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Abstract. The paper is a continuation of the authors’ work [18]. In [18], we consider

foliations formed by the maximal dimensional K-orbits (MD5-foliations) of connected

MD5-groups such that their Lie algebras have 4-dimensional commutative derived

ideals and give a topological classification of the considered foliations. In this paper,

we study K-theory of the leaf space of some of these MD5-foliations and analytically

describe and characterize the Connes’ C∗-algebras of the considered foliations by the

method of K-functors.
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1. Introduction

In the decades 1970s-1980s, works of Diep [4], Rosenberg [10], Kasparov [7], Son
and Viet [12],... have seen that K-functors are well adapted to characterize a
large class of group C∗-algebras. Kirillov’s method of orbits allows to find out
the class of Lie groups MD, for which the group C∗-algebras can be characterized
by means of suitable K-functors (see [5]). In terms of Diep, an MD-group of
dimension n (for short, an MDn-group) is an n-dimensional solvable real Lie
group whose orbits in the co-adjoint representation (i.e., the K- representation)
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are the orbits of zero or maximal dimension. The Lie algebra of an MDn-group
is called an MDn-algebra (see [5, Section 4.1]).

In 1982, studying foliated manifolds, Connes [3] introduced the notion of C∗-
algebra associated to a measured foliation. In the case of Reeb foliations (see
Torpe [14]), the method of K-functors has been proved to be very effective in
describing the structure of Connes’ C∗-algebras. For every MD-group G, the
family of K-orbits of maximal dimension forms a measured foliation in terms of
Connes [3]. This foliation is called MD-foliation associated to G.

Combining the methods of Kirillov (see [8, Section 15]) and of Connes (see [3,
Section 2, 5]), the first author had studied MD4-foliations associated with all
indecomposable connected MD4-groups and characterized Connes’ C∗-algebras
of these foliations in [16]. Recently, Vu and Shum [17] have classified, up to
isomorphism, all the MD5-algebras having commutative derived ideals.

In [18], we have given a topological classification of MD5-foliations associated
to the indecomposable connected and simply connected MD5-groups, such that
MD5-algebras of them have 4-dimensional commutative derived ideals. There
are exactly 3 topological types of the considered MD5-foliations, denoted by
F1,F2,F3. All MD5-foliations of type F1 are the trivial fibrations with con-
nected fibre on 3-dimensional sphere S3, so Connes’ C∗-algebras of them are
isomorphic to the C∗-algebra C(S3) ⊗ K following [3, Section 5], where K de-
notes the C∗-algebra of compact operators on an (infinite dimensional separable)
Hilbert space.

The purpose of this paper is to study K-theory of the leaf space and to
characterize the structure of Connes’ C∗-algebras C∗(V,F) of all MD5-foliations
(V,F) of type F2 by the method of K-functors. Namely, we will express C∗(V,F)
by two repeated extensions of the form

0 // C0(X1) ⊗K // C∗(V,F) // B1
// 0 ,

0 // C0(X2) ⊗ K // B1
// C0(Y2) ⊗ K // 0 ,

then we will compute the invariant system of C∗(V,F) with respect to these ex-
tensions. If the given C∗-algebras are isomorphic to the reduced crossed products
of the form C0(V ) o H , where H is a Lie group, we can use the Thom-Connes
isomorphism to compute the connecting map δ0, δ1.

In another paper, we will study the similar problem for all MD5-foliations of
type F3.

2. The MD5−Foliations of Type F2

Originally, we will recall geometry of K-orbits of MD5-groups which associate
with MD5-foliations of type F2 (see [18]).
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In this section, G will be always a connected and simply connected MD5-
group such that its Lie algebras G is an indecomposable MD5-algebra generated
by {X1, X2, X3, X4, X5} with G1 := [G, G] = R.X2 ⊕R.X3 ⊕R.X4 ⊕R.X5

∼= R4,
adX1

∈ End(G) ≡ Mat4(R). Namely, G will be one of the following Lie algebras
which are studied in [17, 18].

