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1. Introduction

The concept of a C'—open set in a topological space was introduced by Hatir,
Noiri and Yksel in [5]. The authors define a set S to be a C—open set if S =
U N A, where U is open and A is semi-preclosed. A set S is a C'—closed set if
its complement (denoted by S¢) is a C'—open set or equivalently if S = U U A,
where U is closed and A is semi-preopen. The authors show that a subset of
a topological space is open if and only if it is an a—open set and a C'—open
set. This enables them to provide the following decomposition of continuity: a
function is continuous if and only if it is a—continuous and C'—continuous.

* This work was supported by University of Isfahan and Centre of Excellence for
Mathematics (University of Isfahan).
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Recall that a subset A of a topological space (X, 7) is called a—open if A is
the difference of an open and a nowhere dense subset of X. A set A is called
a—closed, if its complement is a«—open or equivalently, if A is the union of a
closed and a nowhere dense set. Sets which are dense in some regular closed
subspace are called semi-preopen or B—open. A set is semi-preclosed or f—closed
if its complement is semi-preopen or J—open.

In [3] it was shown that a set A is S—open if and only if A C Cl(Int(Cl(A))).

Recall that a real-valued function f defined on a topological space X is called
A—continuous [10] if the preimage of every open subset of R belongs to A,
where A is a collection of subsets of X. Most of the definitions of function
used throughout this paper are consequences of the definition of A—continuity.
However, for unknown concepts the reader may refer to [2, 4].

Hence, a real-valued function f defined on a topological space X is called
C'—continuous (resp. a—continuous) if the preimage of every open subset of R
is a C'—open (resp. a—open) subset of X.

Results of Katétov [6, 7] concerning binary relations and the concept of an
indefinite lower cut set for a real-valued function, which is due to Brooks [1], are
used in order to give necessary and sufficient conditions for the strong insertion
of a continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write g < f in
case g(z) < f(z) for all z in X.

The following definitions are modifications of conditions considered in [8].

A property P defined relative to a real-valued function on a topological space
is a c—property provided that any constant function has property P and provided
that the sum of a function with property P and any continuous function also has
property P.If P; and P, are c—properties, the following terminology is used: (i)
A space X has the weak c—insertion property for (Py, Pp) if and only if for any
functions g and f on X such that g < f, g has property P; and f has property
Py, then there exists a continuous function h such that g < h < f. (ii) A space
X has the c—insertion property for (Py, P2) if and only if for any functions g
and f on X such that g < f, g has property P, and f has property Ps, then
there exists a continuous function h such that g < h < f. (iii) A space X has
the weakly c—insertion property for (Pp, P) if and only if for any functions g
and f on X such that g < f, g has property P1, f has property P and f — g
has property P», then there exists a continuous function h such that g < h < f.

In this paper, a sufficient condition for the weak c—insertion property is given.
Also for a space with the weak c—insertion property, we give a necessary and suf-
ficient condition for the space to have the c—insertion property. Several insertion
theorems are obtained as corollaries of these results.
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2. The Main Result

Before giving a sufficient condition for insertability of a continuous function, the
necessary definitions and terminology are stated.

Let (X, 7) be a topological space, the family of all «—open, a—closed, C'—open
and C'—closed will be denoted by aO(X, 1), aC(X, 1), CO(X,7) and CC(X, 1),
respectively.

Definition 2.1. Let A be a subset of a topological space (X, 7). Respectively,
we define the a—-closure, a—interior, C—closure and C'—interior of a set A,

denoted by aCl(A4), alnt(A4), CCI(A) and ClInt(A) as follows:
aCl(A)={F:FD A, FecaC(X,1)},
alnt(A) =U{O: 0 C 4,0 € aO(X, 1)},
CClA)=n{F:F2AFeCCX,7)}and
CInt(A) =U{O: 0O C A, 0 € COX,1)}.

Respectively, we have aCl(A4),CCl(A) are a—closed, semi-preclosed and
alnt(A), CInt(A) are a—open, semi-preopen.

