed by the K-orbits of maximal dimension of the $M D_{4}$-group, PhD Thesis, Ha Noi, 1990 (in Vietnamese).
17. L. A. Vu and K. P. Shum, Classification of 5-dimensional MD-algebra having commutative derived ideals, Adv. Algebr. Comb. World Scientific Publishing Co., pp. 353-371.
18. L. A. Vu and D. Q. Hoa, The topology of foliations formed by the generic K orbits of a subclass of the indecomposable $M D_{5}$-groups, Science in China, series A: Mathemmatics 52 (2) (2009), 351-360.