G5,4,11(λ1,λ1,ϕ)

adX1
=




cosϕ − sin ϕ 0 0
sin ϕ cos ϕ 0 0

0 0 λ1 0
0 0 0 λ2


 ; λ1, λ2 ∈ R\ {0} , λ1 6= λ2, ϕ ∈ (0, π) .

G5,4,12(λ,ϕ)

adX1
=




cos ϕ − sin ϕ 0 0
sin ϕ cosϕ 0 0

0 0 λ 0
0 0 0 λ


 ; λ ∈ R\ {0} , ϕ ∈ (0, π) .

G5,4,13(λ,ϕ)

adX1
=




cos ϕ − sin ϕ 0 0
sin ϕ cosϕ 0 0

0 0 λ 1
0 0 0 λ


 ; λ ∈ R\ {0} , ϕ ∈ (0, π) .

The connected and simply connected Lie groups corresponding to these al-
gebras are denoted by G5,4,11 (λ1,λ1,ϕ), G5,4,12(λ,ϕ), G5,4,13(λ,ϕ). All of these
Lie groups are MD5-groups (see [17]) and G is one of them. We now recall
the geometric description of the K-orbits of G in the dual space G∗ of G. Let
{X∗

1 , X∗
2 , X∗

3 , X∗
4 , X∗

5} be the basis in G∗ dual to the basis {X1, X2, X3, X4, X5}
in G. Denote by ΩF the K-orbit of G including F = (α, β + iγ, δ, σ) in G∗ ∼= R5.

• If β + iγ = δ = σ = 0 then ΩF = {F } (the 0-dimensional orbit).

• If |β + iγ|2 + δ2 + σ2 6= 0 then ΩF is the 2-dimensional orbit as follows

ΩF =




{
(x, (β + iγ).e(a.e−iϕ), δ.eaλ1 , σ.eaλ2), x, a ∈ R

}

when G = G5,4,11(λ1,λ2,ϕ), λ1, λ2 ∈ R∗, ϕ ∈ (0; π),{
(x, (β + iγ).e(a.e−iϕ), δ.eaλ, σ.eaλ), x, a ∈ R

}

when G = G5,4,12(λ,ϕ), λ ∈ R∗, ϕ ∈ (0; π),{
(x, (β + iγ) .e(a.e−iϕ), δ.eaλ, δ.aeaλ + σ.eaλ), x, a ∈ R

}

when G = G5,4,13(λ,ϕ), λ ∈ R∗, ϕ ∈ (0; π).
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In [18], we have shown that, the family F of maximal-dimensional K-orbits
of G forms measured foliation in terms of Connes on the open submanifold

V =
{
(x, y, z, t, s) ∈ G∗ : y2 + z2 + t2 + s2 6= 0

} ∼= R ×
(
R4

)∗
(⊂ G∗ ≡ R5).

Furthermore, all foliations
(
V,F4,11(λ1,λ2,ϕ)

)
,

(
V,F4,12(λ,ϕ)

)
,

(
V,F4,13(λ,ϕ)

)

are topologically equivalent to each other (λ1, λ2, λ ∈ R\ {0} , ϕ ∈ (0; π)). Thus,
we need only to choose an envoy among them to describe the structure of the

C∗-algebra. In this case, we choose the foliation
(
V,F4,12(1, π

2 )

)
.

In [18], we have described the foliation
(
V,F4,12(1, π

2 )

)
by a suitable action of

R2. Namely, we have the following result.

Proposition 2.1. The foliation
(
V,F4,12(1, π

2 )

)
can be given by an action of the

commutative Lie group R2 on the manifold V .

Proof. One needs only to verify that the following action λ of R2 on V gives the

foliation
(
V,F4,12(1, π

2 )

)

λ : R2 × V → V ,

((r, a) , (x, y + iz, t, s)) 7→
(
x + r, (y + iz) .e−ia, t.ea, s.ea

)
,

where (r, a) ∈ R2, (x, y + iz, t, s) ∈ V ∼= R×
(
C × R2

)∗ ∼= R ×
(
R4

)∗
. Hereafter,

for simplicity of notation, we write (V,F) instead of
(
V,F4,12(1, π

2 )

)
.