The following first two definitions are modifications of conditions considered
in [6, 7].

Definition 2.2. If p is a binary relation in a set S then p is defined as follows:
x py if and only if y p v implies  p v and u p x implies v p y for any v and v
in S.

Definition 2.3. A binary relation p in the power set P(X) of a topological
space X is called a strong binary relation in P(X) in case p satisfies each of the
following conditions:

1) If A; p B;j for any i € {1,...,m} and for any j € {1,...,n}, then there
exists a set C' in P(X) such that A; p C and C p B; for any i € {1,...,m} and
any j € {1,...,n}.

2) If AC B, then A p B.

3) If A p B, then Cl(A) C B and A C Int(B).

The concept of a lower indefinite cut set for a real-valued function was defined
by Brooks [1] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if {z €
X:f(x) <} CA(f,0) C{xre X : f(xr) <L} for a real number ¢, then A(f,¥)

is called a lower indefinite cut set in the domain of f at the level /.

We now give the following main result:
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Theorem 2.5. Let g and f be real-valued functions on a topological space X with
g < f. If there exists a strong binary relation p on the power set of X and if there
exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the
level t for each rational number t such that if t1 < to then A(f,t1) p A(g,t2),
then there ezists a continuous function h defined on X such that g < h < f.

Proof. Let g and f be real-valued functions defined on X such that ¢ < f. By
hypothesis there exists a strong binary relation p on the power set of X and there
exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the
level ¢ for each rational number ¢ such that if ¢; < t2 then A(f,t1) p A(g,t2).

Define functions F' and G mapping the rational numbers Q into the power
set of X by F(t) = A(f,t) and G(t) = A(g,t). If t; and t2 are any elements
of Q with t; < to, then F(tl) 1 F(tg),G(tl) 1 G(tg), and F(tl) P G(tg) By
Lemmas 1 and 2 of [7] it follows that there exists a function H mapping Q into
the power set of X such that if ¢; and t2 are any rational numbers with ¢; < ¢s,
then F(tl) 14 H(tg), H(tl) 14 H(tg) and H(tl) 14 G(tg)

For any z in X, let h(z) =inf{t € Q:z € H(t)}.

We first verify that g < h < f: If z is in H(¢) then z is in G(t') for any ¢’ > t;
since z is in G(t') = A(g,t') implies that g(z) < t/, it follows that g(z) < t.
Hence g < h. If = is not in H(t), then x is not in F(¢’) for any ¢’ < ¢; since x
is not in F'(t') = A(f,t') implies that f(z) > t/, it follows that f(x) > t. Hence
h<f.

Also, for any rational numbers t; and t5 with t; < to, we have h=1(t1,t2) =
Int(H (t2)) \ CI(H(t1)). Hence h=1(t1,t2) is an open subset of X, i.e., h is a
continuous function on X. [ ]

The above proof used the technique of proof of Theorem 1 of [6].

Theorem 2.6. Let P, and P> be c—properties and X be a space that satisfies the
weak c—insertion property for (Py, Ps). Also assume that g and f are functions
on X such that g < f, g has property P, and f has property Py. The space X
has the c—insertion property for (P1, P2) if and only if there exist lower cut sets
A(f — 9,37 ") and there exists a decreasing sequence {D,} of subsets of X
with empty intersection and such that for each n, X \ D, and A(f — g,37 ")
are completely separated by continuous functions.

Proof. Theorem 2.1 of [9]. [ |

3. Applications

The abbreviations ac and Cc are used for a—continuous and C'—continuous,
respectively.

Corollary 3.1. If for each pair of disjoint a—closed (resp. C—closed) sets Fy, Fy
of X, there exist open sets G1 and G of X such that I, C Gy, Fo C G5 and
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G1 NGy = @ then X has the weak c—insertion property for (ac,ac) (resp.
(Cc, Ce)).