It is easy to see that the graph of (V,F) is indentical with V × R2, so by [3,
Section 5], it follows from Proposition 2.1 that

Corollary 2.2 (Analytical description of C∗(V,F)). The Connes’ C∗-algebra
C∗(V,F) can be analytically described by the reduced crossed product of C0(V )
by R2 as follows

C∗(V,F) ∼= C0 (V ) oλ R2.

3. C∗(V, F) as Two Repeated Extensions

3.1. Let V1, W1, V2, W2 be the following submanifolds of V

V1 = {(x, y, z, t, s) ∈ V : s 6= 0} ∼= R × R2 × R × R∗,

W1 = V \V1 = {(x, y, z, t, s) ∈ V : s = 0} ∼= R ×
(
R3

)∗ × {0} ∼= R ×
(
R3

)∗
,

V2 = {(x, y, z, t, 0) ∈ W1 : t 6= 0} ∼= R × R2 × R∗,

W2 = W1\V2 = {(x, y, z, t, 0) ∈ W1 : t = 0} ∼= R ×
(
R2

)∗
.



K-Theory of the Leaf Space of Foliations... 253

It is easy to see that the action λ in Proposition 2.1 preserves the subsets
V1, W1, V2, W2. Let i1, i2, µ1, µ2 be the inclusions and the restrictions

i1 : C0 (V1) → C0 (V ) , i2 : C0 (V2) → C0 (W1) ,
µ1 : C0 (V ) → C0 (W1) , µ2 : C0 (W1) → C0 (W2),

where each function of C0 (V1) (resp. C0 (V2)) is extented to the one of C0 (V )
(resp. C0 (W1)) by taking the value of zero outside V1 (resp. V2).

It is known a fact that i1, i2, µ1, µ2 are λ-equivariant and the following se-
quences are equivariantly exact:

0 // C0(V1)
i1 // C0(V )

µ1 // C0(W1) // 0 (1)

0 // C0(V2)
i2 // C0(W1)

µ2 // C0(W2) // 0 . (2)

3.2. Now we denote by (V1,F1) , (W1,F1) , (V2,F2) , (W2,F2) restrictions of the
foliations (V,F) on V1, W1, V2, W2, respectively.

Theorem 3.1. C∗(V,F) admits the following canonical repeated extensions

0 // J1

bi1 // C∗(V, F )
cµ1 // B1

// 0 , (γ1)

0 // J2

bi2 // B1
cµ2 // B2

// 0 , (γ2)

where

J1 = C∗ (V1,F1) ∼= C0 (V1) oλ R2 ∼= C0

(
R3 ∪ R3

)
⊗ K,

J2 = C∗ (V2,F2) ∼= C0 (V2) oλ R2 ∼= C0

(
R2 ∪ R2

)
⊗ K,

B2 = C∗ (W2,F2) ∼= C0 (W2) oλ R2 ∼= C0 (R+) ⊗ K,

B1 = C∗ (W1,F1) ∼= C0 (W1) oλ R2,

and the homomorphisms î1, î2, µ̂1, µ̂2 are defined by

(
îkf

)
(r, s) = ikf (r, s) , k = 1, 2,

(µ̂kf) (r, s) = µkf (r, s) , k = 1, 2.

Proof. We note that the graph of (V1,F1) is indentical with V1 × R2, so by [3,
Section 5], J1 = C∗ (V1,F1) ∼= C0 (V1) oλ R2. Similarly, we have

B1
∼= C0 (W1) oλ R2,

J2
∼= C0 (V2) oλ R2,

B2
∼= C0 (W2) oλ R2.



254 Le Anh Vu and Duong Quang Hoa

From the equivariantly exact sequences in 3.1 and by [2, Lemma 1.1] we obtain
the repeated extensions (γ1) and (γ2).

Furthermore, the foliation (V1,F1) can be derived from the submersion

p1 : V1 ≈ R × R2 × R × R∗ → R3 ∪ R3

p1 (x, y, z, t, s) = (y, z, t, signs) .

Hence, by a result of [3, p. 562], we get J1
∼= C0

(
R3 ∪ R3

)
⊗ K. The same

argument shows that

J2
∼= C0

(
R2 ∪ R2

)
⊗ K, B2

∼= C0 (R+) ⊗ K.

4. Computing the Invariant System of C∗(V, F)

Definition 4.1. The set of elements {γ1, γ2} corresponding to the repeated ex-
tensions (γ1), (γ2) in the Kasparov groups Ext(Bi, Ji), i = 1, 2 is called the
system of invariants of C∗ (V,F) and denoted by Index C∗ (V,F).

Remark 4.2. Index C∗ (V,F) determines the so-called stable type of C∗ (V,F)
in the set of all repeated extensions

0 // J1
// E // B1

// 0 ,

0 // J2
// B1

// B2
// 0 .

The main result of the paper is the following.

Theorem 4.3. Index C∗ (V,F) = {γ1, γ2}, where

γ1 =

(
0 1
0 1

)
in the group Ext (B1 , J1) = Hom

(
Z2, Z2

)
;

γ2 = (1, 1) in the group Ext (B2, J2) = Hom
(
Z, Z2

)
.

To prove this theorem, we need some lemmas as follows.

Lemma 4.4. Set I2 = C0(R
2 × R∗) and A2 = C0

((
R2

)∗)
. The following dia-

gram is commutative

. . . // Kj(I2) //

β1

��

Kj

`
C0(R

3)∗
´ //

β1

��

Kj(A2) //

β1

��

Kj+1(I2) //

β1

��

. . .

. . . // Kj+1

`
C0(V2)

´ // Kj+1

`
C0(W1)

´ // Kj+1

`
C0(W2)

´ // Kj

`
C0(V2)

´ // . . .

where β1 is the isomorphism defined in [13, Theorem 9.7] or in [2, Corollary

VI.3], j ∈ Z/2Z.
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Proof. Let

k2 : I2 = C0

(
R2 × R∗) −→ C0

((
R3

)∗)

v2 : C0

((
R3

)∗) −→ A2 = C0

((
R2

)∗)

be the inclusion and restriction defined similarly as in 3.1.

One gets the exact sequence

0 // I2
k2 // C0

(
(R3)∗

) v2 // A2
// 0 .

Note that

C0 (V2) ∼= C0

(
R × R2 × R∗) ∼= C0 (R) ⊗ I2,

C0 (W2) ∼= C0

(
R ×

(
R2

)∗) ∼= C0 (R) ⊗ A2,

C0 (W1) ∼= C0

(
R ×

(
R3

)∗) ∼= C0 (R) ⊗ C0

(
R3

)∗
.

The extension (2) thus can be identified with the following one

0 // C0(R) ⊗ I2
id⊗k2 // C0(R) ⊗ C0(R

3)∗
id⊗v2 // C0(R) ⊗ A2

// 0 .

Now, using [13, Theorem 9.7, Corollary 9.8] we obtain the assertion of Lemma
4.4.

Lemma 4.5. Set I1 = C0

(
R2 × R∗) and A1 = C

(
S2

)
. The following diagram

is commutative

. . . // Kj(I1) //

β2

��

Kj

`
C(S3)

´ //

β2

��

Kj(A1) //

β2

��

Kj+1(I1) //

β2

��

. . .

. . . // Kj(C0(V1)) // Kj(C0(V )) // Kj(C0(W1)) // Kj+1(C0(V1)) // . . .

where β2 is the Bott isomorphism, j ∈ Z/2Z.

Proof. The proof is similar to that of Lemma 4.4, by using the exact sequence
(1) and diffeomorphisms: V ∼= R ×

(
R4

)∗ ∼= R × R+ × S3, W1
∼= R ×

(
R3

)∗ ∼=
R × R+ × S2.

Before computing the K-groups, we need the following notations. Let u : R →
S1 be the map

u (z) = e2πi(z/
√

1+z2), z ∈ R.

Denote by u+ (resp. u−) the restriction of u on R+ (resp. R−). Note that
the class [u+] (resp. [u−]) is the canonical generator of K1 (C0 (R+)) ∼= Z (resp.
K1 (C0 (R−)) ∼= Z). Let us consider the matrix valued function p :

(
R2

)∗ ∼=
S1 × R+ → M2 (C) (resp. p : S2 ∼= D/S1 → M2 (C)) defined by:
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p (x; y) (resp. p(x, y)) =
1

2




1 − cos π

√
x2 + y2 x+iy√

x2+y2
sinπ

√
x2 + y2

x−iy√
x2+y2

sin π
√

x2 + y2 1 + cosπ
√

x2 + y2



 .