Proof. Let g and f be real-valued functions defined on X, such that f and g
are ac (resp. Cc), and g < f. If a binary relation p is defined by A p B in case
aCl(A) C alnt(B) (resp. CCl(A) C Clnt(B)), then by hypothesis p is a strong
binary relation in the power set of X. If ¢; and ¢ty are any elements of Q with
t1 < to, then

A(f,t1) C{z e X : f(x) <t1} C{zx e X : g(x) < t2} C A(g,t2);

since {z € X : f(z) < t1} is an a—closed (resp. C'—closed) set and since {z €
X : g(x) < t2} is an a—open (resp. C'—open) set, it follows that aCl(A(f,t1)) C
alnt(A(g, t2)) (resp. CCI(A(f,t1)) € CInt(A(g,t2))). Hence t1 < to implies that
A(f,t1) p A(g,t2). The proof follows from Theorem 2.5. [ |

Corollary 3.2. If for each pair of disjoint a—closed (resp. C—closed) sets
Fy, Fy, there exist open sets G1 and Go such that Fy C G1, Fo C G2 and
G1 NGz = @ then every a—continuous (resp. C'—continuous) function is con-
tinuous.

Proof. Let f be a real-valued a—continuous (resp. C'—continuous) function de-
fined on X. Set g = f, then by Corollary 3.1, there exists a continuous function
h such that g =h = f. ]

Corollary 3.3. If for each pair of disjoint a—closed (resp. C—closed) sets Fy, Fy
of X, there exist open sets G1 and G of X such that Iy, C Gy, Fo C G5 and
G1 NGy = @ then X has the strong c—insertion property for (ac,ac) (resp.
(Cc, Ce)).

Proof. Let g and f be real-valued functions defined on the X, such that f and
g are ac (resp. Cc), and g < f. Set h = (f + ¢)/2, thus ¢ < h < f and if
g(x) < f(x) for any z in X, then g(x) < h(z) < f(z). Also, by Corollary 3.2,
since g and f are continuous functions hence h is a continuous function. [ ]

Corollary 3.4. If for each pair of disjoint subsets F1, Fo of X, such that Fy is
a—closed and Fy is C'—closed, there exist open subsets G1 and Go of X such
that Fy C G1, Fy C G4 and G1 N Go = & then X have the weak c—insertion
property for (ac,Cc) and (Ce, ac).

Proof. Let g and f be real-valued functions defined on X, such that g is ac (resp.
Cc) and f is Cc (resp. ac), with g < f. If a binary relation p is defined by A p B
in case CCl(A) C aInt(B) (resp. aCl(A) C CInt(B)), then by hypothesis p is a
strong binary relation in the power set of X. If ¢; and 2 are any elements of Q
with ¢, < to, then

A(f,t1) C{z e X : f(x) <t1} C{zx e X : g(x) < t2} C A(g,t2);
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since {x € X : f(x) < t1} is a C—closed (resp. aw—closed) set and since {z €
X : g(x) < t2} is an a—open (resp. C—open) set, it follows that CCI(A(f,t1)) C
alnt(A(g, t2)) (resp. aCl(A(f,t1)) € CInt(A(g,t2))). Hence t; < to implies that
A(f,t1) p A(g,t2). The proof follows from Theorem 2.5. [ |

Before stating consequences of Theorem 2.6, we state and prove some neces-
sary lemmas.

Lemma 3.5. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets F1, Fy of X, such that Fy is a—closed and
Fy is C—closed, there exist open subsets G1,Go of X such that F1 C G1, Fo C Go
and Gl n G2 = J.

(ii) If F is a C—closed (resp. a—closed) subset of X which is contained in an

a—open (resp. C—open) subset G of X, then there exists an open subset H of
X such that F C H CCI(H) CG.

Proof. (i) = (ii) Suppose that F' C G, where F and G are C'—closed (resp.
a—closed) and a—open (resp. C—open) subsets of X, respectively. Hence, G¢ is
an a—closed (resp. C'—closed) and FF N G° = @.
By (i) there exist two disjoint open subsets G1,Ga of X such that FF C G,
and G° C (G3. But
G°C Gy = GS CG,

and
GlﬂG2:®:>G1§G§

hence
FCG CG5CG

and since G§ is a closed set containing G we conclude that C1(Gy) C G§, i.e.,
F C Gy CClGy) CG.