Then p (resp. p) is an idempotent of rank 1 for each (x; y) ∈
(
R2

)∗
(resp.

(x; y) ∈ D/S1). Let [b] ∈ K0

(
C0

(
R2

))
be the Bott element, [1] be the generator

of K0

(
C

(
S1

)) ∼= Z.

Lemma 4.6. (See [15, p. 234])

(i) K0(B1) ∼= Z2, K1(B1) = 0,

(ii) K0(J2) ∼= Z2 is generated by ϕ0β1

(
[b]�[u+]

)
and ϕ0β1

(
[b]�[u−]

)
; K1(J2) =

0,

(iii) K0(B2) ∼= Z is generated by ϕ0β1

(
[1] � [u+]

)
; K1(B2) ∼= Z is generated

by ϕ1β1

(
[p]− [ε1]

)
, where ϕj , j ∈ Z/2Z, is the Thom-Connes isomorphism (see

[2]), β1 is the isomorphism in Lemma 4.4, ε1 is the constant matrix

(
1 0
0 0

)
and

� is the external tensor product (see, for example, [2, VI.2]).

Lemma 4.7. (i) K0

(
C∗(V,F)

) ∼= Z, K1

(
C∗(V,F)

) ∼= Z,

(ii) K0(J1) = 0; K1(J1) ∼= Z2 is generated by ϕ1β2

(
[b]� [u+]

)
and ϕ1β2

(
[b]�

[u−]
)
,

(iii) K1(B1) = 0; K0(B1) ∼= Z2 is generated by ϕ0β2[1̄] and ϕ0β2

(
[p̄]− [ε1]

)
,

where 1̄ is unit element in C(S2), ϕ0 is the Thom-Connes isomorphism, β2 is

the Bott isomorphism.

Proof. (i) Ki

(
C∗(V,F)

) ∼= Ki

(
C(S3)

) ∼= Z, i = 0, 1.

(ii) The proof is similar to (ii) of Lemma 4.6.

(iii) By [9, p. 206], we have K0

(
C(S2)

)
= Z[1̄] + Z[q], where q ∈ P2

(
C(S2)

)
.

Otherwise, in [9, p. 48, 53, 56]; [13, p. 162], one has shown that the map

dim : K0

(
C(S2)

)
→ Z

is a surjective group homomorphism which satisfied dim[1̄] = 1, ker(dim) = Z

and non-zero element q ∈ P2

(
C(S2)

)
in the kernel of the map dim has the form

[q] = [p̄]− [ε1]. Hence, the result is derived straight away because β2 and ϕ0 are
isomorphisms.

Proof of Theorem 4.3. (i) Computation of (γ1). Recall that the extension (γ1)
in Theorem 3.1 gives rise to a six-term exact sequence
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0 = K0(J1) // K0

(
C∗(V, F )

)
// K0(B1)

δ0

��
0 = K1(B1)

δ1

OO

K1

(
C∗(V, F )

)
oo K1(J1)oo

By [11, Theorem 4.14], the isomorphisms

Ext(B1, J1) ∼= Hom
(
(K0(B1), K1(J1)

) ∼= Hom(Z2, Z2)

associates the invariant γ1 ∈ Ext(B1 , J1) to the connecting map δ0 : K0(B1) →
K1(J1).

Since the Thom-Connes isomorphism commutes with K−theoretical exact
sequence (see [14, Lemma 3.4.3]), we have the following commutative diagram
(j ∈ Z/2Z):

. . . // Kj(J1) // Kj

`
C∗(V, F )

´ // Kj(B1) // Kj+1(J1) // . . .

. . . // Kj

`
C0(V1)

´ //

ϕj

OO

Kj

`
C0(V )

´ //

ϕj

OO

Kj

`
C0(W1)

´ //

ϕj

OO

Kj+1

`
C0(V1)

´ //

ϕj+1

OO

. . .

In view of Lemma 4.5, the following diagram is commutative

. . . // Kj

`
C0(V1)

´ // Kj

`
C0(V )

´ // Kj

`
C0(W1)

´ // Kj+1

`
C1(V1)

´ // . . .

. . . // Kj(I1) //

β2

OO

Kj

`
C(S3)

´ //

β2

OO

Kj(A1) //

β2

OO

Kj+1(I1) //

β2

OO

. . .

Consequently, instead of computing δ0 : K0(B1) → K1(J1), it is sufficient to
compute δ0 : K0(A1) → K1(I1). Thus, by the proof of Lemma 4.7, we have to
define δ0

(
[p̄] − [ε1]

)
= δ0

(
[p̄]

)
(because δ0

(
[ε1]

)
= (0; 0) and δ0

(
[1̄]

)
= (0; 0)).

By the usual definition (see [13, p. 170]), for [p̄] ∈ K0(A1), δ0

(
[p̄]

)
=

[
e2πip̃

]
∈

K1(I1), where p̃ is a preimage of p̄ in (a matrix algebra over) C(S3), i.e. v1p̃ = p̄.

We can choose p̃(x, y, z) =
z√

1 + z2
p̄(x, y), (x, y, z) ∈ S3.

Let p̃+ (resp. p̃−) be the restriction of p̃ on R2 × R+ (resp. R2 × R−). Then
we have

δ0

(
[p̄]

)
=

[
e2πip̃

]
=

[
e2πip̃+

]
+

[
e2πip̃−

]
∈ K1

(
C0

(
R2

)
⊗C0

(
R+

))
⊕K1

(
C0

(
R2

)
⊗

C0

(
R−

))
= K1(I1).

By [13, Section 4], for each function f : R± → QnC̃0

(
R2

)
such that

lim
x→±0

f(t) = lim
x→±∞

f(t), where QnC̃0

(
R2

)
=

{
a ∈ MnC̃0

(
R2

)
, e2πia = Id

}
,

the class [f ] ∈ K1

(
C0(R

2)⊗C0(R±)
)

can be determined by [f ] = Wf .[b]� [u±],

where Wf =
1

2πi

∫

R±

Tr
(
f ′(z)f−1(z)

)
dz is the winding number of f .
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By simple computation, we get δ0

(
[p]

)
= [b] � [u+] + [b] � [u−]. Thus γ1 =(

0 1
0 1

)
∈ HomZ(Z2, Z2).

(ii) Computation of (γ2). The extension (γ2) gives rise to a six-term exact
sequence

K0(J2) // K0(B1) // K0(B2)

δ0

��
K1(B2)

δ1

OO

K1(B1)oo K1(J2) = 0oo

By [11, Theorem 4.14], γ2 = δ1 ∈ Hom
(
K1(B2), K0(J2)

)
= HomZ(Z, Z2). Sim-

ilarly to part (i), taking account of Lemmas 4.4 and 4.6, we have the following
commutative diagram (j ∈ Z/2Z)

. . . // Kj(J2) // Kj(B1) // Kj(B2) // Kj+1(J2) // . . .

. . . // Kj

`
C0(V2)

´ //

ϕj

OO

Kj

`
C0(W1)

´ //

ϕj

OO

Kj

`
C0(W2)

´ //

ϕj

OO

Kj+1

`
C0(V2)

´ //

ϕj+1

OO

. . .

. . . // Kj−1(I2) //

β1

OO

Kj−1

`
C0(R

3)∗
´ //

β1

OO

Kj−1(A2) //

β1

OO

Kj(I2) //

β1

OO

. . .

Thus we can compute δ0 : K0(A2) → K1(I2) instead of δ1 : K1(B2) → K0(J2).
By the proof of Lemma 4.6, we have to define δ0

(
[p] − [ε1]

)
= δ0

(
[p]

)
(because

δ0

(
[ε1]

)
= (0, 0)). Using the same argument as above, we get δ0

(
[p]

)
= [b]�[u+]+

[b] � [u−]. Thus γ2 = (1, 1) ∈ HomZ(Z, Z2) ∼= Z2. The proof is complete.
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