By setting H = G, condition (ii) holds.
(ii) = (i) Suppose that Fy, F» are two disjoint subsets of X, such that Fj is
a—closed and Fy is C'—closed.

This implies that F» C F{ and FY is an a—open subset of X. Hence by (ii)
there exists an open set H such that F, C H C CI(H) C FY.
But
HCCIH)=HnN(CI(H) =0

and
Cl(H) C Ff = F, C (CI(H))".

Furthermore, (C1(H))° is an open set of X. Hence F» C H, Fy C (C1(H))° and
H N (CI(H))¢ = @. This means that condition (i) holds. ]

Lemma 3.6. Suppose that X is a topological space. If each pair of disjoint sub-
sets F1, Fy of X, where Fy is a—closed and Fy is C—closed, can be separated by
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open subsets of X then there exists a continuous function h : X — [0,1] such

that h(Fy) = {0} and h(F) = {1}.

Proof. Suppose F; and F, are two disjoint subsets of X, where F} is a—closed
and F; is C'—closed. Since FyNFy = &, hence F5 C FY. In particular, since FY is
an a—open subset of X containing the C'—closed subset F» of X, by Lemma 3.5,
there exists an open subset H, /o of X such that

Fy C Hyjp C Cl(Hy o) C FY.

Note that H;,; is also an a—open subset of X and contains F5, and Ff is an
a—open subset of X and contains the C'—closed subset Cl(H; /) of X. Hence,
by Lemma 3.5, there exists open subsets H;,4 and Hjz/4 such that

Fy CHy/y CCI(Hyyy) € Hyjpp CCIHHyyo) € Hyyy € Cl(Hgyy) C FY.

By continuing this method for every t € D, where D C [0, 1] is the set of rational
numbers that their denominators are exponents of 2, we obtain open subsets H,
of X with the property that if ¢t1,t2 € D and t; < to, then H;, C H,,. We define
the function h on X by h(z) = inf{t : = € H,} for x ¢ Fy and h(z) = 1 for
r € Fy.

Note that for every x € X, 0 < h(z) < 1, i.e., h maps X into [0, 1]. Also,
we note that for any ¢ € D, Fy C Hy; hence h(Fy) = {0}. Furthermore, by
definition, h(Fy) = {1}. It remains only to prove that h is a continuous function
on X. For every 8 € R, we have if 8 < 0 then {z € X : h(z) < f} = @ and if
0 < B then {z € X : h(z) < 8} = U{H¢ : t < B}, hence, they are open subsets
of X. Similarly, if 8 < 0 then {z € X : h(z) > f} = X and if 0 < § then
{z € X : h(z) > B} = U{(CL(Hy))¢ : t > (3} hence, each of them is an open
subset of X. Consequently h is a continuous function. []

Lemma 3.7. Suppose that X is a topological space such that every two disjoint
C—closed and a—closed subsets of X can be separated by open subsets of X. The
following conditions are equivalent:

(i) Ewvery countable covering of C—open (resp. a—open) subsets of X has a
refinement consisting of a—open (resp. C—open) subsets of X such that for every
x € X, there exists an open subset of X containing x such that it intersects only
finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence {F,} of C—closed (resp.
a—closed) subsets of X with empty intersection there exists a decreasing se-
quence {Gy} of a—open (resp. C—open) subsets of X such that (\,—, Gn = @
and for everyn € N, F,, C G,,.

Proof. (i) = (ii) Suppose that {F,} is a decreasing sequence of C'—closed (resp.
a—closed) subsets of X with empty intersection. Then {F¢ : n € N} is a count-
able covering of C—open (resp. a—open) subsets of X . By hypothesis (i) and
Lemma 3.5, this covering has a refinement {V,, : n € N} such that every V,, is
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an open subset of X and Cl(V,,) C F¢. By setting G,, = (C1(V},))¢, we obtain a
decreasing sequence of open subsets of X with the required properties.

(ii) = (i) Now if {H, : n € N} is a countable covering of C'—open (resp.
a—open) subsets of X, we set for n € N, F,, = (U, H;)®. Then {F,} is a
decreasing sequence of C'—closed (resp. a—closed) subsets of X with empty
intersection. By (ii) there exists a decreasing sequence {G,} consisting of
a—open (resp. C'—open) subsets of X such that ()., G, = & and for every
n € N, F,, C G,. Now we define the subsets W,, of X in the following manner:

W1 is an open subset of X such that G{ C W; and Cl(W;) N F, = @.

Ws is an open subset of X such that Cl(W;)UGS C Ws and CI(Wo)NFy = &,
and so on. (By Lemma 3.5, W, exists).

Then since {G¢ : n € N} is a covering for X, hence {W,, : n € N} is a covering
for X consisting of open subsets of X. Moreover, we have

(i) CUWn) € Wi

(i) G C W,

(i) W, € UL, H,.

Now set S = W; and for n > 2, we set S,, = W41 \ Cl(W;,—1).

Then since CI(W,,—1) C W,, and S;, D Wy, 41\ Wy, it follows that {S,, : n € N}
consists of open subsets of X and covers X. Furthermore, S; N.S; # @ if and
only if |4 — j| < 1. Finally, consider the following sets:

SlﬂHl, SlmHQ
SQﬂHl, SQQHQ, SQﬂHg
SgﬂHl, SgﬂHQ, SgﬂHg, SgﬂH4

SiNHy, S;NHe, S;NHs, S;iNHy -+, SiNHi

These sets are open subsets of X, cover X and refine {H,, : n € N}. In
addition, S;N H; can intersect at most the sets in its row, and in the immediately
above, or immediately below row.

Hence if z € X and x € S, N H,,, then S, N H,, is an open subset of X
containing x that intersects at most finitely many of sets S; N H;. Consequently,
{SiNnH; :ieN,j=1,...,i+ 1} refines {H,, : n € N} such that its elements
are open subsets of X, and for every point in X we can find an open subset
of X containing the point that intersects only finitely many elements of that
refinement. [ ]

Corollary 3.8. If every two disjoint C'—closed and a—closed subsets of X can
be separated by open subsets of X, and in addition, every countable covering of
C—open (resp. a—open) subsets of X has a refinement that consists of a—open
(resp. C—open) subsets of X such that for every point of X we can find an
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open subset containing that point such that it intersects only a finite number of
refining members then X has the weakly c—insertion property for (ac, Cc) (resp.

(Ce, ac)).

Proof. Since every two disjoint C'—closed and a—closed sets can be separated
by open subsets of X, therefore by Corollary 3.4, X has the weak c—insertion
property for (ac,Cc) and (Ce, ac). Now suppose that f and g are real-valued
functions on X with g < f, such that g is ae (resp. Cc), f is Cc (resp. ac) and
f—gis Cc (resp. ac). For every n € N, set

Af =g,37" ) ={z e X: (f —g)(a) <377}

Since f — g is Cc (resp. ac), hence A(f — ¢g,37"!) is a C'—closed (resp.
a—closed) subset of X. Consequently, {A(f—g,37" ")} is a decreasing sequence
of C—closed (resp. a—closed) subsets of X and furthermore since 0 < f — g,
it follows that o—; A(f — ¢,37" ") = . Now by Lemma 3.7, there exists
a decreasing sequence {D,} of a—open (resp. C'—open) subsets of X such
that A(f — ¢,3™ ") C D,, and (,_, D,, = @. But by Lemma 3.6, the pair
A(f —g,37" ™) and X \ D,, of C—closed (resp. a—closed) and a—closed (resp.
C'—closed) subsets of X can be completely separated by continuous functions.
Hence by Theorem 2.6, there exists a continuous function h defined on X such
that g < h < f, i.e., X has the weakly c—insertion property for (ac, Cc) (resp.
(Cc, ac)). [
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